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Abstract

progression.

Introduction: Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2,
which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely
regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells.

Methods: Here, we addressed whether the functional relationship between cell growth and RUNX2 gene
expression is maintained in breast cancer cells. We also investigated whether the aberrant expression of RUNX2 is
linked to phenotypic parameters that could provide a selective advantage to cells during breast cancer

Results: We find that, similar to its regulation in osteoblasts, RUNX2 expression in MDA-MB-231 breast
adenocarcinoma cells is enhanced upon growth factor deprivation, as well as upon deactivation of the mitogen-
dependent MEK-Erk pathway or EGFR signaling. Reduction of RUNX2 levels by RNAi has only marginal effects on
cell growth and expression of proliferation markers in MDA-MB-231 breast cancer cells. Thus, RUNX2 is not a critical
regulator of cell proliferation in this cell type. However, siRNA depletion of RUNX2 in MDA-MB-231 cells reduces
cell motility, while forced exogenous expression of RUNX2 in MCF7 cells increases cell motility.

Conclusions: Our results support the emerging concept that the osteogenic transcription factor RUNX2 functions
as a metastasis-related oncoprotein in non-osseous cancer cells.

Introduction

Runt-related (Runx) transcription factors [1] are lineage-
specific developmental regulators and defects in their
regulatory functions have been pathologically linked to a
broad spectrum of cancers [2-7]. Normal endogenous
expression of Runx proteins is biologically linked to cell
growth suppression. Consistent with this growth sup-
pressive role, Runx proteins are functionally inactivated
or altered in distinct cancer types [2-7]. Yet, elevated or
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ectopic expression of Runx proteins may contribute to
the tumorigenic and/or metastatic properties of cancer
cells [2-7]. These findings together suggest that Runx
proteins can function as bona fide tumor suppressors or
classical oncoproteins depending on the cellular context.
Current evidence indicates that RUNX2 is a key patho-
logical factor in metastatic breast [8-17], prostate
[18-22] and bone [23-31] cancer cells, as well as in lym-
phomas in mouse models [32-35]. To understand the
oncogenic contribution of RUNX2 to the etiology of
these diverse cancers, it is necessary to define the patho-
logical mechanisms by which RUNX2 perturbs cellular

physiology.
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During normal development, RUNX2 is a principal
component of a genetic regulatory pathway that controls
osteoblast maturation and bone formation in vivo
[36-40]. Importantly, loss of RUNX2 function deregu-
lates osteoblast proliferation ex vivo [23,41-43], while
experimental elevation of RUNX2 protein levels sup-
presses proliferation in different osteogenic mesenchy-
mal cell types [23,41,44]. RUNX2 activity is functionally
coupled with the osteoblast cell cycle and elevated in
quiescent cells [23,41]. RUNX2 levels are selectively up
regulated after mitosis during early G1 by both tran-
scriptional and post-transcriptional mechanisms and
down regulated prior to entry in S phase to avoid a cell
growth delay in normal osteoblasts [23,45-47]. Taken
together, these findings indicate that RUNX2 functions
as a cell growth suppressor in primary diploid osteo-
blasts where the protein is endogenously expressed.
However, RUNX2 destabilization is compromised in sev-
eral osteosarcoma cell types that express constitutively
high levels of RUNX2 [23-26], suggesting that bone can-
cer cells may bypass the growth suppressive properties
of RUNX2.

RUNX2 performs proliferation-related functions in
osteoblasts that may be linked to its biological activities
in human cancers. For example, RUNX2 loss of function
blocks senescence, as reflected by a loss of p19ARF
expression, loss of chromosomal integrity and delayed
DNA repair [42,43]. RUNX2 also functions as an epige-
netic regulator that controls osteoblast growth by
attenuating ribosomal gene expression and protein
synthesis [48,49]. Gene expression profiling and gene
ontology analysis of RUNX2 responsive programs
revealed that RUNX2 regulates genes involved in G pro-
tein coupled receptor signaling [44], sterol/steroid meta-
bolism [50], RNA processing [51] and proteoglycan
synthesis [52]. Several of the encoded proteins have pro-
mitogenic or pro-survival functions in osteoprogenitors,
including the estrogen-responsive G protein coupled
receptor GPR30 and its downstream regulator RGS2, as
well as Cypllal, which produces the steroid precursor
pregnenolone [44,50]. Thus, these RUNX2 target genes
may contribute to the oncogenic activity of RUNX2 in
0Sseous Or non-osseous tumors.

Our understanding of the role of RUNX2 in osteo-
blasts and osteosarcoma cells where the gene is endo-
genously expressed [23-29], provides a biological
framework for analyzing the regulation and regulatory
roles of RUNX2 in non-osseous cancer cells (for exam-
ple, breast) in which RUNX2 is ectopically expressed
[8-17]. Prior studies indicate that RUNX2 is required for
osteolytic lesions of either breast cancer or prostate can-
cer cells upon intra-tibial injection and cell culture mod-
els indicate that RUNX2 expression stimulates cell
invasion [8,11,12,21]. In this study, we examined how
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RUNX2 levels are modulated with respect to cell
growth, as well as whether RUNX2 controls the meta-
static properties of breast cancer cells in culture. The
main finding is that RUNX2 is required for cell motility
of breast cancer cells. Furthermore, RUNX2 levels are
elevated upon cell growth inhibition in breast cancer
cells, but cell growth is only marginally enhanced upon
RUNX2 depletion by RNA interference. Our studies
support the general concept derived from multiple stu-
dies that RUNX2 may function as a metastasis-related
oncoprotein in non-osseous cancer cells.

Materials and methods

Cell culture, proliferation assays and inhibitors treatment

Human MDA-MB-231 and MCEF-7 breast cancer cell
lines were cultured in Dulbecco’s modified Eagle’s med-
ium (DMEM, Gibco, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (FBS, Hyclone, Waltham,
MA, USA), 5% L-glutamine (PAA, Pasching, Austria)
and 1% penicillin/streptomycin (PAA, Pasching, Austria)
at 37°C and 5% CO,. Cell proliferation was measured by
performing live cell counts in triplicate using Trypan
Blue exclusion as a measure for cell viability. Inhibition
of MAPK dependent signaling pathways was carried out
by treatment with the MEK1 inhibitor PD98059 (#9900,
Cell Signaling Technology, Inc., Beverly, MA, USA). The
inhibitor was prepared as a 10 mM stock solution in
dimethyl sulfoxide (DMSO). MDA-MB-231 and MCEF-7
cells were plated at a density of 3 x 10° cells per well in
six-well plates and incubated overnight. Cells were then
treated with various concentrations of PD98059 (that is,
0, 1, 5, 10, 20 and 50 puM) and incubated for two hours
at 37°C before preparation of whole cell lysates. Stock
cycloheximide was dissolved in DMSO at 100 mM con-
centration and freshly added into the media.

Western blot analysis

Lysates were prepared from cells washed with ice-cold
phosphate-buffered saline (PBS, pH 7.2), scraped and
lysed into 100 pl of 1 x SDS-PAGE protein loading buf-
fer (31.25 mM Tris-HCI, pH 6.8, 12.5% glycerol, 2.5%
B-mercaptoethanol, 1% sodium dodecyl sulfate (SDS),
0.005% bromophenol blue and 1% Roche complete
protease inhibitors cocktail). The cell suspension was
sonicated for a few seconds to disperse the cells and cell
debris was pelleted by centrifugation at 14,000 g for
10 minutes at 4°C. The supernatant containing the pro-
tein fraction was collected and boiled for five minutes.
Protein samples were then stored at -20°C until further
analysis.

Equal amounts of protein from each treatment group
were resolved on a 10% SDS-PAGE gel (100 V, 120
minutes) and subsequently transferred onto a nitrocellu-
lose membrane (100 V, 60 minutes). Blots were blocked
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with 5% nonfat dried milk in PBS-0.1% Tween 20 (PBS-
T) solution for 30 minutes prior to primary antibody
incubation overnight at 4°C. Primary antibodies to pro-
teins of interest were diluted in PBS-T solution contain-
ing 3% bovine serum albumin (BSA) at a ratio of
1:1,000. After incubation with primary antibodies, blots
were washed three times for five minutes each with
PBS-T solution and incubated for one hour at room
temperature with the appropriate secondary antibody at
a 1:5,000 dilution in PBS-T solution containing 5% non-
fat dried milk. Following incubation, blots were washed
three times for five minutes each with PBS-T solution,
and the antibody binding was detected with SuperSignal
West Pico Chemiluminescent substrate (Thermo Scien-
tific, Waltham, MA, USA) by exposing blots to XAR-5
film (Kodak, Rochester, NY, USA).

The primary antibodies used were RUNX2 mouse
monoclonal antibody (D130-3, MBL International,
Woburn, MA, USA), phospho-p44/42 MAP kinase E10
mouse monoclonal antibody (#9106, Cell Signaling
Technology, Inc, Beverly, MA, USA), p44/42 MAP
kinase (ERK1/2) rabbit polyclonal antibody (#9102, Cell
Signaling Technology, Inc), p21 rabbit polyclonal anti-
body (sc-397, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), p53 rabbit polyclonal antibody (sc-6243,
Santa Cruz), c-myc mouse monoclonal antibody (sc-40,
Santa Cruz) and GAPDH mouse monoclonal antibody
(sc-32233, Santa Cruz). The secondary antibodies used
were horseradish peroxidase (HRP)-conjugated goat
anti-mouse IgG antibody (sc-2005, Santa Cruz) and
HRP-conjugated goat anti-rabbit IgG antibody (sc-2004,
Santa Cruz).

Real-time quantitative Reverse Transcriptase PCR
(9qRT-PCR)

Total RNA was prepared according to manufacturer’s
instructions (Qiagen RNeasy Mini kit, Qiagen, Hilden,
Germany). In-column genomic DNA digestions were
performed using DNase I (Qiagen). Total RNA collected
samples were quantified and reversed-transcribed to
c¢DNA and 5 ng of cDNA was amplified on the ABI
7300 Real-Time PCR System using fluorescent SYBR
Green PCR master mix (Fermentas, Thermo Scientific,
Waltham, MA, USA) with the following sets of primers:
p21 (forward primer: 5-GTCCGTCAGAACCCATGC-
3’, reverse primer: 5-GTCGAAGTTCCATCGCTCA-3),
cyclin D1 (forward primer: 5-TGAACAAGCT-
CAAGTGGAACC-3, reverse primer: 5’-GTTTGCGG-
ATGATCTGTTTGT-3’) and GAPDH (forward primer:
5-GAGTCCACTGGCGTCTTCA-3’, reverse primer: 5'-
GTTCACACCCATGACGAACA-3’). Average fold
changes were calculated by differences in threshold
cycles (Ct) between pairs of samples. GAPDH gene was
used as an internal control.
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Retrovirus packaging and transduction

A retrovirus plasmids based on pSUPER-Retro (Oligoen-
gine, Seattle, WA, USA) was generated that encode
short hairpins against RUNX2. The pSUPER-Retro-
shRUNX2 construct and the empty control plasmid
were each transfected into ecotropic virus packaging
cells (Ecopacks; Clontech, Mountain View, CA, USA)
using the calcium phosphate precipitation method. Ret-
roviral supernatant was collected at 48 h after transfec-
tion, rapidly frozen in liquid nitrogen and stored at -80°
C. During transduction, retroviral supernatants were
mixed with culture media at a 1:1 ratio with polybrene
(8 pg/ml) and added to cells and incubated overnight.
Cells containing the retroviral plasmids were recovered
by antibiotic selection for five days using puromycin (2.5
pg/ml).

Cell migration assays

Wound healing assays were used to measure cell migra-
tion. Cells in various groups were seeded in six-well
plates at 5 x 10° cells per well to form a confluent layer
of cells overnight. A line of cells was mechanically
removed by scratching the cell layer with a 200 pl pip-
ette tip to create a ‘wound’. Cells migrating into the
‘wound’ area were monitored at 30 minutes intervals by
automated image collection at the same wound location
with a Nikon Eclipse Live Cell Imaging system. Three
separate regions along the wound were randomly chosen
as scratch zones. The data were analyzed using the
accompanying Nikon NIS-Elements software provided
by the manufacturer (Nikon Corporation, Chiyoda-ku,
Tokyo, Japan). During image collection, cells were main-
tained under sterile culture conditions at 37°C in an
atmosphere containing 5% CO,.

Statistical analysis

Analysis of co-variance (ANCOVA) tests (PASW version
17, SPSS Inc., Chicago, IL, USA) were used to statisti-
cally assess the significance of differences between either
siRUNX2 group or RUNX2 overexpression group vs
control in the time course migration assays. The level of
significance was set at P < 0.05.

Results

Expression of RUNX2 in breast cancer cells is enhanced
upon cessation of cell growth

RUNX2 is normally expressed in lineage-committed
mesenchymal progenitor cells with a osteogenic cell
fate, but RUNX2 expression is also aberrantly induced
in different cancer cell types [8-17]. For example,
RUNX2 is endogenously expressed in selected breast
cancer cell lines as evidenced by detection of RUNX2
protein by western blot analysis in highly malignant
MDA-MB-231 breast adenocarcinoma cells, but not in
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Figure 1 RUNX2 has an anti-mitogenic function in MDA-MB-231 cells. (A) Western blot analysis shows that RUNX2 protein expression is
evident in MDA-MB-231 cells but below the level of detection in MCF7 cells. (B) Serum stimulation of MDA-MB-231 cells enhances cell
proliferation as reflected by cell counts of cultures supplemented with and without serum (on Days 0 and 3). Cells were plated, serum starved
for 48 h and then released for 24 h with and without 10% serum. Live cell counts were performed in triplicate using trypan blue dye-exclusion.
(C) Serum starvation of MDA-MB-231 cells increases RUNX2 and p21 protein levels. MDA-MB-231 cells were supplemented with (lane 1) and
without (lane 2) serum. The protein expression levels of RUNX2, p21, ERK1/2 and phospho-ERK were analyzed by western blotting. ERK1/2
antibody was used to detect the endogenous level of total-ERK protein in the cells. GAPDH provided a control for equal loading of lysates.

(D) The MEK inhibitor PD98059 and the epidermal growth factor receptor (EGFR) kinase inhibitor each significantly increase the expression of
RUNX2 in MDA-MB-231 cells by western blotting; B-actin was used as a control for protein loading. The phosphoinositide 3-kinase (PI3K)
inhibitor Wortmannin has no effects on RUNX2 levels. MDA-MB-231 cells were incubated in complete medium for 2 h with each of the
inhibitors. (E) RUNX2 remains stable for 4 h after serum re-activation. MDA-MB-231 cells were serum starved overnight and serum stimulated for
the indicated lengths of time (in hours). Cells were also transfected in parallel with an empty vector (odd lanes) or a viral vector expressing
shRUNX2 (even lanes) that 'knock down’ (kd) RUNX2 levels and confirms specificity of the RUNX2 signal in MDA-MB-231 cells. (F) Western blot
analyses of MDA-MB-231 cells that were first serum starved for 48 h and then treated with either 10% serum or 10% serum in the presence of
the protein synthesis inhibitor cycloheximide (100 uM) for the indicated time periods (in hours). RUNX2 blots are represented as short (SE) or
long (LE) exposures. Cycloheximide treatment results in a consistent decrease in RUNX2 levels together with a concomitant decrease in p21 and
cyclin D1. Comparing RUNX2 protein levels at 8 h of serum activation with and without cycloheximide treatment reveals that RUNX2 is
destabilized within 8 h after serum stimulation. These findings suggest that RUNX2 levels are tightly regulated by protein degradation during the
cell cycle in MDA-MB-231 breast cancer cells as is the case in normal osteoblastic cells. Thus, elevated expression of RUNX2 protein in MDA-MB-
231 breast cancer cells does not appear to be due to abrogation of a protein destabilizing mechanism.

MCF?7 breast adenocarcinoma cells that retain several In normal osteoblasts, RUNX2 mRNA and protein
characteristics of differentiated mammary epithelium levels are elevated in quiescent cells upon growth factor
(Figure 1A). Comparison of these two cell types may deprivation [23,41], but this growth-related regulation of
reveal the biological purpose of the aberrant ectopic  RUNX2 gene expression is perturbed in several osteosar-
expression of RUNX2 in non-osteoblastic cancer cells. coma cell types that express RUNX2 at elevated levels
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[23-26]. To assess whether expression of RUNX2 is
regulated with respect to cell growth in MDA-MB-231
breast cancer cells, we performed serum starvation and
stimulation experiments (Figure 1B). Cells were first cul-
tured overnight in the presence of serum, and then cells
were incubated with medium with or without serum for
three days. Modest MDA-MB-231 cell proliferation is
observed in cells maintained in normal serum (that is,
cells increase in number but do not quite double even
after three days), but cell proliferation is inhibited in
cells subjected to prolonged serum starvation that enter
a quiescent state (Figure 1B). Similar to MC3T3 osteo-
blasts [23,41], expression of RUNX2 increases with
serum starvation and occurs concomitant with loss of
phosphorylated Erk (Figure 1C). This finding suggests
that RUNX2 expression is inversely correlated with cell
proliferation and mitogen-dependent activation of the
MEK-Erk pathway.

To examine whether expression of RUNX2 is directly
controlled by mitogenic signaling pathways, we sub-
jected proliferating MDA-MB-231 cells to distinct pro-
liferation-associated kinase inhibitors and monitored
RUNX2 protein levels by western blotting. MAPK sig-
naling is known to regulate RUNX2 activity in different
cell types [53,54]. The epidermal growth factor (EGF)
receptor gene (EGFR/HER1/ERBB1) and other EGF
receptors (HER2/NEU/ERBB2, HER3 and HER4) are fre-
quently expressed in human breast cancer cells, includ-
ing MDA-MB-231 cells [55,56]. Expression of EGFR and
HER2 is associated with aggressive cancers and inhibi-
tors of EGFR-HER signaling are tested in clinical trials
[57]. Therefore, it is of interest to investigate links
between EGFR signaling and RUNX2 expression. The
results clearly show that RUNX2 protein is elevated by
inhibition of the Erk pathway using the chemical inhibi-
tor PD98059 or the EGFR pathway using AG494 (Figure
1D). However, inhibition of phosphoinositide 3-kinases
(PI3Ks) by Wortmannin has no effect on RUNX2 pro-
tein levels (Figure 1D). Hence, inhibition of MAPK and
EGEFR signaling pathways attenuates RUNX2 levels in
MDA-MB-231 cells.

Induction of cell proliferation in quiescent osteoblasts
results in down regulation of RUNX2 gene expression at
the level of transcription, as well as mRNA and protein
accumulation [23,41]. Therefore, we tested whether
serum stimulation of MDA-MB-231 cells can acutely
regulate RUNX2 protein levels (Figure 1E). Parallel sam-
ples were treated with RUNX2 siRNA which establish
the identity of the RUNX2 band in SDS-PAGE. Western
blot results clearly show that RUNX2 levels remain high
for at least four hours after serum stimulation and per-
haps may be modestly and transiently upregulated
around 1.5 hours after induction of cell growth as cells
presumably exit from quiescence (GO) and enter the G1
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phase (Figure 1E). These data suggest that RUNX2
levels are not acutely coupled to mitogenic signaling but
may be down-regulated at a later proliferative stage (for
example, the G1/S phase transition) that is beyond the
four-hours-time point we have examined (Figure 1E).

To assess whether expression of RUNX2 in MDA-
MB-231 cells is facilitated by protein stabilization, we
reactivated proliferation in serum deprived MDA-MB-
231 cells in the absence or presence of the protein
synthesis inhibitor cycloheximide (100 pM). Assessment
of the natural decay of RUNX2 over an eight-hour time
course reveals that RUNX2 levels decrease with a half-
life of about four-hours (Figure 1F), which is comparable
to the half-life of exogenously expressed RUNX2 in COS
cells [47]. For comparison, levels of the labile protein
cyclin D1 are rapidly destabilized (less than two hours)
albeit that levels rebound as the efficacy of protein inhi-
bition by cycloheximide diminishes over time (Figure
1F). These data suggest that induction of RUNX2 pro-
tein expression in MDA-MB-231 cells is not due to
abrogation of protein destabilizing mechanisms that
normally degrade RUNX2, but may occur via other
upstream gene regulatory mechanisms involving, for
example, transcription factors or microRNAs.

RUNX2 levels are inversely linked to Erk signaling

Because RUNX2 levels in MDA-MB-231 cells increase
by serum deprivation and because Erk kinase
phosphorylation is a key step in the mitogenic actions of
serum-derived growth factors, we assessed whether Erk
phosphorylation by MEK is biologically linked to
increased RUNX2 protein expression by treating breast
cancer cells with the MEK inhibitor PD98059 (Figure
2A, B). We performed western blot analysis of protein
lysates from PD98059 treated MDA-MB-231 and MCE-
7 cells to assess whether MEK inhibition can modulate
RUNX2 expression in cells that ectopically express
RUNX2 (that is, MDA-MB-231 cells) or cells in which
RUNX2 is below the level of detection (that is, MCF-7
cells). The results show that Erk phosphorylation is
decreased in a dose-dependent manner in both cell
types (Figure 2). In each case, there is nearly a complete
loss of phosphorylated Erk at 10 uM PD98059, albeit
that MCE-7 cells appear to be considerably more sensi-
tive to PD98059 inhibition (Figure 2B). Total levels of
Erk are not appreciably altered in either MDA-MB-231
or MCEF-7 cells at the doses of PD98059 we tested
(Figure 2A, B). The concomitant inhibition of cell prolif-
eration that arises from Erk inhibition is reflected by a
modest increase in the levels of the CDK inhibitor p21/
CDKNI1A (Figure 2A, B). Importantly, the levels of
RUNX2 are clearly upregulated in MDA-MB-231 cells
upon treatment with PD98059 concentrations above
10 uM (Figure 2A), but RUNX2 levels remain below the
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MEKT inhibitor PD98059 for 2 h at the indicated concentrations (in uM). The protein levels of RUNX2, phospho-ERK, total ERK1/2, p21 and
GAPDH were analyzed by western blotting. RUNX2 protein levels remained below the level of detection in MCF7 cells (B, top panel).
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level of detection in MCF7 cells (Figure 2B). Taken
together, these results establish that RUNX2 protein
levels are enhanced upon inhibition of mitogenic MEK-
Erk signaling in MDA-MB-231 cells, but that this inhibi-
tion does not induce RUNX2 in MCEF?7 cells.

RNAi mediated depletion of RUNX2 increases

proliferation markers in but only modestly affects
MDA-MB-231 cell number

To assess the biological role of RUNX2 in MDA-MB-
231 cells, we performed transient knockdown of
RUNX2 with siRUNX2. Depletion of RUNX2 decreases
the mRNA levels of the cell cycle inhibitor p21 and
increases cyclin D1 mRNA levels indicating that loss of
RUNX2 provokes a pro-proliferative response (Figure
3A, B). Constitutive knockdown of RUNX2 using a
MDA-MB-231 cell line containing a retrovirus that
expresses ShRUNX2 RNA, also results in reduced p21
mRNA levels (albeit no commensurate change in p21
protein levels) (Figure 3C, D). Levels of p53 remain
constant in MDA-MB-231 cells, which express a
mutant p53 protein (R175H) which renders p21 gene
transcription insensitive to p53. Reduction of RUNX2
has at best a marginal positive effect on cell growth
over a period of 10 to 20 days (Figure 3E and data not
shown). The rather modest observed variation in cell
number at Day 10 may reflect modulations in cell
cycle kinetics (duration of progression through each of
the cell cycle stages), as well as the balance between
cell survival and cell death. However, clear biological
differences before Day 10, when shRNA treatments
typically have more pronounced direct effects than at
later stages, are not evident. Because loss of RUNX2
does not have major proliferative effects, it appears
that RUNX2 activity is not critical for growth of
MDA-MB-231 cells.

RUNX2 expression in breast cancer cells promotes

cell motility

Our preceding results indicate that RUNX2 is a poten-
tial cell growth inhibitor thus raising the question why
aggressive human derived breast cancer cells would tol-
erate induction of RUNX2 gene expression. We postu-
lated that RUNX2 may have a pathological side that
increases the aggressiveness of MDA-MB-231 cells dur-
ing metastasis. Therefore, we performed migration
assays using a live imaging system and found that loss
of RUNX2 by shRNA (Figure 4A) decreases cell motility
in wound healing ('scratch’) assays (Figure 4B). Time
course results revealed that the number of cells migrat-
ing into the scratched area was significantly lower at
both earlier (4 h) and later (24 h) time-points in cells
depleted for RUNX2. We next investigated whether ele-
vated expression of wild type RUNX2 in MCF7 cells,
which are breast cancer cells with limited migratory
potential and do not express detectable RUNX2 protein,
would alter cell migratory potential. Indeed forced
expression of RUNX2 increased motility in wound heal-
ing assays (Figure 5). Taken together, the results with
MDA-MB-231 and MCEF7 cells demonstrate that
RUNX2 stimulates cell motility.

Discussion

A number of recent studies have indicated that the
osteogenic transcription factor RUNX2, is a suppressor
of osteoblast growth, is frequently and aberrantly
expressed in non-osseous cancer cells. Here, we show
that expression of RUNX2 expression in MDA-MB-231
breast adenocarcinoma cells is reciprocally linked to
mitogen-dependent enhancement of the MEK-Erk sig-
naling pathway. However, unlike its normal activity in
osteoblasts and osteoprogenitor cells [23,41,43], RUNX2
levels do not appear to be critically linked to cell
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proliferation in MDA-MB-231 breast cancer cells.
Rather, our results indicate that RUNX2 levels are func-
tionally coupled to cell motility in MDA-MB-231 or
when introduced into MCF7 breast adenocarcinoma
cells. Consistent with the ‘wound healing’ assays pre-
sented here, studies using Boyden chambers have shown
that RUNX2 is required for both cell migration and
invasion through Matrigel in prostate cancer cells [21].
It remains to be established whether modest quantitative
effects on cell migration are directly relevant to

metastatic disease. However, our current findings are
certainly consistent with prior work showing that
RUNX2 may promote the metastatic potential of breast
cancer cells by modulating invasiveness and osteolytic
properties [7-16]. Currently ongoing studies that address
the biochemical basis for the relationships among
RUNX2, cell migration and metastatic disease suggest
that RUNX2 may regulate the expression of a distinct
set of genes required for cell motility and adhesion
(unpublished observations).
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Figure 4 RUNX2 silencing reduces migration of metastatic MDA-MB-231 breast cancer cells. (A) Diminished expression of RUNX2 protein
levels was observed by western blotting in lysates from MDA-MB-231 treated with siRUNX2. (B) Wound healing assay of MDA-MB-231 cells
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Control (n = 242 cells). (D) Total percent closure was determined as a time-course after initiating the scratch. Control MDA-MB-231 cells
transfected with AllStar Control (88%) achieved 29% percent closure, while cells treated with siRUNX2 (59%) exhibited reduced wound closure.
Asterisk indicates statistical significance between siRUNX2 and control treatment (P < 0.01 based on ANCOVA test). Error bars represent standard
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RUNX2 is most prominently expressed in osseous tis-
sues during skeletal development, and normal RUNX2
function and levels are critical for normal growth and
differentiation of osteoblasts [36-40]. RUNX2 is also
expressed in non-osseous tissues including mesenchymal
chondrocytes, vascular endothelial cells and breast
epithelial cells at specific stages of development
[54,58-65]. RUNX2 levels are deregulated in osteosar-
coma [23-31] and chondrosarcoma cells [66-69].
Because RUNX2 acts as cell growth suppressor in osteo-
sarcoma cells, the elevated or ectopic expression of
RUNX2 that is observed in a diverse range of tumor
cells of either osseous or non-osseous origin is rather
enigmatic. Strikingly, there are no reports of RUNX2
point mutations in cancer and most biological

associations between RUNX2 and cancers indicate gain-
of-function effects, as is exemplified by over-expression
of RUNX2 by protein stabilization or gene amplification
in osteosarcoma [23-27] or ectopic induction by retro-
viral insertion in c-Myc related T cell lymphomas
[32-35]. One emerging view that clarifies the paradoxical
role of RUNX2 in cancer cells is that this factor may
promote tumorigenesis by enhancing the expression of
genes linked to metastatic properties (for example, cell
motility and invasion) and/or angiogenesis once cells
have succeeded in bypassing RUNX2 dependent growth
restrictions [5-7,11-15,20-22,24-27,31,61,66]. Our pre-
vious studies have shown that RUNX2 expression is
positively linked to estrogen receptor status in tissue
biopsies of Stage II breast cancer patients [17]. This
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Figure 5 RUNX2 expression increases cell migration in non-metastatic MCF7 breast cancer cells. (A) Western blot analysis using a RUNX2
antibody and/or c-Myc epitope tag in MCF7 cells transfected with a Myc-RUNX2 expression vector. Levels of B-actin were used as a control for
protein loading) (B) Images from a wound healing assay with MCF7 cells transfected with empty expression vector (pcDNA3 control) or a
plasmid expressing Myc-RUNX2 at various time points (in hours). (C) Quantification of total percent closure of control MCF7 cells (pcDNA3; 34%)

and Myc-RUNX2 expressing MCF7 cells (41%) revealed that RUNX2 expressing increases cell motility. Asterisk indicates statistical significance
between Myc-RUNX2 and control treatment (P < 0.05 based on ANCOVA test). Error bars represent standard deviation.

correlation is restricted to Stage II because loss of the
estrogen receptor and gain of RUNX2 function is typical
in highly aggressive breast cancer cells.

Conclusions

The work presented here, which shows that RUNX2 sti-
mulates cell motility of breast adenocarcinoma cells,
corroborates the concept that RUNX2 represents a
prognostic marker for breast cancer progression that is
mechanistically linked to the metastatic potential of the
cells in which it is expressed.
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