
It is nought good a slepyng hound to wake.

Troilus and Criseyde (1380), Chaucer

In the previous issue of Breast Cancer Research, Karimi-

Busheri and colleagues [1] shed further light on the rela-

tive resistance in breast cancer-derived tumor-initiating 

cells (TICs) by interrogating DNA damage signaling and 

repair and the capacity for tumor cell senescence in 

CD24−/low/CD44+ cells derived from MCF-7 mammo-

spheres. Primary or adjuvant breast radiotherapy is an 

important component in multimodality therapy as a 

means to improve locoregional control and potentially 

improve overall survival [2,3]. Understanding the biology 

underlying the relative radiosensitivity of breast tumor 

clonogens is an important step in personalized medicine 

to eff ectively predict clinical response and develop novel 

targeted therapies.

In this context, Karimi-Busheri and colleagues [1] add 

to the increasing literature using established cell lines 

and primary tumor explants on TIC resistance as the 

basis of treatment failure following radiotherapy and 

chemo therapy treatments [4-9]. Like previous investi-

gators, the authors show that when compared with non-

TIC monolayer cultures, TIC mammo sphere clonogens 

have a decreased production of reactive oxygen species 

following ionizing radiation (IR) [7] and bypass the ATM/

DNA-PKcs-dependent phos phory lation of the histone 

H2AX in response to IR-induced DNA double-strand 

breaks (DSBs) [5]. Despite the bypass of the γH2AX 

response, TICs acquire hyper phosphorylation of down-

stream signaling proteins such as p53, RB, and CHK2, a 

fi nding initially reported in glioma TIC studies [10].

As other investigators have reported, activation of AKT 

and canonical WNT signaling pathways within breast 

cancer TIC subpopulations has resulted in increased 

effi  ciency of DNA repair [5,6]. However, an increased 

capacity for DSB repair is not a universal fi nding in all 

TIC subpopulations [11] and may be dependent on the 

cell model, culture conditions, and diff erent DSB assays. 

When a number of assays were used, DSB repair in TICs 

was unaff ected in the study by Karimi-Busheri and 

colleagues [1]. However, the authors observed an increased 

capacity for the repair of DNA single-strand breaks 

(SSBs) associated with an increased expression of the 

APE1 protein. However, we do not know whether this is 
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the therapeutic ratio.
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causal as SSB repair data using APE1-isogenic systems 

were not presented.

Where the authors truly advance the fi eld is in their 

mechanistic studies of the mode of cell death in irradiated 

TICs versus non-TICs. Although breast cancer TICs can 

express high levels of antiapoptotic proteins, such as 

survivin or the BAX/BCL-2 family [9], the authors did not 

observe TIC resistance to IR-induced apoptosis. Instead, 

they observed that irradiated TICs have reduced tumor 

cell senescence associated with increased telomerase 

activity and increased expression of the senescence-asso-

ciated proteins, including ING1, p21WAF, and SA-β 

galacto sidase. Th ese results echo recent data in which 

fractionated IR led to a relative increase in the fraction of 

senescent cells in vitro in breast cancer non-TICs versus 

TICs [12]. Th e reader is left wondering how DSB repair 

can be normal in TICs when the ATMser1981, γH2AX, 

p53Ser15, and pRB responses are abnormal. Future experi-

ments therefore are required to study the upstream activa-

tion of the MRE11-RAD50-NBS1 (MRN) complexes, altered 

chro ma tin states in TICs before and after IR, and the rela-

tive control and activation of telomerase activity in TICs 

[5]. Nonetheless, the cumulative data support a model in 

which DNA damage signaling and repair pathways are 

altered in TICs and lead to altered modes of cell death with 

unique consequences for long-term clonogen survival [13].

Figure 1. Model of tumor cell senescence in breast cancer tumor-initiating cells (TICs) as a determinant of radiocurability. The failure 

of ionizing radiation to initiate tumor cell senescence in CD24−/low/CD44+ MCF-7 TICs (derived from mammosphere culture) leads to relative 

radioresistance over non-TIC monolayer cells (TIC = red circle; non-TIC = blue circle). Resistant TICs have attenuated or abnormal reactive oxygen 

species (ROS) production, abnormal DNA damage signaling and checkpoint control, and an altered propensity for ionizing radiation-induced tumor 

cell senescence. The number and sensitivity of TIC populations could vary from patient to patient and refl ect individual patient radiocurability 

within clinical cohorts. On the left are examples of patient-specifi c scenarios in which the initial fraction of TICs is varied prior to potentially curative 

fractionated radiotherapy. On the right are scenarios that represent radiotherapy cure or failure. Sterilizing all TIC clonogens and killing non-TICs 

via tumor cell senescence in patient 1 lead to both tumor regression and local control (for example, tumor cure). The failure to activate tumor 

senescence and kill any TIC or non-TIC leads to a complete lack of response and local failure in patient 3. Patient 2 shows a mixed response in 

which non-TIC populations are killed, leading to initial tumor regression, but owing to the re-growth of TIC clonogens, the patient ultimately fails 

therapy. Future research will require exquisite biomarkers to delineate the fraction of TICs within pretreatment tumor biopsies as means to predict 

radiotherapy response in the context of personalized medicine. Concepts shown are based on the work of Karimi-Busheri and colleagues [1]. DSB, 

DNA double-strand break; SSB, DNA single-strand break.
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However, extrapolating these data from in vitro studies 

directly to the relative radiocurability or chemosensitivity 

in vivo among individual patients in the clinic is not 

straightforward. If TICs are relatively resistant and 

determine the overall curability of a given tumor, to what 

extent do TIC number and radiosensitivity vary from 

patient to patient? Does this explain why one patient is 

cured and another has an initial regression only to 

undergo subsequent local or systemic recurrence 

(Figure  1)? From quantitative preclinical studies using 

syngeneic murine tumors or human xenografts, we know 

that the proportion and radiosensitivity of TICs can be 

measured and refl ect radiocurability in vivo [14,15]. Yet 

this relationship may be further complicated by intra-

tumor heterogeneity in which hypoxia subregions can 

provide a niche for TIC survival, aggressiveness, and 

increased metastatic capacity [16,17]. Indeed, it is still 

unclear whether local radioresistance equates directly 

with an increased capacity for systemic metastases 

[18,19]. At present, one cannot translate a diff erential 

capacity for DNA damage response and tumor cell 

senescence in TICs to a globally resistant tumor cell 

phenotype. But the data on TIC senescence lay the 

foundation for future experiments in isogenic models 

designed to directly test the capacity for senescence and 

local control (that is, not solely local regression) and 

spontaneous metastases following treatment in vivo [13].

Th e hope for personalized medicine is predicated on 

understanding the unique biology within and between 

tumors and applying this knowledge to off er the best 

treatment using radiotherapy, chemotherapy, or novel 

molecular-targeted agents [20]. Drilling down into the 

biology of rare TIC populations within clinical biopsies 

or tissues derived from solid tumors requires a level of 

sophistication that is currently lacking for the develop-

ment and validation of single-cell TIC senescence bio-

markers in vivo [9]. However, targeting tumor cell 

senescence pathways could increase TIC clonogen kill if 

this approach maintains the therapeutic ratio whereby 

cell kill in tumors is increased when compared with cell 

kill in normal tissues [9,13,21]. Such a strategy would 

drive the therapeutic concept of ‘let sleeping dogs lie’ or, 

in this case, ‘die’.
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