
Th e hereditary breast and ovarian cancer predisposition 

genes BRCA1 and BRCA2 have crucial roles in the 

control of double strand break (DSB) repair by homolo-

gous recombination (HR). BRCA1 functions early in HR, 

interacting with nucleases, including CtIP and the 

Mre11/ Rad50/NBS1 (MRN) complex to coordinate DNA 

end resection to form single-stranded DNA [1]. BRCA1 

also recruits BRCA2 to the break site. BRCA2 is a key 

repair component that loads the Rad51 recombinase onto 

single-stranded DNA of the processed DSB [2-4]. DSBs 

in cycling somatic cells are thought to arise predomi-

nantly during the DNA synthesis phase of the cell cycle, 

when a replicative DNA polymerase stalls on abnormal 

DNA structure. Some models invoke the use of HR to 

repair the broken fork using the undamaged neighboring 

sister chromatid as a template [5-7]. However, not all HR 

requires a DSB intermediate; a fork-stalling DNA adduct 

may be bypassed without complete breakage (‘collapse’) 

of the fork. Because the stalled fork is structurally diff er-

ent from an isolated DSB, the mechanisms governing HR 

in these two contexts may diff er. Circumstantial evidence 

suggests that critical events underlying breast cancer 

risk, as well as the therapeutic action of poly(ADP) ribose 

polymerase inhibitors on BRCA-linked cancers, are 

played out at sites of DNA polymerase stalling [8-10]. 

Paradoxically, however, the experimental tools available 

for studying HR at sites of mammalian DNA polymerase 

stalling are quite limited.

In a paper published recently in Cell, Schlacher and 

colleagues [11] have taken an interesting new approach 

to studying how BRCA2 aff ects stalled fork metabolism. 

Th e authors used single-molecule DNA fi ber analysis to 

determine the fate of newly synthesized (‘nascent’) DNA 

strands just proximal to replication forks in cells treated 

with hydroxyurea (HU), an agent that depletes the 

nucleotide pool, causing genome-wide DNA polymerase 

stalling. In wild-type cells, the nascent strands at HU-

arrested forks were protected from degradation. In 

contrast, cells lacking wild-type BRCA2 revealed progres-

sive erosion of nascent DNA strands. Th e authors identi-

fi ed the DNA end resection complex MRN as a key 

mediator of this process. Precisely what DNA structures 

MRN acts on to erode the nascent strands at HU-arrested 

forks in BRCA2 mutants is not yet clear, although it likely 

involves MRN-mediated resection of a DNA end. In 

wild-type cells, the short period of exposure to HU 

described by Schlacher and colleagues should produce 

few if any DSBs as direct products of fork collapse [12]. In 

this regard, one previous report suggested that BRCA2

mutant cells are particularly susceptible to replication 

fork collapse following prolonged HU treatment [13]. 

Th is raises the possibility that MRN acts on DNA ends 

produced by fork collapse in BRCA2 mutants. If this were 

the case, however, only a fraction of all nascent strands 

should show the observed resection. Th e fact that 

Schlacher and colleagues observed coordinated resection 

of all nascent strands, a process that had evidently begun 

within minutes of HU exposure, suggests that a mecha-

nism other than fork collapse generated the DNA ends 

that MRN attacks. Experiments in yeast and bacteria 

have revealed that stalled forks can undergo ‘fork 

reversal’  - a process whereby the fork backtracks on its 

path, generating a cruciform DNA structure called a 
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‘chicken foot’, with a single exposed DNA end composed 

of paired nascent strands [14,15]. Schlacher and colleagues 

speculate that an equivalent structure can form in 

mammalian cells and that BRCA2 either prevents its 

formation or helps to protect the free DNA end of this 

cruciform structure from attack by MRN.

BRCA2 protection of the HU-stalled fork from MRN-

mediated resection could refl ect a non-canonical role for 

BRCA2/Rad51 at stalled forks. Indeed, Schlacher and 

colleagues found that a BRCA2 mutant lacking the 

carboxy-terminal Rad51 binding domain is defective for 

protection against HU-triggered nascent strand 

resection, but retains intact HR repair of a chromosomal 

DSB. Th ese observations, together with other experi-

ments reported in the paper, suggest that BRCA2 has a 

‘stalled fork-protective’ function mediated by its stabiliz-

ing eff ect on the Rad51 nucleoprotein fi lament but 

distinct from its role in traditional DSB repair by HR [11]. 

A caveat of this interpretation is the likelihood that HR at 

stalled forks involves mechanisms additional to those 

required for HR at an isolated DSB. Perhaps the ‘fork-

protective’ function of BRCA2 is indeed required for HR 

at stalled forks, but not for HR at isolated DSBs. Data 

obtained with use of HU also pose some problems of 

interpretation, since HU produces genome-wide arrest of 

otherwise structurally normal replication forks. It is not 

clear to what extent this static form of ‘replication stress’ 

refl ects the dynamic interactions that occur between the 

replication fork and a DNA polymerase-stalling carcino-

genic DNA adduct.

Our current view of BRCA1 and BRCA2 suggests that 

regulation of HR at stalled replication forks infl uences 

the probability of a woman developing breast cancer as 

well as her response to therapy. Th e work by Schlacher 

and colleagues reveals new mechanisms underlying this 

relationship. Th e rewards of continuing to dig deeper 

into basic mechanisms of action of the BRCA genes will 

be a better understanding of breast cancer risk and breast 

cancer therapy. Perhaps this will include the discovery of 

new therapies that take advantage of the replication-

recombination ‘Achilles heel’ of BRCA mutant breast 

cancers and of other cancers in which HR is defective.
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