
Introduction

Breast cancer is a heterogeneous and complex disease 

that encompasses diff erent entities with distinct bio-

logical features and clinical outcomes [1-3]. Adjuvant 

systemic therapies are employed to eradicate potential 

micrometastatic disease after surgery for early-stage 

cancers but their management remains challenging in 

clinical practice. Treatment decisions still are based largely 

on clinicopathological criteria, including age, tumor size, 

histological grade, lymph node metastasis, lympho-

vascular invasion, and estrogen receptor (ER), proges-

terone receptor (PR), and human epidermal growth 

factor receptor 2 (HER2) status. Th ese parameters have 

been incorporated into guidelines such as those of St. 

Gallen [4] and the National Institutes of Health consensus 

or integrated in internet-based decision tools (like 

Adjuvant! Online [5,6]) to aid clinicians evaluating the 

risk of distant recurrence and the need for adjuvant 

chemo therapy (Figure  1). While this approach has 

improved survival for the average population, it has 

progressively widened the indications of adjuvant 

chemotherapy [7]. Currently, approximately 60% of all 

patients with early breast cancer receive some form of 

chemotherapy; although all patients will be exposed to 

the toxicity of these agents, only a minority will benefi t 

from it [7,8]. Reliable prognostic and predictive markers 

are needed to guide the selection of the most appropriate 

adjuvant therapies for individual patients with breast 

cancer. In fact, a shift from defi ning the cancer patients 

who should receive chemotherapy on the basis of their 

prognostic characteristics to defi ning the patients who 

are likely to benefi t most from this modality of adjuvant 

treatment is currently taking place.

In the past decade, the development of gene expres sion 

profi ling using high-throughput microarray-based 

methods has allowed the concurrent analysis of the 

expres sion level for thousands of genes in a tumor 

sample. Th ese technologies were hailed as a new dawn in 

cancer biology and oncology practice; however, after the 

initial wave of enthusiasm, a wave of (over)skepticism 

followed [9,10]. Fortunately, with the signifi cant number 

of studies based on gene expression profi ling in the last 

decade and the availability of datasets for reanalyses and 

meta-analyses, the fi eld of gene expression profi ling has 

matured.

Microarray-based gene expression profi ling studies 

undoubtedly have contributed to our understanding of 

the heterogeneity and complexity of breast cancer 

behavior. It was through a series of seminal studies by the 

Stanford group [11-13] that the breast cancer research 

community has come to terms with the idea that breast 

cancer is by no means a single disease and that distinct 
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molecular subtypes, often with identical histopathological 

features, do exist [11]. Moreover, numerous multigene 

signatures associated with prognosis and response to 

systemic therapies have emerged [1-3]. Some of these 

signatures are commercially available (Table 1) and two 

of them (MammaPrint, Agendia BV, Amsterdam, Th e 

Netherlands, and Oncotype DX, Genomic Health, 

Redwood City, CA, USA) are currently being tested in 

randomized pros pective clinical trials [14,15]. Here, we 

discuss the potential clinical relevance of gene profi ling 

in breast cancer and its potential impact on patients’ 

clinical care.

Molecular classifi cation of breast cancer

Th at breast cancer comprises a heterogeneous and 

complex group of tumors has been known for decades, 

and attempts to develop standardized classifi cation 

systems to account for the diversity of this disease were 

initiated in the late ’60s [16]. Nevertheless, clinical and 

translational investigators had historically considered 

breast cancer to be a single group of tumors in the 

context of clinical trials. Th e observation that tumors that 

had similar histopathological characteristics behaved in 

distinct manners was often used to disregard the histo-

logical heterogeneity of breast cancer.

Th e whole landscape of breast cancer research changed 

with the publication of seminal, class discovery, 

microarray-based gene expression profi ling studies 

[11-13], in which the heterogeneity and complexity of 

breast cancers were rediscovered at the molecular level 

(Figure 2). To the average ‘microarrayer’ and bioinfor ma-

tician, the experiments performed by Perou and colleagues 

[11] may now sound almost quaint, but in 2000 they had a 

major impact on how breast cancer was perceived given 

that they demonstrated that (a) ER-positive and ER-

negative breast cancers were funda mentally distinct at the 

transcriptomic level and (b) breast cancer could be divided 

into at least fi ve molecular subtypes: luminal A, luminal B, 

normal breast-like, HER2, and basal-like [12,17] (Figure 2).

Several groups have now demonstrated that ER-

positive and ER-negative breast cancers have their prog-

nosis governed by distinct biological processes [18,19] 

Figure 1. Clinical decision-making for adjuvant chemotherapy. Criteria included in the St. Gallen guidelines (green font) and in Adjuvant! 

Online (underlined) are shown. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; uPA/PAI-1, 

urokinase-type plasminogen activator and plasminogen activator inhibitor-1.
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and that at least some of these subtypes (for example, 

basal-like) have distinct risk factors, clinical presentation, 

histological features, response to therapy, and outcome 

[2,3,20]. Th ese data have led some experts in the fi eld to 

suggest that traditional clinicopathological features and 

immunohistochemical markers be replaced by this 

molecular taxonomy [21].

Th e initial approach employed for the identifi cation of 

the molecular subtypes was based on hierarchical 

clustering analysis. It should be noted, however, that this 

approach requires large datasets, is to some extent 

subjective, and cannot be employed for the classifi cation 

of individual samples prospectively [22-25]. Th erefore, 

‘single sample predictors’ (SSPs) were developed on the 

basis of the correlation between the expression profi le of 

a given sample with the centroids for each molecular sub-

type (that is, average expression profi le of each molecular 

subtype) [13,17,26]. Over the last decade, three distinct 

SSPs were developed [13,17,26]. Further more, on the 

basis of this approach, Parker and colleagues [17] developed 

a quantitative reverse transcriptase-poly merase chain 

reaction (qRT-PCR)-based or NanoString-based method 

(PAM50) that can be used to classify formalin-fi xed 

paraffi  n-embedded (FFPE) samples into the molecular 

subtypes. Our group [27] and others [28,29] have 

demonstrated that subtle variations in data normalization 

and centering, as well as in the proportion of samples 

from each of the subtypes, may lead to changes in the 

classi fi cation of samples using SSPs. Moreover, indepen-

dent groups have demonstrated that the classifi cation of 

tumors into the molecular subtypes, except for the basal-

like subtype, is dependent on the SSP used [27,28]. Th is is 

best exemplifi ed by the modest agreement in the 

classifi cation of samples (agreement of 64%, kappa score 

of 0.527, and 95% confi dence interval of 0.456 to 0.597) 

when a cohort of 295 breast cancers was classifi ed into 

the molecular subtypes by the authors of the original 

studies on the molecular classifi cation using SSPs by 

Sorlie’s [13,30] and Perou’s [26,31] groups.

Despite the enthusiasm for the use of this molecular 

taxonomy for the design of clinical trials and routine 

oncology practice, there are several issues that ought to 

be considered. First, the subdivision of luminal tumors 

into A and B is strongly dependent on the SSP used [27] 

and principally depends on the expression of prolifera tion-

related genes [17,26,32]; there is burgeoning evidence to 

Figure 2. Schematic illustrations of the fi ve major clusters that represent the molecular subtypes of breast cancer. Perou and colleagues 

[11] carried out a cDNA microarray analysis of 38 invasive breast cancers, 1 ductal carcinoma in situ, 1 fi broadenoma and 3 normal breast samples, 

and a number of biological replicates of tumors from the same patients and defi ned an ‘intrinsic gene’ list (that is, genes that vary more between 

tumors from diff erent patients compared with samples from the same tumor/patient). Hierarchical clustering analysis using these ‘intrinsic’ 

genes led to the identifi cation of four subtypes: luminal, normal breast-like, human epidermal growth factor receptor 2 (HER2), and basal-like. In 

subsequent studies, it was demonstrated that similar molecular subtypes of breast cancer could be identifi ed in multiple cohorts and that luminal 

cancers could be subclassifi ed into two groups (luminal A and B) [12] or three groups (luminal A, B, and C) [13]. The estrogen receptor (ER)-positive 

branch of the dendrogram contains the luminal tumors, which express low-molecular weight cytokeratins 8/18, ER, and genes associated with an 

active ER pathway [2,3,11-13,17,26,34]. Luminal A tumors (dark blue) present high levels of expression of ER-activated genes and low proliferation 

rates and are associated with an excellent prognosis, whereas luminal B breast cancers (light blue) are more often of higher histological grade 

and have higher proliferation rates and a worse prognosis [2,3,11-13,17,26,34]. The ER-negative branch includes at least three subtypes: normal 

breast-like, HER2, and basal-like. HER2 tumors (purple) overexpress HER2 and genes associated with the HER2 amplicon on 17q12 (that is, GRB7) 

and/or the HER2 pathway [2,3,11-13,17,26,34]. Basal-like tumors (red) express genes usually found in normal basal/myoepithelial cells of the 

breast, including high-molecular weight cytokeratins (5 and 17), caveolins 1 and 2, P-cadherin, nestin, CD44, and EGFR [20]. Morphological and 

immunohistochemical features of basal-like cancers are similar to those described for tumors arising in BRCA1 germ-line mutation carriers [20]. 

The HER2 and basal-like subgroups share an aggressive clinical behavior. Normal breast-like cancers (green) are still poorly characterized [3,22] and 

there is evidence to suggest that they may constitute an artefact of gene expression profi ling associated with a disproportionately high content of 

normal breast tissue [3,17,26,34].
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demonstrate that the expression of proliferation-related 

genes in luminal cancers forms a continuum [3,19,33] 

and that the division of these tumors into two subgroups 

on the basis of the currently available SSPs [13,17,26] may 

be artifi cial. Th e subclassifi cation of ER-positive breast 

cancers into subtypes is not only a challenge for the 

‘intrinsic’ subtype classifi cation. In fact, given that proli-

fera tion is a continuum in ER-positive cancers and that 

proliferation is a strong determinant of outcome in this 

group of tumors, the allocation of ER-positive breast 

cancer patients into good or poor prognosis by using other 

microarray-based methods (for example, MammaPrint 

and genomic grade index) or into low, intermediate, or 

high histological grade should be considered arbitrary to 

some extent (see ‘Multigene prognostic signa tures’ 

section). Second, normal breast-like cancers are now 

considered by some to be an invalid molecular subtype 

given that these tumors are likely to constitute an artefact 

of frozen tissue procurement and representation (that is, 

samples with a disproportionately high content of normal 

breast and stromal cells) [3,17,26,27,34,35]. Th ird, the 

HER2 (or HER2-enriched) subtype as defi ned by micro-

arrays does not encompass all cases classifi ed as HER2-

positive by clinically validated methods (that is, immuno-

histochemistry and in situ hybridization with methods 

approved by the US Food and Drug Adminis tration), and 

not all HER2-positive cancers by clinical methods are 

classi fied as HER2 subtype by microarrays [3,17,21,36,37].

Th e above discrepancies do not invalidate the existence 

of the ‘intrinsic’ subtypes. As recently pointed out by 

Perou and colleagues [38], this is an evolving classifi cation 

system and PAM50 [17], rather than the SSPs described 

by Sorlie and colleagues [13] or Hu and colleagues [26], 

should be employed. With the development of the 

PAM50 assay, prospective testing of this classifi cation by 

independent groups will determine its prognostic and 

predictive power and clinical utility above and beyond 

the clinicopathological parameters currently available.

Th e putative histogenetic implications of the molecular 

subtypes (that is, luminal cancers would originate from 

luminal cells and basal-like cancers would stem from basal/

progenitor cells) [12,13,39-42] have proven incorrect. 

Although this observation does not have a direct impact 

on the clinical utility of the ‘intrinsic’ molecular subtypes, 

it has led to the assumption that diff erent subtypes of 

breast cancer would originate from diff erent cell types 

[13,39-42]. Importantly, there is independent direct 

evidence to demonstrate that the likeliest cell of origin of 

basal-like breast cancers lies in the luminal progenitor 

population rather than the ‘basal’ population of the 

normal breast [43,44].

Additional evidence to support the contention that the 

‘intrinsic’ molecular taxonomy remains a working model 

in development stems from the recent identifi cation of at 

least three additional molecular subtypes of ER-negative 

cancers: the ‘interferon-rich’ subtype [26,45], the ‘mole-

cu lar apocrine’ subtype [46-48], and the ‘claudin-low’ 

subgroup [35,49] (Figure 2). Th e ‘interferon-rich’ subtype, 

fi rst described by Hu and colleagues [26], is characterized 

by high expression of interferon-regulated genes, such as 

STAT1 [26,45]; the ‘molecular apocrine’ subtype, which is 

characterized by activation of androgen receptor signal-

ing, frequently displays HER2 gene amplifi cation and may 

be associated with PTEN germline mutations [46-48]; 

and the ‘claudin-low’ subgroup, which comprises tumors 

that express low levels or lack of expression of E-cadherin 

and claudin mRNA, displays an enrichment for the 

expres sion of genes often expressed in the process of 

epithelial-to-mesenchymal transition and immune res-

ponse genes and allegedly harbors features suggestive of a 

‘cancer stem cell-like’ phenotype [35,49]. Intriguingly, 

greater than 40% of these cancers do express E-cadherin 

and claudins at the protein level, despite the low 

expression levels of these genes by microarray analysis 

[35]. Importantly, a substantial proportion of tumors 

classifi ed as of claudin-low subtype by using the cell line-

derived SSP described by Prat and colleagues [35] were 

previously classifi ed as normal breast-like by using other 

SSPs; these samples may have a disproportionately high 

content of stromal and normal breast cells. Hence, it 

remains to be determined whether breast cancers that do 

express E-cadherin and claudins at the protein level and 

that were classifi ed as claudin-low by the SSP predictor 

were not classifi ed as such due to stromal cell 

contamination. Another point for considera tion is the 

overlap between the transcriptomic charac teristics of the 

claudin-low subtype and those of spindle cell metaplastic 

breast carcinomas [49,50].

Given the above observations, but despite recent claims 

that PAM50 models derived from archival formalin-fi xed 

RNA are ‘a potential replacement for grade-, hormone 

receptor-, Ki67-, and HER2-based prognostic models’ 

[21], we argue that the microarray-based gene classifi -

cation for breast cancer is not yet ready for clinical use in 

prognostic models or otherwise [1,3,8,27]. In fact, stan-

dardi zation of the defi nitions and the methodologies for 

the identifi cation of the molecular subtypes and pros pec-

tive clinical trials to validate the contribution of the 

‘intrinsic’ subtypes in addition to the current clinico-

pathological parameters for the management of breast 

cancer patients are still required [1,3,8,27]. Robust, 

independently validated methods for the identifi cation of 

these subtypes are yet to be published.

Multigene prognostic signatures

First-generation signatures

Th e development of microarray-based multigene prog-

nostic classifi ers (also known as ‘gene signatures’) has 
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been pursued by many groups in the last decade [51-58] 

with the aim of defi ning which patients would have such 

a good prognosis that they could forgo chemotherapy. 

Th e fi rst prognostic gene signature [51] consisted of 70 

genes and was shown to identify a group of good-

prognosis patients with minimal risk of development of 

distant metastasis within 5 years in patients who were 

systemic therapy-naïve. In a subsequent study, van de 

Vijver and colleagues [59] demonstrated that the 70-gene 

signature was a predictor of outcome independently of 

the current clinicopathological prognostic markers in a 

dataset comprising 295 cases (64 cases from the analysis 

that led to the development of the 70-gene signature and 

231 new cases). Importantly, in that [59] and subsequent 

[60,61] studies, it has been repeatedly demonstrated that 

the 70-gene signature classifi es greater than 95% of ER-

negative cancers as poor prognosis and that there is a 

strong correlation between 70-gene signature-defi ned 

poor prognosis and high histological grade. Furthermore, 

the studies demonstrated that the 70-gene signature 

would outperform the current methods based on clinico-

pathological parameters for chemotherapy use [51,59]. 

Th is has led to the development of MammaPrint, a 

commercially available version of the 70-gene signature. 

Subsequent studies have led to the development of 

several other prognostic signatures, including the 76-gene 

signature [54,62] and genomic grade index [55,63-65], 

which were also shown to be independent predictors of 

outcome. MammaPrint is currently being tested in the 

MINDACT (Microarray In Node-negative and 1-3 

positive lymph-node Disease may Avoid ChemoTh erapy) 

trial [15] (Figure 3), which will deter mine whether this 

signature can actually replace clinico pathological para-

meters for the identifi cation of patients who could be 

spared from the use of chemotherapy. Table 1 summar-

izes the prognostic signatures more extensively studied to 

date. For comprehensive reviews on microarray-based 

prognostic gene signatures, readers are referred to 

Sotiriou and Pusztai [2], Weigelt and colleagues [3], and 

Kim and Paik [66].

In parallel with the development of microarray-based 

prognostic signatures, Paik and colleagues [52] developed 

Oncotype DX, a qRT-PCR-based analysis of 21 genes (16 

cancer-related and 5 reference genes), which can be used 

for risk stratifi cation of ER-positive, node-negative breast 

cancers from patients treated with adjuvant tamoxifen. In 

contrast to microarray-based predictors, Oncotype DX 

can be applied to FFPE samples, and this test was 

developed and validated on the basis of a retrospective 

analysis of the existing material from two randomized 

clinical trials (NSABP-B-20 and NSABP-B-14). Th e 

signature is based on the expression of genes that are 

associated with proliferation, ER signaling, HER2, and 

invasion [52]. Th e expression of these genes is presented 

as a recurrence score (RS) that ranges from 0 to 100. 

Th ese scores provide an estimate of 10-year distant 

recurrence risk. For clinical use, patients are separated 

into three categories: low-risk (RS <18), inter mediate-

risk (RS ≥18 and <31), and high-risk (RS ≥31) [52]. 

Oncotype DX has been shown to be an independent 

prognostic factor for patients with ER-positive, node-

negative breast cancers treated with tamoxifen and to 

outperform standard clinicopathological parameters for 

the prediction of 10-year distant recurrence risk [52]. 

Oncotype DX has been subsequently evaluated in other 

populations of breast cancer [67] and shown to be an 

independent prognostic parameter in patients with ER-

positive tumors with up to three positive nodes receiving 

adjuvant chemotherapy [68] and in postmenopausal 

patients with ER-positive tumors treated with aromatase 

inhibitors (that is, anastrozole) [69].

Oncotype DX RSs have also been shown to be corre lated 

with the benefi t patients derive from adjuvant chemo-

therapy in samples from clinical trials [70-72]. In fact, 

patients with tumors displaying high RSs despite the poor 

prognosis derive signifi cantly more benefi t from chemo-

therapy than those with low-RS tumors. In addition, 

patients with low-RS cancers appear to derive negligible 

benefi t from the addition of chemotherapy to tamoxifen 

[70,71]. Th erefore, Oncotype DX has also been considered 

a predictive marker of benefi t from chemotherapy.

Despite the numerous publications on fi rst-generation 

signatures, level II evidence to support the prognostic 

role was achieved only for Oncotype DX; for the 

remaining signatures, only level III evidence has been 

obtained so far. Given the level of evidence that has been 

accrued, Oncotype DX has received approval from the 

American Society of Clinical Oncology [73] and was 

included in the National Comprehensive Cancer Network 

guidelines (Breast Cancer version 1.2011 [74]) as an 

option to evaluate prognosis and as a complement to 

clinicopathological features to predict response to 

chemotherapy for patients with ER-positive, node-

negative breast cancer. None of the microarray-based 

prognostic signatures has been endorsed by these 

professional bodies.

Are the fi rst-generation prognostic gene signatures ready 

for use in clinical practice?

Although the diff erent fi rst-generation signatures des-

cribed above provide relevant information for outcome 

prediction, they have yet to be incorporated into clinical 

practice [1,3,8]. Th e reasons for this apparent failure are 

multifactorial, and not a single fi rst-generation signature is 

currently supported by level I evidence for their prognostic 

power. Th is information will be available only after the 

completion of the two randomized trials, MINDACT [15] 

and TAILORx (Trial Assigning IndividuaLized Options 
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for Treatment Rx) [14] (Figures 3 and 4), which evaluate 

the genomic signatures MammaPrint and Oncotype DX, 

respectively.

First-generation signatures have been shown not to be 

stable in terms of the list of genes they are composed of 

[75,76]; however, comparative studies and meta-analyses 

have demonstrated that, despite having a negligible over-

lap in their constituent genes, the fi rst-generation signa-

tures tend to have similar performance and show a 

relatively good concordance in their prognostic classifi -

cation, identifying similar but not identical subgroups of 

patients with poor prognosis [31,33,77].

Th e ability of these signatures to determine prognosis 

seems to be directly correlated to the assessment of 

proliferation-/cell cycle-related genes [18,33]. Th e fact 

that these fi rst-generation signatures arguably are mere 

surrogates of proliferation poses some important 

problems for their use. First, given that proliferation has 

been shown to be prognostic in ER-positive disease and 

not in ER-negative cancers, fi rst-generation signatures 

are applicable only for the prognostication of patients 

with ER-positive and HER2-negative breast cancers 

[18,54, 60,61]. As the expression level of proliferation-

related genes in ER-positive cancers has been demon-

strated to follow a continuum rather than a bimodal 

distribution, the subdivision of ER-positive cancers into 

good-prognosis (that is, luminal A) and poor-prognosis 

(that is, luminal B) groups is artifi cial [18,33]. In fact, the 

continuous nature of the Oncotype DX RS is more 

representative of the ranges of prognosis of patients with 

ER-positive disease. It should be noted, however, that this 

approach for clinical decision-making may be proble-

matic. For instance, the prognostication and management 

of patients with an intermediate RS remain unclear, and 

Figure 3. MINDACT (Microarray In Node-negative and 1-3 positive lymph-node Disease may Avoid ChemoTherapy) randomized 

trial design. The clinical impact of MammaPrint is being evaluated in MINDACT, a prospective multicenter randomized trial conducted by the 

European Organization for Research and Treatment of Cancer. The trial compares the recurrence-risk assessment of the 70-gene signature with 

that provided by Adjuvant! Online in selecting patients for adjuvant chemotherapy. Patients with concordant results are being treated accordingly 

(high-risk: chemotherapy with or without endocrine therapy, depending on estrogen receptor (ER) status; low-risk: hormonal therapy if ER-positive 

without chemotherapy). Discordant cases are being randomly assigned to receive adjuvant therapy on the basis of either clinicopathological or 

70-gene signature risk assessment. Launched in 2006, the trial intends to confi rm the validity of the signature and demonstrate that its clinical 

use would reduce the number of patients receiving unnecessary treatments, but the results will probably take years to be revealed. Clinico-path, 

clinicopathological; N, lymph node; N0, lymph node-negative; RANDOM, randomization; TAM, tamoxifen; yrs, years.
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up to 40% to 60% of clinically intermediate-risk patients 

(that is, breast cancers combining ER-positive, HER2-

negative, and grade II status) are allocated to the 

intermediate-risk RS group [78]. Th erefore, the actual 

contribution of Oncotype DX to the management of this 

particular group of patients remains to be elucidated 

[78]. Th e lack of prognostic power of fi rst-generation 

prognostic signatures in ER-negative breast cancer and 

their association with proliferation in ER-positive breast 

cancer have brought to the forefront of cancer research 

the limitations of histological grading. In a way akin to 

fi rst-generation prognostic gene signatures, histological 

grade is not prognostic in ER-negative disease and is 

strongly associated with proliferation [18,79]. It should 

be noted, however, that the levels of intra- and inter-

observer agreement of histological grade remain sub-

optimal, despite the numerous eff orts to implement a 

standardized histological grading system [79]. It could be 

argued, on the basis of the above obser vations, that the 

major contribution of fi rst-generation prognostic gene 

signatures is to provide a standardized proliferation assay 

for breast cancer.

A second limitation of the fi rst-generation prognostic 

signatures stems from the fact that most of them were 

developed to predict short-term distant recurrence 

(<5  years) and were shown to have a strong ‘time 

dependence’ and a reduced prognostic value after 5 to 

10  years of follow-up [61,80]. Hence, these signatures 

may represent merely early distant recurrence surrogates 

and are unable to predict late relapses with the same 

accuracy. Th us, there is still a need to develop signatures 

that could identify patients who have a higher risk of late 

relapse and who may benefi t from prolonged therapy.

Another important consideration in relation to the 

currently available fi rst-generation prognostic signatures 

is that they were derived on the basis of the analysis of 

tissue samples with varying contents of neoplastic cells, 

stromal cells, infl ammatory infi ltrate, and normal breast 

tissue. Th ere is evidence to suggest that the percentage of 

non-neoplastic cells has a substantial impact on the fi nal 

expression profi le of a tumor and on the ability to derive 

biologically meaningful prognostic signatures [81]. It 

should be noted that, although stromal cells and infl am-

matory infi ltrate may be integral parts of the expression 

profi le of a tumor and provide important prognostic and 

predictive information, most studies employed samples 

with percentages of stromal cells, infl ammatory infi ltrate, 

and normal breast tissue ranging from 0% to 50%. 

Table 1. Prognostic multigene signatures in breast cancer commercially available or in commercial development

 MammaPrint Oncotype DX Theros/MGI MapQuant DX/ Veridex 76-gene
Signature [51,59] [52] [53,56-58] simplifi ed [55] [54]

Commercially 

available/Provider

Yes/Agendia BV 

(Amsterdam, The 

Netherlands)

Yes/Genomic Health 

(Redwood City, CA, USA)

Yes/ bioTheranostics, Inc. 

(San Diego, CA, USA)

Yes/Ipsogen Inc. 

(Stamford, CT, USA)

No/Johnson & Johnson 

(New Brunswick, NJ, 

USA)

Study population ER+ and ER−, N0, <5 cm 

diameter, age <55 years

ER+, N0, TAM treated ER+, N0 ER+ and ER−, N0 and N+ ER+ and ER−

Assay 70-gene signature 21-gene Recurrence 

Score

2-gene HOXB13:IL17R/

molecular-grade index

97-gene signature/8-gene 

PCR

76-gene signature

Platform Microarray (Agilent 

Technologies, Inc., Santa 

Clara, CA, USA)

RT-PCR RT-PCR Microarray (Aff ymetrix, 

Santa Clara, CA, USA)/

RT-PCR

Microarray (Aff ymetrix)

Tissue type Frozen or stabilized mRNA FFPE FFPE Frozen/FFPE Frozen

Prognostic value in 

other populations

Age 55-70 years, 1-3 N+, 

N0 and N+, HER2+

ER+ and 1-3 N+, ER+ 

postmenopausal 

receiving aromatase 

inhibitors

- ER+ receiving aromatase 

inhibitors

Predictive value Neoadjuvant and 

adjuvant CT (poor 

signature)

Neoadjuvant and 

adjuvant CT [71] 

(high-RS), response to 

TAM (low-RS)

Resistance to TAM 

(high-ratio)

Response to neoadjuvant 

CT (high-risk)

Response to TAM 

(high-risk patients)

Indication Prognostic in N0, <5 cm 

diameter, stage I/II BC, 

age <61 years

Prediction of recurrence 

risk in ER+ and N0 BC 

treated with TAM

Prognostic in ER+ BC, 

prediction of response 

to TAM

Molecular grading, for 

ER+, histological grade 

II BC

Prognostic in ER+ BC

Level of evidence III II III III III

FDA approval Yes No No No No

Randomized trial MINDACT TAILORx - - -

Availability Europe and USA Europe and USA USA Europe -

BC, breast cancer; CT, chemotherapy; ER; estrogen receptor status (+ or −); FDA, US Food and Drug Administration; FFPE, formalin-fi xed paraffi  n-embedded; HER2, 
human epidermal growth factor receptor 2; HOXB13, homeobox 13; IL-17BR, interleukin-17B receptor; MGI, molecular grade index; MINDACT, Microarray In Node-
negative and 1-3 positive lymph-node Disease may Avoid ChemoTherapy; N+, lymph node-positive; N0, lymph node-negative; PCR, polymerase chain reaction; RS, 
recurrence score; RT-PCR, reverse transcriptase-polymerase chain reaction; TAILORx, Trial Assigning IndividuaLized Options for Treatment Rx; TAM, tamoxifen.
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It remains to be determined whether repeated samples of 

the same tumor with drastically diff erent percentages of 

neoplastic cells (for example, 50% versus 100%) would be 

allocated to the same prognostic subgroup consistently. 

Th erefore, methods to estimate the non-neoplastic cell 

content of samples or tissue microdissection to standard-

ize the proportion of neoplastic/non-neoplastic cells 

would be desirable in the development of new micro-

array-based classifi ers and implementation of currently 

available gene expression signatures.

Despite the initial claims that these signatures would 

replace current clinicopathological parameters for the 

management of patients with breast cancer, clinicopatho-

logical variables have been shown to add prognostic infor-

mation independent from that off ered by fi rst-genera tion 

signatures [1-3]. Th erefore, these gene signa tures should 

be perceived as ancillary tools that complement current 

methods based on the clinicopatho logical features of the 

tumors rather than as a replace ment for them [1-3]. 

Importantly, the additional prog nostic information pro-

vided by fi rst-generation signa tures appears to be limited 

when clinicopathological parameters are analyzed in a 

centralized fashion with standardized methods (that is, 

centralized reassessment of histological grade and 

standard ized assessment of ER, PR, HER2, and prolifera-

tion rate as defi ned by Ki67 immunohisto chemical analy-

sis) [82]. Th erefore, the true contribution of the commer-

cially available fi rst-generation signatures beyond tumor 

morphology and immunohistochemistry remains to be 

determined [8].

Recently, ‘second-generation’ signatures specifi c for the 

distinct subtypes of breast cancers have been reported by 

studying breast cancer microenvironment or host immune 

response [1,83-87]. Immune response-related signatures 

Figure 4. TAILORx (Trial Assigning IndividuaLized Options for Treatment Rx) randomized trial design. Oncotype DX is being tested in 

TAILORx, a prospective randomized phase III trial coordinated by the Breast Cancer Intergroup. The purposes of this trial are to confi rm the 

prognostic value of the 21-gene recurrence score (RS), to determine the optimal management of patients with intermediate-RS, and to refi ne the 

utility of the assay in clinical practice. The accrual was recently completed and the fi rst results will be disclosed in 2013. Patients with estrogen 

receptor (ER)-positive, node-negative breast cancers were eligible and were separated in three study groups according to their RS. High-RS patients 

(RS >25) received chemotherapy plus endocrine therapy, whereas low-RS patients (RS <11) were assigned to endocrine therapy alone. Patients with 

intermediate-RS (RS = 11 to 25) were randomly assigned to receive either hormonal therapy alone or hormonal therapy plus chemotherapy. To 

minimize potential under-treatment in both the high-risk and the randomly assigned groups, the RS ranges for TAILORx were diff erent from those 

originally defi ned (11 to 25 instead of 18 to 31). FFPE, formalin-fi xed paraffi  n-embedded; N0, lymph node-negative; RANDOM, randomization.

BREAST CANCER n=10,500 
N0 and ER+

FFPEFFPE ssues

21-gene Recurrence Score (RS)21 gene Recurrence Score (RS)

Oncotype DX
Tissue bank

(FFPE)

RS < 11
RS  11 and  25

(n=4,390)
RS >25

RANDOM

CHEMOTHERAPY ENDOCRINE THERAPY

ENDOCRINE THERAPYOC

PRIMARY END POINT: Disease-free survival
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have been shown to be potential prog nosticators in ER-

negative or triple-negative breast cancers [83-85]. Although 

these signatures are promising,  additional evidence in 

support of the use of these signatures as potential 

predictors of outcome is still required.

Multigene predictive signatures

Beyond prognostic classifi ers, an important challenge is 

to provide physicians with biomarkers that could predict 

the response or lack of response to treatments and 

determine the most eff ective regimen for a specifi c 

patient or subgroup of patients. In clinical practice, only 

ER and HER2 are currently used as predictive markers 

for the selection of patients likely to respond to endocrine 

therapy and trastuzumab, respectively.

In addition to Oncotype DX, whose RSs have been 

shown to be associated with benefi t from the addition of 

chemotherapy to tamoxifen, other prognostic signatures 

were also shown to have predictive value for the incre-

mental benefi t of chemotherapy [1-3,65,88,89]. However, 

unlike Oncotype DX, the predictive power of MammaPrint 

[88,89] and genomic grade index [65] have only been 

tested in retrospective datasets from patients treated 

with multidrug chemotherapy regimens.

Gene expression signatures and response to chemotherapy

With the clinical need for predictive markers for specifi c 

chemotherapy agents and multidrug regimens, several 

groups have developed multigene signatures specifi cally 

designed to predict response in patients receiving either 

chemotherapy or endocrine therapy. Using supervised 

approaches, several studies have attempted to identify 

multigene signatures of response to chemotherapy by 

comparing gene expression profi les between high-

sensitivity and low-responsiveness tumors [90-93]. Th e 

majority of the studies focused on neoadjuvant chemo-

therapy and, by means of microarrays or RT-PCR, 

analyzed tumor samples obtained from biopsies taken at 

diagnosis before initiation of chemotherapy (Table 2).  

Chemotherapy sensitivity usually was estimated with rate 

of pathological complete response to neoadjuvant 

therapy (pCR) as a surrogate of long-term benefi t from 

the treatment. For example, the MD Anderson Cancer 

Center group developed a 30-gene signature in 82 breast 

cancer patients receiving T/FAC chemotherapy (pacli-

taxel, fl uorouracil, doxorubicin, cyclophosphamide) 

[90,92]. Th is DLDA-30 predictor was then validated in 51 

independent patients and predicted pCR probability with 

higher sensitivity and negative predictive value than 

clinical variables based on age, grade, and ER status [92]. 

Th e accuracy of this predictor was confi rmed in an 

indepen dent study [94]. Despite these interesting pre-

liminary results, the accuracy of the 30-gene predictor 

was not found in a recent study in which it was not an 

independent predictor of pCR after multivariate analysis 

and did not perform better than clinical variables, 

questioning its potential utility in the clinical setting [95].

An alternative attempt to predict chemosensitivity to 

specifi c chemotherapy regimens was developed with the 

use of in vitro models [96]. Th e combination of in vitro 

signatures associated with drug sensitivity in cell lines 

was thought to provide composite signatures that could 

predict response to multidrug regimens and be translated 

to patients receiving multidrug chemotherapy [96]. Th ese 

‘regimen-specifi c’ signatures tested in patients who, as 

participants in the European Organization for Research 

and Treatment of Cancer (EORTC) BIG00-01 clinical 

trial, received TET (docetaxel, epirubicin-docetaxel) or 

FEC (fl uorouracil, epirubicin, and cyclo phos phamide) 

chemotherapy resulted in a validation study published in 

2007 [97]. Importantly, problems with the methodology 

of these studies have been identifi ed [98-100] and serious 

concerns about the validity of the published results were 

raised [101,102]. Subsequently, after a series of investi-

gations, the fi ndings derived from in vitro studies were 

considered invalid, and this led to the discontinuation of 

the clinical trials based on these prediction models. 

Furthermore, several high-profi le publi cations have 

recently been retracted.

Another method to develop multigene classifi ers of 

chemosensitivity is based on the use of metagenes (that 

is, groups of coexpressed genes associated with a small 

number of biological processes). A retrospective micro-

array analysis of prospectively collected ER-negative 

breast cancer samples demonstrated that increased 

stromal gene expression predicted resistance to FEC 

chemotherapy [103]. Th is ‘stromal’ multigene classifi er 

was subsequently validated in two independent cohorts 

[103]. Further validation of this metagene is awaited.

Despite the promising initial results, the signatures of 

chemotherapy sensitivity have so far had limited use in 

clinical practice. Most of them have been developed in 

small, convenience cohorts and require further external 

validation. None of the diff erent predictors of chemo-

sensitivity is commercially available, and additional 

evidence is still required before they can be implemented 

in clinical practice. For a detailed discussion of the 

reasons for the limited success of the predictive signa-

tures available to date, readers are referred to a recent 

review by Borst and Wessels [102]. On the basis of the 

design employed in most of the studies, the predictive 

signatures for multidrug regimens are likely to capture 

the transcriptomic features of sensitivity/resistance to 

cytotoxic agents in general. Th ese mechanisms may con-

stitute convergent phenotypes [104] (that is, there are 

multiple genetic/epigenetic aberrations that may lead to 

resistance to cytoxic agents). Th e next generation of 

signatures ought to focus on specifi c drugs within a given 
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subtype of breast cancer, as the predictors of response to 

chemo therapy in ER-positive and ER-negative breast 

cancers appear to be fundamentally diff erent [19]. 

Furthermore, potential mechanisms of resistance to 

chemotherapy identifi ed by orthogonal methods (for 

example, RNA inter ference screens [105], microarray-

based comparative genomic hybridization [106,107], 

proteomic analyses [108], and hypothesis-driven studies 

[109]) may be used as the basis for the development of 

multigene predictive signatures. With the availability of 

multiple microarray datasets from retrospective cohorts 

and clinical trials in the public domain, novel signatures 

derived from analyses using orthogonal methods can be 

tested in a timely fashion.

Predictive multigene markers of response to endocrine 

therapy

ER status has an important negative predictive value for 

evaluating the response to anti-estrogen therapy. Never-

theless, ER expression alone is not suffi  cient to predict 

which ER-positive tumor will respond or be resistant to 

diff erent modalities of endocrine therapies. Microarray-

based gene expression signatures to predict outcome of 

tamoxifen-treated patients have been developed (Table 3). 

For example, a 44-gene signature, identifi ed by Jansen 

and colleagues [110], compared gene expression profi les 

in patients with advanced ER-positive breast cancers 

treated by tamoxifen. Other hormone sensitivity tests 

studying estradiol-induced genes in MCF-7 cell line 

culture [111] or clusters of correlated genes [112] have 

also been reported.

More recently, the sensitivity to endocrine therapy 

(SET) index was developed in a large series of ER-positive 

breast cancers [113]. Th e SET index is based on the 

principle that expression of genes correlated with ER may 

better predict response to endocrine treat ment than ER 

expression alone [113]. Microarray analysis of a discovery 

set of ER-positive tumors led to the identifi cation of 165 

genes coexpressed with ER; the SET index was devised 

and applied to a validation cohort to defi ne three 

categories of sensitivity (low, intermediate, and high). 

Association between SET and outcome was then 

analyzed in three types of ER-positive cohorts receiving 

either adjuvant tamoxifen for 5 years or neoadjuvant 

chemotherapy followed by endocrine therapy (tamoxifen 

or aromatase inhibition) or no adjuvant sys temic 

treatment. Th e SET index was signifi cantly asso ciated 

with the outcome of patients receiving any type of 

endocrine treatment (tamoxifen or chemo endo crine 

treatment) but had no prognostic value in untreated 

patients. Unlike other multigene signatures evaluating 

proliferation in ER-positive tumors, the SET index seems 

to be predictive of benefi t from endocrine therapy 

independently of the inherent prognosis of the tumor. 

Interestingly, for a potential clinical application, the SET 

index could identify a subset of tumors associated with 

an excellent prognosis and no relapse in the tamoxifen-

treated group (node-negative and high-SET index tumors) 

and in the chemoendocrine group (high- and intermediate-

SET index). Studies evaluating the clinical relevance of 

the SET index are warranted to expand its indications in 

clinical practice.

Table 2. Multigene predictors of sensitivity to chemotherapy

 Number   Chemosensitivity     
Authors of casesa Regimen Chemotherapy evaluation Technology Method Signature NPV PPV Accuracy

Chang 

et al. [116]

24 discovery 

6 validation

Neoadjuvant Docetaxel Clinical response cDNA 

microarray

Supervised 92 genes 83% 92% 88%

Ayers 

et al. [90]

24 discovery 

12 validation

Neoadjuvant T/FAC pCR cDNA 

microarray

Supervised 74 genes 73% 100% 

(3/3)

78%

Iwao-

Koizumi 

et al. [91]

44 discovery 

26 validation

Neoadjuvant Docetaxel Clinical response High-

throughput 

RT-PCR

Supervised 85 genes 90.9% 73.3% 80.7%

Gianni 

et al. [70]

89 discovery 

92 validation

Neoadjuvant TA pCR qRT-PCR/

DNA 

microarray

Supervised 86 genes - - -

Hess et al. 

[92]

82 discovery 

51 validation

Neoadjuvant T/FAC pCR cDNA 

microarray

Supervised 30 genes 96% 52% 76%

Thuerigen 

et al. [93]

52 discovery 

48 validation

Neoadjuvant G-ET pCR cDNA 

microarray

Supervised 512 genes 95% 64% 88%

Farmer 

et al. [103]

63 Neoadjuvant FEC pCR cDNA 

microarray

Metagene 

approach

Stromal 

metagene

81% 57% 65%

aNumber of cases in discovery and validation sets. FEC, fl uorouracil, epirubicin, and cyclophosphamide; G-ET, gemcitabine, epirubicin, and docetaxel; NPV, negative 
predictive value; pCR, pathological complete response to neoadjuvant chemotherapy; PPV, positive predictive value; qRT-PCR, quantitative reverse transcriptase-
polymerase chain reaction; RT-PCR, reverse transcriptase-polymerase chain reaction; TA, taxanes and anthracycline (that is, paclitaxel and doxorubicin); T/FAC, 
paclitaxel/fl uorouracil, doxorubicin, and cyclophosphamide.

Colombo et al. Breast Cancer Research 2011, 13:212 
http://breast-cancer-research.com/content/13/3/212

Page 10 of 15



Predictors for specifi c targeted therapies

To date, only a few gene signatures have been developed 

to predict the response to specifi c targeted therapies in 

breast cancer. Recently, Loi and colleagues [114] reported 

promising results focusing on PIK3CA (phospho inosi tide-

3-kinase, catalytic) gene mutations and the PI3K-AKT-

mTOR signaling pathway targeted by PI3K/mTOR 

(mammalian target of rapamycin) inhibi tors. By analysis 

of gene expression from 1,800 breast cancers, a gene 

expression signature associated with PIK3CA mutation 

was developed (PIK3CA-GS). Th e signature predicted 

PIK3CA mutations in two independent datasets of breast 

cancers and was shown to identify good-prognosis 

patients in the ER-positive, HER2-negative breast cancer 

subgroup even in the case of highly proliferative tumors. 

Th e PIK3CA-GS was nega tively correlated with mTORC1 

signaling, making it a potential predictor of response to 

PI3K/mTOR inhibitors like rapamycin, rapamycin 

analogs, or dual kinase inhibitors. Breast cancer cell lines 

with high PIK3CA-GS were confi rmed to be resistant to 

rapamycin [114]. Th is approach exemplifi es the potential 

use of microarrays as potential predictive markers for 

tailored therapies.

Conclusions

Microarray-based gene expression profi ling analysis has 

undoubtedly had a dramatic impact on our understanding 

of breast cancer biology by bringing the concept of the 

heterogeneity of breast cancer to the forefront of breast 

cancer research and clinical practice. In fact, it is 

currently inconceivable to consider ER-positive and ER-

negative breast cancers to be a single disease. However, 

how the information derived from the classifi cation of 

breast cancer into the current molecular subtypes [17] 

will be used for breast cancer patient management 

remains unclear. First-generation prognostic signatures 

have led to the realization of the importance of 

proliferation for the prognostication of patients with ER-

positive cancers [1-3]. However, despite the resources 

allocated to their development and valida tion, prognostic 

signatures have proven to add limited information to 

prognostic models based on clinico patho logical para-

meters and standardized assessment of ER, PR, HER2, 

and proliferation. Gene signatures predictive of response 

to specifi c chemotherapy regimens have proven elusive. 

With the development of massively parallel sequencing 

techno logies, it has become possible to determine the 

repertoire of genetic aberrations a tumor harbors in a 

single experi ment. Given the successful use of genetic 

information as predictive markers for the use of targeted 

therapies in breast cancer (for example, HER2 

amplifi cation as a predictive marker for anti-HER2 

agents) and tumors from other sites (for example, KIT 

and PDGFRA [platelet-derived growth factor receptor 

alpha] mutations as predictive markers of response to 

imatinib mesylate in gastrointestinal stromal tumors; 

EML4-ALK gene re arrange ments as predictive markers 

of ALK inhibitors in non-small cell lung cancer), it is 

plausible that the next generation of classifi ers based on 

sequencing information may have a greater impact on 

our ability to successfully stratify breast cancer patients 

into predictive subgroups [115]. Integrative approaches 

combining genetic, trans criptomic, and proteomic 

information are likely to lead to breast cancer 

classifi cation systems that better refl ect the biology of the 

disease, and are more clinically relevant [1]. Although the 

deluge of high-throughput data will most certainly be a 

formidable challenge for the breast cancer research 

community, our ability to characterize tumors at an 

unprecedented level of detail will undoubtedly lead to 

novel paradigms for stratifi ed medicine and tailored 

therapies.

Table 3. Multigene predictors of response to endocrine treatment

Authors Signature Number of casesa Treatment Context Method Platform

Jansen et al. 

[110]

44 genes 48 training set, 

66 validation set

TAM Recurrent 

breast cancer

Top-down (response 

vs. progression)

Microarray 

(local)

Loi et al. 

[112]

Tamoxifen predictor 

(181 genes)

99 training set, 

69 validation set 

87 validation set

TAM Adjuvant 

treatment

Top-down (relapse 

vs. no relapse)

Microarray 

(Aff ymetrix, Santa 

Clara, CA, USA)

Oh et al. 

[111]

Estrogen-regulated 

genes 

(822 genes)

Cell lines + 65 discovery set, 

60 validation set (1) 

90 validation set (2) 

250 validation set (3)

Heterogeneous 

TAM (1) 

TAM +/− NAC (2) 

Heterogeneous (3)

Adjuvant 

treatment

Bottom-up 

(estrogen induced 

gene expression 

changes in MCF-7 

cell lines)

Microarray 

(Agilent Technologies, 

Inc., Santa Clara, CA, 

USA)

Symmans et al. 

[113]

SET index 

(165 genes)

437 training set, 

225 + 298 validation set (1) 

122 validation set (2) 

208 + 133 validation set (3)

Heterogeneous 

TAM (1) 

NAC + TAM or AI (2) 

Non-treated (3)

Adjuvant 

treatment

Bottom-up (genes 

coexpressed with 

estrogen receptor)

Microarray 

(Aff ymetrix)

aNumber of cases in training and validation sets. AI, aromatase inhibitor; NAC, neoadjuvant chemotherapy; SET, sensitivity to endocrine therapy; TAM, tamoxifen.
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