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Abstract
Introduction: Microtubule-associated protein tau (MAPT) inhibits the function of taxanes and high expression of 
MAPT decreases the sensitivity to taxanes. The relationship between estrogen receptor (ER) and MAPT in breast cancer 
is unclear. In this study, we examined the correlation of MAPT expression with the sensitivity of human breast cancer 
cells to taxanes, and the relationship between ER and MAPT.

Methods: The correlation between MAPT expression and sensitivity to taxanes was investigated in 12 human breast 
cancer cell lines. Alterations in cellular sensitivity to taxanes were evaluated after knockdown of MAPT expression. ER 
expression was knocked down or stimulated in MAPT- and ER-positive cell lines to examine the relationship between 
ER and MAPT. The cells were also treated with hormone drugs (tamoxifen and fulvestrant) and taxanes.

Results: mRNA expression of MAPT did not correlate with sensitivity to taxanes. However, expression of MAPT protein 
isoforms of less than 70 kDa was correlated with a low sensitivity to taxanes. Downregulation of MAPT increased 
cellular sensitivity to taxanes. MAPT protein expression was increased by stimulation with 17-β-estradiol or tamoxifen, 
but decreased by ER downregulation and by fulvestrant, an ER inhibitor. The combination of fulvestrant with taxanes 
had a synergistic effect, whereas tamoxifen and taxanes had an antagonistic effect.

Conclusions: Expression of MAPT protein isoforms of less than 70 kDa is correlated with a low sensitivity to taxanes in 
breast cancer cells. ER influences MAPT expression and fulvestrant increases the sensitivity to taxanes in MAPT- and ER-
positive breast cancer cells.

Introduction
Taxanes are important drugs for treatment of breast can-
cer [1-3]. These drugs bind to tubulin and suppress spin-
dle microtubule dynamics, which leads to cell cycle arrest
in G2/M phase followed by apoptosis [4-6].

Several mechanisms of taxane resistance have been
described, including overexpression of the drug efflux
pump MDR-1/P-gp, HER-2 overexpression, tubulin
mutation, and variable expression of tubulin isotypes and
stathmin [4,7-12]. Microtubule-associated protein-tau
(MAPT), which is implicated in the pathogenesis of
Alzheimer's disease, is associated with another mecha-
nism of taxane resistance. MAPT binds to both the outer
and inner surfaces of microtubules, leading to tubulin
assembly and microtubule stabilization. Since taxanes

* Correspondence: ntaira@md.okayama-u.ac.jp
1 Department of Cancer and Thoracic Surgery, Okayama University Graduate 
School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, 
Okayama-city, Okayama, 700-8558, Japan
Full list of author information is available at the end of the article
© 2010 Ikeda et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20579400


Ikeda et al. Breast Cancer Research 2010, 12:R43
http://breast-cancer-research.com/content/12/3/R43

Page 2 of 12
also bind to the inner surface of microtubules, MAPT
obstructs the function of the drug [5,6,13,14]. Rouzier et
al. found that low MAPT expression was associated with
higher rates of a pathologic complete response to preop-
erative paclitaxel and 5-fluorouracil, doxorubicin, cyclo-
phosphamide (paclitaxel/FAC) chemotherapy [5]. This
group also showed that MAPT overexpression was corre-
lated with resistance to paclitaxel and that knockdown of
MAPT with small interfering RNA (siRNA) reversed the
resistance to taxanes in vitro [5].

MAPT has six isoforms that are spliced from a single
gene. These isoforms differ by having three or four con-
served repeat motifs in the microtubule-binding domain
and none, one or two insertions in the N-terminal projec-
tion domain. Isoforms with four C-terminal repeats have
a higher affinity for microtubules than isoforms with
three such repeats [13-17]. However, the function of each
isoform is unknown.

Previous experimental studies have shown that MAPT
expression is increased by estrogen in vitro and in vivo
[18,19], and clinical studies have shown a positive corre-
lation of MAPT levels with estrogen receptors (ER)
expression [20,21]. Jonna et al. found that estrogen stimu-
lation upregulated MAPT mRNA in MCF-7 cells in
microarray analysis [22], and the MAPT gene is consid-
ered to contain an imperfect ER response element
upstream of its promoter. The ER plays a key role in the
development and progression of breast cancer, but it is
unknown if ER stimulation induces MAPT expression in
breast cancer cells.

Hormonal drugs play an important role in breast can-
cer therapy. The selective ER inhibitor, fulvestrant, inhib-
its estrogen signaling through the ER in two ways: by
competing with estradiol binding to the ER, and by
increasing the turnover of ER to decrease the ER protein
level in breast cancer cells. In contrast, tamoxifen, a selec-
tive ER modulator, is an ER antagonist but often displays
estrogen-like agonist activity [22-24]. Therefore, fulves-
trant and tamoxifen may have different effects on MAPT
expression via the ER.

Previous in vitro studies show that tamoxifen has an
antagonistic effect on anti-cancer drugs [25,26]. Several
clinical studies that used tamoxifen for hormone therapy
have found that it has an antagonistic effect on chemo-
therapy drugs when it is used concurrently with them,
and that the results of the combined use of tamoxifen
with chemotherapy drugs is inferior, compared with
using the drugs sequentially [27-30]. The effect of combi-
nation treatment using other modern hormone therapies,
such as aromatase inhibitors or fulvestrant, has not been
examined thoroughly.

In this study, we examined the relationship between the
MAPT expression and the sensitivity to taxanes, the
effect of ER expression or modulation on MAPT expres-

sion, and the combined impact of hormones and taxanes
on anti-cancer activity and taxane resistance in breast
cancer cell lines.

Materials and methods
Cell culture and agents
Twelve human breast cancer cell lines were used in the
study: MCF-7, MDA-MB-231, SK-BR-3 and ZR75-1 were
obtained from the American Type Culture Collection
(Rockville, MD, USA); YMB1-E was kindly provided by
the Tohoku University Institute of Development, Aging
and Cancer Cell Resource Center for Biomedical
Research; and MDA-MB-134-VI, HCC38, HCC1143,
HCC1569, HCC1806, HCC1937 and HCC3153 were
kindly provided by Adi F. Gazdar (Hamon Center for
Therapeutic Oncology Research and Department of
Pathology, University of Texas Southwestern Medical
Center at Dallas, Dallas, TX, USA). Cells were main-
tained at 37°C in 5% CO2 in RPMI-1640 medium (Sigma-
Aldrich, St. Louis, MO, USA) containing 10% heat-inacti-
vated fetal bovine serum and 1% penicillin-streptomycin.

Paclitaxel, docetaxel, fulvestrant, 17-β estradiol and
tamoxifen were purchased from Sigma-Aldrich. Vinorel-
bine and doxorubicin were obtained from Kyowa Hakkoh
(Tokyo, Japan). Cells were cultured in a phenol-free
medium containing 10% dextran-coated, charcoal-
treated FCS (Thermo Scientific, Waltham, MA, USA)
and then treated with the above agents alone or in combi-
nation.

Small interfering RNA
Expression levels of MAPT and ER alpha were knocked
down by transfection of the cells with two anti-MAPT
siRNAs (5'-CGG GAC TGG AAG CGA TGA CAA-3' and
5'-CCG CCA GGA GTT CGA AGT GAT-3'; Qiagen,
Valencia, CA, USA) and an anti-ER alpha siRNA (5'-GAG
ACT TGA ATT AAT AAG TGA-3'; Qiagen), respectively.
Scrambled siRNA (AllStars Negative Control siRNA,
Qiagen) was used as the control. Transfection of siRNA
was performed using HiPerfect Transfection Reagent
(Qiagen) according to the manufacturer's protocol.

mRNA and protein expression analysis
Total RNA was extracted from cell pellets and cDNA was
synthesized using a High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA, USA)
in accordance with the manufacturer's protocol. Quanti-
tative real-time PCR was performed using the Step One™
Real-Time PCR System (Applied Biosystems) with 18S
rRNA as an internal control (Applied Biosystems). The
sequences of primers and the probe were as follows:
MAPT, forward primer: 5'-TAG GCA ACA TCC ATC
ATA AAC CA-3'; reverse primer: 5'-TCG ACT GGA
CTC TGT CCT TGA A-3'; and the FAM-TAMR probe:
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5'-TGG CCA GGT GGA AG-3' (Invitrogen, Carlsbad,
CA, USA). Data were analyzed using the relative standard
curve method.

Samples from cultured cells were prepared for Western
blot analysis, as previously described [31]. The samples
were separated on a NuPAGE Bis-Tris Gel 4 to 12%
(Invitrogen) and electroblotted onto a polyvinylidene flu-
oride membrane. Primary antibodies for Western blot-
ting were as follows: MAPT (T1029, United States
Biological, Swampscott, MA, USA) [5,6]; ERα (Santa
Cruz Biotechnology, Santa Cruz, CA, USA); and actin
(Sigma-Aldrich). Blots were exposed to a horseradish
peroxidase-conjugated secondary antibody (Santa Cruz
Biotechnology) with development using enhanced
chemiluminescence detection (ECL Kit, Amersham Phar-
macia Biotech, Chandler, AZ, USA).

Effects of agents on cells
A cell viability assay was performed as previously
described [31], in which IC50 values were determined for
the anti-proliferative activity of each drug. Experiments
were performed independently four times and the data
shown are the average of the four assays. The combina-
tion effect of two agents was evaluated using the Combi-
nation Index (C.I), which was calculated using Calcusyn
software (Biosoft, Cambridge, UK). The definition of C.I
is as follows: C.I = (D)1/(Dx)1 + (D)2/(Dx)2 + (D)1(D)2/
(Dx)1(Dx)2, where (Dx)1 is the dose of Drug 1 alone
required to produce an X% effect; (D)1 is the dose of
Drug 1 required to produce the same X% effect in combi-
nation with Drug 2; (Dx)2 is the dose of Drug 2 alone
required to produce an X% effect; and (D)2 is the dose of
Drug 2 required to produce the same X% effect in combi-
nation with Drug 1. C.I < 1, 1 and > 1 indicates a synergis-
tic effect, an additive effect, and an antagonistic effect,
respectively. Cell cycle effects were examined by flow
cytometry as previously described [32,33].

Immunofluorescence
Cells were fixed in 4% paraformaldehyde, washed with
cold PBS, and incubated in PBS containing 0.1% Triton
X-100. After permeabilization, the cells were incubated in
blocking buffer (PBS containing 0.1% Tween-20 and 3%
BSA) containing antibodies against α-tubulin (Sigma-
Aldrich). After washing with 0.1% Tween PBS, the cells
were incubated in blocking buffer containing an anti-
mouse AlexaFluor 488-conjugated secondary antibody
(green) (Invitrogen). After washing again with 0.1%
Tween PBS, the cells were incubated in PBS containing
DAPI (blue) (Invitrogen). Immunofluorescence micros-
copy was performed using Biozero (Keyence, Osaka,
Japan).

Results
MAPT expression and drug sensitivity
MAPT mRNA expression was assessed using quantitative
real-time PCR and MAPT protein expression was
assessed using Western blot analysis in 12 human breast
cancer cell lines (Figure 1A, B). Six cell lines showed high
MAPT mRNA expression. Four of the six cell lines
showed multiple protein bands of 50 to 70 kDa, and the
other two cell lines showed only one band at around 70
kDa. Three cell lines with low MAPT mRNA expression
also showed MAPT protein expression at around 70 kDa.

To analyze the correlation between MAPT expression
and drug sensitivity, MTS assays were performed to
determine the IC50 values for the sensitivity of the 12 cell
lines to paclitaxel, docetaxel, vinorelbine, and doxorubi-
cin. Four of the six cell lines that showed high MAPT
mRNA expression had a low sensitivity to taxanes, while
the remaining two cell lines showed a high sensitivity.
The five cell lines expressing only the MAPT protein iso-
form at around 70 kDa had a high sensitivity to taxanes,
but all four cell lines with MAPT protein isoforms of less
than 70 kDa showed a low sensitivity to taxanes. This
trend was not observed for vinorelbine and doxorubicin.
Cell line HCC1937, which has a low MAPT expression,
showed a low sensitivity to all four anti-cancer drugs.
HCC1937 is the BRCA1-defective breast cancer cell line
and has a low sensitivity to paclitaxel and doxorubicin
[34]. Cell line HCC1569, which has a low MAPT expres-
sion, showed a low sensitivity to all four anti-cancer
drugs, but its character is unclear. Our results suggest
that MAPT mRNA expression is insufficient as a predic-
tor of taxane sensitivity; that the MAPT protein isoform
at around 70 kDa does not cause a low sensitivity to tax-
anes; and that MAPT protein isoforms of less than 70
kDa are most correlated with a low sensitivity to taxanes.

Downregulation of MAPT expression and alteration of 
cellular sensitivity to taxanes
To examine the role of MAPT protein in taxane resis-
tance, siRNA was used to knock down MAPT expression
in MAPT-positive cell lines as confirmed by Western blot
analysis. ZR75-1, MCF-7 and HCC3153 cells were used
in our study. The level of siRNA knockdown was approxi-
mately 65%. MDA-MB-134-VI, YMB1-E and HCC1143
cells could not be knocked down MAPT expression suc-
cessfully. After MAPT knockdown, the cells were cul-
tured with various concentrations of drugs and MTS
assays were performed. ZR75-1, MCF-7 cells has MAPT
protein isoforms of less than 70 kDa, all isoforms were
knocked down by siRNA, and knockdown of MAPT
increased the sensitivity to taxanes in both cell lines, but
did not alter the sensitivity to vinorelbine and doxorubi-
cin. In contrast, in HCC3153 cells, in which only the
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Figure 1 MAPT expression and drug sensitivity. A: MAPT mRNA expression in human breast cancer cell lines. PCR was used to assess MAPT mRNA 
levels in 12 human breast cancer cell lines. Since MAPT expression was lowest in SK-BR-3 cells, this expression level was taken as the standard for com-
parison with other cell lines. Cell line ZR75-1 has a naturally high MAPT expression [5,6]. Other cell lines with an mRNA expression higher than that of 
cell line ZR75-1 were classified as high mRNA expression cell lines. Real-time PCR revealed six cell lines in this category: MDA-MB-134-VI, ZR75-1, YMB1-
E, MCF-7, HCC1143, and HCC3153. B: The correlation between MAPT protein expression and sensitivity to anti-cancer drugs. Western blot analysis 
shows that four cell lines (MDA-MB-134-VI, ZR75-1, YMB1-E, and MCF-7) have multiple protein bands ranging from 50 to 70 kDa. Cell lines HCC1143 
and HCC3153 each show only one band at around 70 kDa, despite having a high MAPT mRNA expression. Cell lines HCC38, MDA-MB-231 and SK-BR-
3 have low MAPT mRNA expression, but show one band at around 70 kDa. MTS assays were used to assess the sensitivity to paclitaxel, docetaxel, vi-
norelbine, and doxorubicin, and to determine the IC50 values for drug sensitivity. The upper figure shows the sensitivity to vinorelbine and doxorubicin, 
and the lower figure shows the sensitivity to paclitaxel and docetaxel. Four cell lines with multiple protein bands show a low sensitivity to taxanes, 
and five cell lines with only one band at around 70 kDa show a high sensitivity to taxanes. This trend was not observed for vinorelbine and doxorubicin. 
Cell lines HCC1569 and HCC1937, both having a low MAPT expression, show a low sensitivity to all four anti-cancer drugs. Cell line HCC1937 was the 
BRCA1-defective breast cancer cell line. The characteristics of HCC1569 are unclear.

(A)

(B)
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MAPT isoform at around 70 kDa is expressed, siRNA
knockdown of this isoform did not change the sensitivity
to taxanes (Figure 2A, B). Based on these results, we sug-
gest that MAPT protein isoforms of less than 70 kDa
largely determine the sensitivity to taxanes.

Taxanes bind to tubulin and suppress spindle microtu-
bule dynamics, which leads to arrest of the cell cycle in
G2/M phase. We hypothesized that MAPT expression,
and especially MAPT protein isoforms of less than 70
kDa, might block this activity of the drug. Using flow
cytometry and immunofluorescence, changes in the cell
cycle and cell proliferation were analyzed after knock-
down of MAPT and exposure of the cells to low doses of
taxanes. The percentage of cells in G2/M phase was
higher in those exposed to low doses of taxanes after
MAPT knockdown than in controls (Figure 2C). An
increased percentage of sub-G1 phase cells was also
noted for cells exposed to taxanes after MAPT knock-
down (data not shown). Immunofluorescence with an
anti-α-tubulin antibody (Figure 2D) showed that taxanes
increased the amount of apoptotic cells and repressed cell
proliferation after MAPT knockdown, in comparison
with controls.

The relationship between ER and MAPT expression
Three of the 12 cell lines were ER-positive and all three
had expression of MAPT protein isoforms of less than 70
kDa (Figure 1A). To examine the relationship between ER
and MAPT expression, siRNA was used to knock down
ER expression in the MAPT- and ER-positive cell lines
(MCF-7 and ZR75-1), as confirmed by Western blot anal-
ysis (The level of siRNA knockdown was approximately
85%). MAPT protein expression decreased after ER
knockdown in both cells lines (Figure 3A). These results
indicate that the MAPT level is influenced by ER in
breast cancer cell lines. To examine this relationship in
more detail, cells were stimulated with 17-β estradiol and
treated with tamoxifen and fulvestrant. The cells were
seeded in a serum-free medium, incubated for 24 hr, and
then cultivated in a medium containing 17-β estradiol
alone; tamoxifen alone; fulvestrant alone; or various com-
binations of these agents. Subsequent Western blot analy-
sis was performed. In MCF7 cells, MAPT expression was
increased by 17-β estradiol. In the absence of 17-β estra-
diol, exposure to tamoxifen increased MAPT expression.
This effect was strongest at low concentrations of 500 nM
to 1 μM. With 17-β estradiol, MAPT expression was
decreased by tamoxifen at low concentrations, but
increased by tamoxifen at 500 nM. The effect of
increased MAPT expression was reduced at higher con-
centrations of tamoxifen. In ZR75-1 cells, these changes
were observed for protein isoforms of less than 70 kDa
(Figure 3B). Exposure to fulvestrant decreased ER and
MAPT expression regardless of the drug concentration.

In ZR75-1 cells, similar changes were observed for
MAPT protein isoforms of less than 70 kDa (Figure 3C).
These findings suggest that the ER modulates MAPT
expression, especially for MAPT isoforms of less than 70
kDa. Tamoxifen stimulates the ER in the presence of 17-β
estradiol, and significantly increases MAPT expression at
low concentration, whereas fulvestrant decreases ER and
MAPT expression at all concentrations.

Combination treatment with hormone drugs and taxanes
Based on the above results, we hypothesized that a com-
bination of hormone drugs and taxanes would increase
anti-cancer activity and the sensitivity to taxanes. This
hypothesis was tested in the MAPT- and ER-positive cell
lines (MCF-7 and ZR75-1), with evaluation of the combi-
nation treatment using the Combination Index. The
molar ratios for combinations of paclitaxel, docetaxel,
tamoxifen and fulvestrant were determined based on the
individual IC50 values (Table 1). This study was per-
formed using a constant ratio design. The combination
treatment with tamoxifen and taxanes had an antagonis-
tic effect at a low dose, but this effect became additive in
both cell lines as the dose of tamoxifen increased. In con-
trast, the combination of fulvestrant with taxanes showed
a synergistic effect (Figure 4A, Table 2).

Since the effect of tamoxifen on MAPT expression dif-
fers depending on its concentration, the effect of con-
comitant use with taxanes may also differ depending on
tamoxifen concentration. Thus, we performed combina-
tion treatment with tamoxifen at various concentrations,
with the taxane concentration maintained at a certain
level, and evaluated the results using the Combination
Index (Figure 4B). This study was performed using a non-
constant ratio design. The combination treatment with
tamoxifen and taxanes gave an antagonistic effect at low
concentrations, but an additive effect at high concentra-
tions. The strongest antagonistic effect was found at 500
nM, and the differences in concomitant treatment effects
caused by the tamoxifen concentration were similar to
those for MAPT expression. Combination treatment with
fulvestrant and taxanes gave a synergistic effect regard-
less of the fulvestrant concentration.

The effects of a combination of hormone drugs and
taxanes on the cell cycle and cell proliferation were evalu-
ated with flow cytometry and immunofluorescence.
Treatment with tamoxifen alone or fulvestrant alone
increased the percentage of cells in G1 phase and taxanes
increased the percentage of cells in G2/M phase, com-
pared with controls. The combination treatment with
tamoxifen and taxanes increased the percentage of cells
in G1 phase and decreased the percentage in G2/M phase
slightly, compared with the respective values with each
taxane alone. The combination of fulvestrant and taxanes
did not alter the percentage of cells in G1 phase, despite
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Figure 2 Downregulation of MAPT expression and alteration of cellular sensitivity to taxanes. A: Downregulation of MAPT expression with siR-
NA. siRNA was used to knock down MAPT expression in ZR75-1 and HCC3153 cells. Cells were harvested 72 hours after transfection for Western blot 
analysis. B: Cell viability determined by an MTS assay after the knockdown of MAPT. Cells were seeded 24 hr after transfection on a 96-well plate at 5 
× 103 cells/well and incubated for 24 hr. The cells were then cultivated for 72 hr in the presence of various concentrations of drugs. After this treatment, 
four independent MTS assays were performed. The data shown are the average of these four assays. In ZR75-1 cells knockdown of MAPT significantly 
increased sensitivity to taxanes, but did not alter sensitivity to vinorelbine or doxorubicin. In HCC3153 cells knockdown of MAPT did not alter sensitivity 
to taxanes. *P < 0.05, indicates a significant difference, compared with the control (unpaired Student's test). C: Analysis of the cell cycle using flow 
cytometry. At 24 hr after transfection, cells were exposed to low-dose paclitaxel (25 nM) for 72 hr. Afterwards, a cell cycle analysis was performed using 
flow cytometry. The percentage of cells in the G2/M phase was higher in cells that had been exposed to low-dose taxanes after MAPT knockdown, 
compared with the controls. (The data show ZR75-1 cells with paclitaxel.) D: Analysis of cell cycle and cell proliferation using immunofluorescence. 
After transfection, cells were seeded on six-well plates and incubated for 24 hr. After this treatment, the cells were exposed to low-dose paclitaxel (25 
nM) for 24 hr. Immunofluorescence with an anti-α-tubulin antibody was then performed. Paclitaxel caused an increase in apoptotic cells from 14/100 
cells (that is, the control cells) to 29/100 cells (that is, MAPT knockdown cells). There was also repressed proliferation, compared with the controls. (The 
arrows indicate apoptotic ZR75-1 cells.)

(A)

(B)

(C)

(D)(D)



Ikeda et al. Breast Cancer Research 2010, 12:R43
http://breast-cancer-research.com/content/12/3/R43

Page 7 of 12

Figure 3 The relationship between ER and MAPT expression. A: Downregulation of ER expression with siRNA. siRNA was used to knock down ER 
expression in MCF-7 and ZR75-1 cells. Cells were harvested 72 hours after transfection for Western blot analysis. The MAPT protein expression de-
creased after ER knockdown in both cells lines. B: Treatment with 17-β estradiol and tamoxifen. Cells were seeded in serum-free medium and incu-
bated. After incubation for 24 hr, cells were cultivated in a medium containing 17-β estradiol alone, tamoxifen alone, or various combinations of these 
two agents for 72 hr. They were then harvested for Western blot analysis. In MCF7 cells, MAPT expression was increased by 17-β estradiol. In the ab-
sence of 17-β estradiol, tamoxifen increased MAPT expression. This effect was highest at concentrations of 500 nM and 1 μM, and decreased at higher 
concentrations. With 17-β estradiol, tamoxifen at low concentrations decreased MAPT expression, but a high stimulatory effect was found at 500 nM. 
This effect decreased at high concentrations. In ZR75-1 cells, these changes were observed for protein isoforms of less than 70 kDa. MCF-7 cells were 
exposed to 1.0 nM 17-β estradiol and ZR75-1 cells to 10 nM 17-β estradiol. E2: 17-β estradiol; Tam: tamoxifen. C: Stimulation with 17-β estradiol and 
fulvestrant. Cells were seeded in a serum-free medium and incubated. After a 24-hr incubation, cells were cultivated in a medium containing 17-β 
estradiol alone, fulvestrant alone, or various combinations of the two agents for 72 hr. They were then harvested for Western blot analysis. Fulvestrant 
decreased ER and MAPT protein expression in both cell lines. These changes were more noticeable for protein isoforms of less than 70 kDa in ZR75-1 
cells. MCF-7 cells were exposed to 1.0 nM 17-β estradiol and ZR75-1 cells to 10 nM 17-β estradiol. E2, 17-β estradiol; Ful, fulvestrant.

(A)

(B)

MCF 7MCF-7

ZR75-1

(C)( )

MCF-7 ZR75-1
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the presence of fulvestrant, but the number of cells in G2/
M phase increased compared with each taxane alone
(Figure 4C). We also found that the percentage of sub-G1
phase cells increased after the combination treatment
with fulvestrant and taxanes, compared to treatment with
each taxane alone or the combination of tamoxifen with
taxanes (data not shown).

Immunofluorescence showed that an increase in apop-
totic cells and repression of cell proliferation occurred in
the combination treatment with fulvestrant and pacli-
taxel, compared with paclitaxel alone. These changes did
not occur in the combination treatment with tamoxifen
(Figure 4D). These results indicate that fulvestrant sup-
ports taxane drug function and has a synergistic effect
with taxanes.

Discussion
In this study, we obtained several new findings on MAPT
expression and the effects of taxanes. First, the sensitivity
to taxanes is influenced by MAPT protein isoforms of
less than 70 kDa. MAPT has six isoforms that give bands
representing molecules ranging in size from 50 to 70 kDa,
and MAPT protein isoforms have a significant impact on
taxane sensitivity since they have different affinities for
microtubules and different antagonistic effects on taxane
[13-16]. Rouzier et al. provided the first report of the cor-
relation of MAPT expression with the remission rate in
subjects who received perioperative chemotherapy with a
regimen including paclitaxel, and identified MAPT as a
predictor of sensitivity to taxanes [5]. However, subse-
quent studies did not support the utility of MAPT as a
predictor of the effect of taxanes [20,21,35,36]. Recently,
Pusztai et al. performed a large-scale phase III clinical
trial to compare doxorubicin and cyclophosphamide
(AC) and AC followed by four courses of paclitaxel as
adjuvant chemotherapy after surgery for breast cancer
[36]. The prognosis of patients with MAPT expression
was better than that of patients with no MAPT expres-
sion, although the utility of MAPT as a predictor of the
taxane effect was not shown [36]. In clinical studies, RT-
PCR and immunostaining are used for analysis of MAPT
expression. The results of our in vitro study indicated that

expression of MAPT protein isoforms less than 70 KDa
had the most influence on sensitivity to taxanes. A dis-
crepancy between MAPT mRNA expression and protein
expression has been found previously [37], and thus anal-
ysis of MAPT mRNA expression may not be appropriate
for examining the utility of MAPT as a predictor of tax-
ane sensitivity. Furthermore, the status of the expression
of different MAPT protein isoforms is important in
determining sensitivity to taxanes, but immunohis-
tochemistry cannot be used to evaluate each isoform.
MAPT isoform expression in breast cancer tissues must
be examined in detail to determine the exact correlation
between MAPT expression and response to taxanes.

The second finding in the study involved clarification of
the effect of the ER on the MAPT protein level in breast
cancer cells. Clinical studies have suggested that MAPT
expression has a positive correlation with ER expression
and is influenced by ER signaling [20,21]. In our study in
ER-positive and MAPT-positive breast cancer cell lines,
expression of MAPT protein isoforms of less than 70
kDa, which have a large impact on sensitivity to taxanes,
was affected by ER signaling. Furthermore, treatment of
MAPT- and ER-positive cells with tamoxifen or fulves-
trant had different effects on MAPT expression via the
ER, which suggests that these drugs can alter cellular sen-
sitivity to taxanes. In clinical treatment for breast cancer,
the advantages and disadvantages of concomitant use of
chemotherapeutic drugs and endocrine therapy have long
been discussed. Several clinical studies of tamoxifen as
hormone therapy have found that an antagonistic effect
on concurrent chemotherapeutic agents, and that the
results of giving tamoxifen concurrently with these agents
are inferior to that of sequential administration [27-30].
These results suggest that concomitant chemotherapy
and endocrine therapy should be avoided clinically. How-
ever, the effect of combination treatment using other
modern hormone therapies, such as aromatase inhibitors
or fulvestrant, has not been examined thoroughly.

Our third finding supports and complements the cur-
rent idea on concomitant use of chemotherapy and endo-
crine therapy, and indicated a new possibility for
concomitant use. Tamoxifen is an ER antagonist that also
has estrogen-like agonist activity. It has been used as hor-
mone drug for long-term therapy, but its effect are com-
plicated and incompletely understood. Our results
suggested that the effect of tamoxifen on ER signaling dif-
fers depending on the dose. MAPT protein expression
was increased at low concentrations of tamoxifen of 500
nM - 1 μM, but decreased at higher concentrations. Sev-
eral factors associated with resistance to chemotherapy
via regulation by ER signaling have been identified
[4,22,38-40]. Tamoxifen is thought to exert an antagonis-
tic effect in concomitant use with chemotherapeutic
drugs by increasing the expression of these factors via an

Table 1: Combination molar ratios for taxanes, tamoxifen 
and fulvestrant

Drugs MCF-7 ZR75-1

Ratio Ratio

Tamoxifen : Paclitaxel 5:3 4:3

Tamoxifen : Docetaxel 5:3 4:3

Fulvestrant : Paclitaxel 5:4 1:1

Fulvestrant : Docetaxel 5:4 1:1
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Figure 4 Combination treatment with hormone drugs and taxanes. A: Effect of combination treatment with hormone drugs and taxanes using 
a constant ratio design. The combination effect was evaluated using the Combination Index (C.I). Combination treatment with fulvestrant and taxanes 
showed a synergistic effect. Combination treatment with tamoxifen and taxanes had an antagonistic effect at low doses, but this effect became ad-
ditive in both cell lines as the tamoxifen dose increased. (Data for MCF-7 cells are shown.) C.I, Combination Index; Fa, fraction affected. B: Effect of 
combination treatment with hormone drugs and taxanes using a non-constant ratio design. Cells were cultivated with 1 μM paclitaxel alone, with 
tamoxifen at various concentrations, with fulvestrant alone at various concentrations, and with combinations of these agents. The combination effect 
was evaluated using the Combination Index (C.I). In combination treatment with tamoxifen and paclitaxel, an antagonistic effect was observed at low 
concentrations, while an additive effect was found at high concentrations. The strongest antagonistic effect was observed at 500 nM. Combinations 
of fulvestrant and taxanes gave a synergistic effect. (Data are shown for MCF-7 cells with paclitaxel.) Pacli, paclitaxel; Tam, tamoxifen; Ful, fulvestrant; 
C.I, Combination Index. C: Evaluation of combination treatment by flow cytometry. Cells were cultivated with 50 nM paclitaxel alone, 100 nM tamox-
ifen alone, 75 nM fulvestrant alone, or with combinations of these agents. Combination treatment with fulvestrant and paclitaxel increased the per-
centage of cells in G2/M phase, compared with paclitaxel alone or combination treatment with paclitaxel and tamoxifen. (Data are shown for MCF-7 
cells with paclitaxel.) D: Evaluation of combination treatment using immunofluorescence. Cells were cultivated with 50 nM paclitaxel alone, 100 nM 
tamoxifen alone, 75 nM fulvestrant alone, or combinations of these agents. An increase in apoptotic cells and repression of cell proliferation occurred 
in the combination treatment with fulvestrant and paclitaxel, compared with paclitaxel alone. These changes did not occur in combination treatment 
with tamoxifen. Apoptotic cells occurred in 11/100 cells with paclitaxel treatment alone; in 12/100 cells in combination treatment using tamoxifen; 
and in 25/100 cells in combination treatment using fulvestrant. (Arrows indicate apoptotic MCF-7 cells.)

(A)

(B)

(C)(C)

(D)
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agonistic effect on the ER. Active metabolites of tamox-
ifen also have different functions compared with the par-
ent drug [41-43], and more detailed studies are needed to
determine how tamoxifen and its metabolites influence
chemotherapy in vivo and in vitro.

Fulvestrant decreased ER and MAPT expression at all
concentrations. An MTS assay, flow cytometry, and
immunofluorescence all showed that the combination of
fulvestrant and taxanes had a synergistic effect, consis-
tent with the finding of Sui et al. that fulvestrant com-
bined with paclitaxel was effective in breast cancer cells
in vitro [24]. Fulvestrant assists taxane function by down-
regulating the ER and ER-regulated factors associated
with taxane resistance, and the combination of fulves-
trant with taxanes increases the sensitivity of MAPT- and
ER-positive breast cancer cells to taxanes.

ER-positive breast cancers clinically show a lower sen-
sitivity to chemotherapy than do ER-negative breast can-
cers. This may be caused by the ER itself or by ER
modulation of factors that result in resistance to chemo-
therapy. Our study indicates that the combination of
modern hormone therapy with modern chemotherapy
may become an effective therapy to ER-positive breast
cancers.

Conclusions
Expression of MAPT protein isoforms of less than 70 kDa
is correlated with a low sensitivity to taxanes in breast
cancer cells. ER influences MAPT expression and the
selective ER inhibitor fulvestrant downregulates MAPT
expression and increases the sensitivity to taxanes in
MAPT- and ER-positive breast cancer cells.
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