
Taylor and colleagues [1] examined the time course of 

gene expression profi le changes in estrogen (E2)-treated 

and E2 and tamoxifen-treated mouse xenografts. Th e 

authors pre sented three distinct categories of gene 

expression temporal profi les, each characterized by two 

sets of genes. Diff erentially expressed genes at some early 

time points following treatment were found to be 

prognostic of survival in clinical data sets, but not those 

identifi ed at other time points. Th is implies that the 

timing of the post-treatment sample for gene expression 

analysis will be critical for the development of prognostic 

and predictive biomarkers.

Adjuvant endocrine treatment in estrogen receptor-

positive (ER+) breast cancer patients reduces the risk of 

relapse and death from breast cancer [2], but large 

numbers of patients still die of endocrine therapy-

resistant disease [3]. Researchers have therefore devoted 

intensive eff orts to identify molecular biomarkers to 

predict response to endocrine treatment and, in spite of 

the inherent heterogeneity among ER+ breast tumors, 

gene expression signatures have been successfully 

developed [4-6]. However, the existing signatures are 

based on gene expression information in a single baseline 

tumor sample that may not capture all the biological 

information necessary for predictive accuracy. Clinically, 

patients fall into three broad categories, continuously 

responding, continuously resistant, and a substantial 

group of patients with an initial response followed by a 

transition at varying rates to an acquired resistance 

phenotype. Late recurrence in resistant patients might be 

avoided if these tumors could be identifi ed early, before 

the onset of clinical resistance, and subjected to an 

eff ective salvage intervention. Th erefore, the discovery of 

gene signatures diff erentiating the three response groups 

logically requires the identifi cation of temporal changes 

in gene expression along the treatment course. Th e paper 

by Taylor and colleagues [1] illustrates this principle.

Microarray gene expression data were used by Taylor 

and colleagues [1] for discovery and validation of gene 

expression signatures. Overall, the paper is a good 

example of the practice of microarray data analysis. Raw 

data were deposited in CaArray [7] to be available to the 

public, which encourages research reproducibility. After 

the gene discovery process, validation in multiple inde-

pendent public datasets was carried out. An important 

caveat of this aspect of the paper is that these datasets are 

not particularly suitable to assess the primary hypothesis 

because all these studies report only baseline array gene 

expression levels - not treatment-induced changes. Th e 

true test of the approach would be to compare the 

prognostic information in the baseline sample with post-

treatment samples taken at diff erent time points from the 

same patient. Moreover, signifi cance of potential therapy-

response gene signatures in treated versus untreated 

patient cohorts should be interpreted with caution.

Th e paper also identifi es areas for methodological 

improvement. Th e data analysis is limited to two-class 

comparison at each individual time point, which neglects 

time dependency in gene expression profi ling. Th e defi -

nition of the six sets of genes is subjectively deter mined 
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by known pathways. Ideally, the continuous longitudinal 

gene expression profi ling would be better analyzed as a 

whole by functional data analysis techniques [8,9]. Rather 

than traditional cluster analysis [10], cluster tools 

designed specifi cally for time course gene expression 

data, such as CAGED (Cluster Analysis of Gene 

Expression Dynamics) [11], would probably serve better. 

Furthermore, the class comparison in the paper depends 

on fold change alone, a common error in the analysis of 

microarray data [12]. Fold change is easy to calculate and 

understand; however, it is a single ratio without 

consideration of variability. Use of fold change usually 

leads to high false positives since small changes in genes 

with low expression levels can lead to large fold change. 

Th e hierarchical algorithm is applied to public microarray 

data in the paper to divide samples into low and high 

expression groups. Th e use of unsupervised clustering for 

class prediction is very subjective [12]. Th e two-color 

microarray design was used while the authors 

commented on the possible benefi ts of using a one-color 

design. Th e two-color with common reference design has 

been the most widely used in microarray experiments for 

its ease of implementation and analysis. Th e one-color 

design has recently emerged to be a favorite because of 

its simplicity and fl exibility after confi rmation of 

comparative data quality to its two-color counterpart. 

However, the two-color design is still reported to exhibit 

a small advantage in detecting diff erential genes, 

especially for genes of small fold changes [13].

In their paper, Taylor and colleagues speculated that 

the ‘early/transient’ expression changes are the causative 

events for tumor inhibition. Th is might be true but needs 

to be investigated more carefully in future studies. 

Meanwhile, it is important to acknowledge the fact that 

some patients who respond initially and exhibit the early/

transient expression change may acquire resistance 

gradually. It will be challenging to pick these patients out 

for individualized treatment planning as the critical 

changes may take place only after months or years of 

endocrine therapy exposure.

In conclusion, we fully agree on the importance of 

investigating temporal gene expression profi ling for 

prediction of treatment response. More well-planned 

studies will be required for insights into these 

complicated data sets and variability in response to 

treatment will be an important consideration. Th e task of 

obtaining consecutive gene expression profi ling at 

multiple time points remains a challenging prospect but 

might be feasible in well planned neoadjuvant endocrine 

therapy studies where patients might be triaged to 

alternative therapy if an unresponsive gene expression 

profi le emerged, even when the patient was in response 

clinically.
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