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Abstract
Introduction: Paclitaxel is a widely used drug in the treatment of patients with locally advanced and metastatic breast 
cancer. However, only a small portion of patients have a complete response to paclitaxel-based chemotherapy, and 
many patients are resistant. Strategies that increase sensitivity and limit resistance to paclitaxel would be of clinical use, 
especially for patients with triple-negative breast cancer (TNBC).

Methods: We generated a gene set from overlay of the druggable genome and a collection of genomically 
deregulated gene transcripts in breast cancer. We used loss-of-function RNA interference (RNAi) to identify gene 
products in this set that, when targeted, increase paclitaxel sensitivity. Pharmacological agents that targeted the top 
scoring hits/genes from our RNAi screens were used in combination with paclitaxel, and the effects on the growth of 
various breast cancer cell lines were determined.

Results: RNAi screens performed herein were validated by identification of genes in pathways that, when previously 
targeted, enhanced paclitaxel sensitivity in the pre-clinical and clinical settings. When chemical inhibitors, CCT007093 
and mithramycin, against two top hits in our screen, PPMID and SP1, respectively, were used in combination with 
paclitaxel, we observed synergistic growth inhibition in both 2D and 3D breast cancer cell cultures. The transforming 
growth factor beta (TGFβ) receptor inhibitor, LY2109761, that targets the signaling pathway of another top scoring hit, 
TGFβ1, was synergistic with paclitaxel when used in combination on select breast cancer cell lines grown in 3D culture. 
We also determined the relative paclitaxel sensitivity of 22 TNBC cell lines and identified 18 drug-sensitive and four 
drug-resistant cell lines. Of significance, we found that both CCT007093 and mithramycin, when used in combination 
with paclitaxel, resulted in synergistic inhibition of the four paclitaxel-resistant TNBC cell lines.

Conclusions: RNAi screening can identify druggable targets and novel drug combinations that can sensitize breast 
cancer cells to paclitaxel. This genomic-based approach can be applied to a multitude of tumor-derived cell lines and 
drug treatments to generate requisite pre-clinical data for new drug combination therapies to pursue in clinical 
investigations.

Introduction
Chemotherapy regimens containing taxanes, including
docetaxel and paclitaxel, have well-established benefits in
breast cancer [1,2]. Despite improvement in the response
rates with use of taxane-based drug combinations versus
single agent taxanes, most patients do not have a com-

plete response to treatment [3-6]. A partial response or
resistance to paclitaxel is a major limiting factor in the
successful treatment of breast cancer. Improving taxane-
based chemotherapy regimens through novel drug com-
binations is therefore of clinical interest. Patients with
tumors that lack expression of estrogen receptor (ER),
progesterone receptor (PR), and HER2 amplification (tri-
ple-negative breast cancer, TNBC) are not candidates for
currently available FDA-approved, targeted therapies.
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More efficacious combination chemotherapy is needed
for these patients.

Due to its extensive use in breast cancer and other
tumor types and the frequency of acquired resistance,
mechanisms of taxane resistance have been investigated
[7-9]. Some mechanisms identified to date include muta-
tions of the β-tubulin gene [10,11], expression of the
tubulin binding protein tau [12], expression of ER [13,14],
HER2 [15,16], BRCA1 [17,18], and p-glycoprotein/MDR1
[19-21], among others [8,9]. Genomic studies have also
been used for predicting response to both paclitaxel and
related compound docetaxel [3,5,6,22,23], but few if any
genes amongst these studies overlap or have been con-
firmed as reliable markers or predictors of response.
Despite these studies, novel therapeutic combinations
with paclitaxel are being tested in clinical trials, especially
in patients with advanced disease or those without clini-
cally proven therapeutic targets such as TNBC [24-26].
Identification of gene products that when pharmacologi-
cally inhibited enhance paclitaxel sensitivity may lead to
improved response rates and reduced resistance.

The advent of RNA interference (RNAi) for gene silenc-
ing allows for systematic gene and/or pathway analysis in
tumor cells and an ability to uncover novel gene functions
and pathways that cannot always be identified by ectopic
gene expression. Several RNAi studies performed in
human tumor cell lines using synthetic small interfering
RNAs (siRNAs) or vector-based short hairpin RNAs
(shRNAs) targeting defined gene families or genome-
wide libraries have identified modulators of drug sensitiv-
ity [27-33]. These studies have unveiled novel pathways
and molecules for therapeutic targeting in various tumor
types and there is a great need to translate this informa-
tion for clinical utility.

Genomic tumor profiling has provided us with impor-
tant insights to mechanisms of tumorigenesis and trans-
lational data for clinical advances. Relative to some
cancer types, there is tremendous genomic information
available for breast cancers, which includes tumor DNA
copy number [34-38], DNA sequence and mutations [39-
44], gene expression and protein profiles [45,46], as well
as epigenetics [47,48] and microRNAs [49,50]. In the cur-
rent study, we performed genetic loss-of-function RNAi
screens to identify druggable targets involved in pacli-
taxel sensitivity. In our screens, we used a gene set that is
comprised of the overlay of a druggable genome library
with a set of genes considered to be deregulated in breast
cancer (from genomic studies of human breast cancers
and cell lines [37,38]). Specific pharmacological inhibi-
tors of the top scoring hits from our screens were used in
combination with paclitaxel and the ability of the chemi-
cals to enhance the growth inhibitory activity of pacli-
taxel on breast tumor-derived cell lines was analyzed. We
further tested these novel paclitaxel drug combinations

on four paclitaxel-resistant TNBC cell lines and for select
inhibitors showed synergistic drug activity. New findings
presented in this study show the feasibility of loss-of-
function screening to provide biological relevance for
genomic discoveries and to identify drug combinations to
improve current taxane-based drug treatments in pre-
clinical models for breast cancer.

Materials and methods
Reagents and resources
Paclitaxel, CCT007093, and mithramycin A (Sigma-
Aldrich, St. Louis, MO, USA) were prepared in DMSO at
a stock concentration of 0.1 mM, 5 mM, and 0.9 mM,
respectively. LY2109761 was kindly provided by Jonathan
Yingling, Lilly Research Laboratories, Indianapolis, IN,
USA and prepared in DMSO at 10 mM stock concentra-
tion. The panel of candidate genes used in the shRNA
screen was generated from overlay of a list of 1,778
genomically deregulated gene transcripts whose levels
significantly correlated with genome copy number in
breast cancer [37,38] and a druggable genome list com-
piled from two sources (Open Biosystems, Huntsville,
AL, USA and Qiagen, Valencia, CA, USA). Pharmacolog-
ical agents were identified using several drug databases
including DrugBank, Therapeutic Target Database, Com-
parative Toxicogenomics Database, and Ingenuity Path-
way Analysis.

Cell culture
HeLa and MCF-7 cells were purchased from American
Tissue Cell Culture (ATCC, Manassas, VA, USA) and cul-
tured in Dulbecco's modified Eagle's medium (DMEM,
Invitrogen, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum, and 1% penicillin-streptomycin. All
TNBC cell lines were purchased from ATCC or Deutsche
Sammlung von Mikroorganismen und Zellkulturen
GmbH (DSMZ, Braunschweig, Germany) and cultured as
described (Additional File 1). All cells were cultured at
37°C with 5% CO2 and tested routinely for mycoplasma,
using the MycoAlert Detection Kit (Cambrex, Rockland,
ME, USA).

shRNA and siRNA screens
HeLa cells were plated at 20,000 cells per well (96-well
plate) and 24 h later transfected with a subset of the
human genome pGIPZ shRNAmir plasmid library (n =
1,078) (Open Biosystems), as provided by the Functional
Genomics Shared Resource at Vanderbilt University in a
one clone per well format. The next day, cells were split
1:6 into 96-well plates, allowed to attach overnight, and
three plates were treated with vehicle control (DMSO)
and three were treated with 5 nM paclitaxel for 24 h. Cells
were washed, replaced with fresh media and incubated
for an additional 72 to 96 h. Alamar Blue (Invitrogen), a



Bauer et al. Breast Cancer Research 2010, 12:R41
http://breast-cancer-research.com/content/12/3/R41

Page 3 of 16
dye used to detect metabolic activity in cells, was used to
assay for cell viability and to identify genes that alter
paclitaxel sensitivity. To identify gene targets that pro-
mote paclitaxel sensitivity or resistance, we generated a
sensitivity index (SI) score for each shRNA obtained from
replicate experiments after drug treatment [32]. The SI
score accounts for both the individual effect of shRNAs
and the effect of drug on cell viability (see next section for
description of the statistical methodology). Data from
each plate were normalized to non-silencing (NS) shRNA
controls that do not target any human gene, to account
for plate-to-plate variability and to control for the effects
of shRNA transfection. For the siRNA screen, two inde-
pendent siRNAs were designed for each gene and ran-
domly distributed in a 96-well plate. MDA-MB-231 and
MDA-MB-468 cells were reverse-transfected with siR-
NAs complexed with lipid reagent for 48 h and subse-
quently split into four replicate plates. Cells were treated
and measured for viability in a similar fashion as above.
Transfections (that is, experiments) were performed in
triplicate to allow for assessment of variation of expres-
sion data in statistical analysis.

Statistical analysis
Median centered global normalization was performed
across all shRNA and siRNA plates by using the NS con-
trols in each plate. The SI score was calculated for each of
the shRNAs and siRNAs by estimating the difference
between the expected and observed combined effects of
shRNAs or siRNAs and paclitaxel on cell viability, as pre-
viously described [32]. The SI scores range from -1 to 1.
Positive SI scores indicate sensitizing effects and negative
SI scores indicate antagonizing effects.

A bootstrap algorithm was used to estimate the vari-
ability of the mean SI level for each gene with > 3 shRNAs
by randomly sampled from all shRNAs of that gene with
replacement. The corresponding 95% percentile boot-
strap confidence interval was calculated for each gene.
Genes were taken as hits if they had a mean bootstrap in
the upper quartile cutoff SI > 0.078 and the lower bound
of 95% confidence interval > 0. The results of a small sim-
ulation study we carried out show that the bootstrap dis-
tribution from a very small number of shRNAs (≤3 per
gene) is not reliable. Therefore, the mean SI value was
calculated for the genes with ≤3 shRNAs. A more strin-
gent cutoff (SI > 0.15) was used for hit selection among
these genes. For the siRNA screen, the SI value was calcu-
lated by averaging the two siRNAs for each gene after
normalization and the top hits for each cell line were
selected based on the SI value of the averaged data. Cor-
relation between experiments was estimated using Pear-
son's correlation coefficient. Statistical analysis was
performed using R software (version 2.10.1).

Cell growth and viability assays
For cell growth assays cells were seeded at 5 × 105 cells
per well of a six-well plate. The next day cells were treated
with 5 μM CCT007093 or 10 nM mithramycin, ± 3 nM
paclitaxel, or vehicle control (DMSO). After three days
cells were collected, washed, and counted using a Coulter
Counter (Beckman-Coulter, Brea, CA, USA). Cell num-
ber was plotted as a percent of cells relative to vehicle
control. Cell viability assays were performed by seeding
3,000 to 8,000 cells per well of a 96-well plate. The next
day, growth media was replaced with treatment media
containing vehicle-DMSO or paclitaxel that was serial
diluted by half-log concentrations ranging from 0.3 to 30
nM. After three days of incubation with the drug, cell via-
bility was measured using the Alamar Blue assay (Invitro-
gen). Cell viability for each drug concentration was
compared to vehicle-treated control. Four replicate wells
from three independent experiments of each drug con-
centration were used to generate median-effect plots to
calculate the IC50 (concentration for 50% growth inhibi-
tion) concentrations for each cell line using Calcusyn
Software (Biosoft, Cambridge, United Kingdom). IC50
values for each cell line are represented with standard
error.

Mammosphere cultures
For three-dimensional (3D) mammosphere cultures, cells
were seeded on growth factor-reduced Matrigel (BD Bio-
sciences, San Jose, CA, USA) in chamber slides as previ-
ously described [51,52]. CCT007093, mithramycin, and
LY2109761 ± paclitaxel were added to medium 24 h after
cell seeding and medium was replaced every three days.
Mammospheres were detached from Matrigel with dis-
pase enzyme (BD Biosciences), trypsinized into single cell
suspensions, and cell number was determined using a
hemocytometer. The number of viable cells was plotted
as a percent of cells relative to vehicle control.

Drug synergy analysis
Paclitaxel was combined with each of the different agents
at a fixed ratio (1:1) of the individual IC50 concentrations
of each drug. Drug combinations were then serial diluted
(1:2) and represented as IC50, IC25, and IC12.5 concentra-
tions, as the additive effects of both drugs. Statistical
analysis of drug synergy was evaluated from the results of
the Alamar Blue assays and calculated using the Chou-
Talaly method [53] and Calcusyn Software (Biosoft). To
determine synergy between two drugs, the software uses
a median-effect method that determines if the drug com-
bination produces greater effects together than expected
from the summation of their individual effects. The com-
bination index (CI) values are calculated for the different
dose-effect plots (for each of the serial dilutions) based
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on the parameters derived from the median-effect plots
of the individual drugs or drug combinations at the fixed
ratios. The CI was calculated based on the assumption of
mutually nonexclusive drug interactions. CI values signif-
icantly > 1 are antagonistic, not significantly different
than 1 are additive, and values < 1 are synergistic. Two-
sided statistical tests were used to determine if the mean
CI values resulting from three independent experiments
at multiple effect levels were statistically significantly dif-
ferent from a CI = 1.

Results
RNAi screening for genes that sensitize cells to paclitaxel
To identify druggable gene targets that could enhance
paclitaxel activity in breast cancer cells, we performed an
shRNA screen. We selected a subset of genes based on a
comprehensive genomic study of 145 primary human
breast tumors and 51 breast cancer cell lines in which
1,778 gene transcripts were identified whose levels signif-
icantly correlated with genome copy number and are
deemed genomically deregulated in breast cancer [37].
Most of the alterations present in primary tumors were
retained in the cell lines [37]. The 1,778 genomically
deregulated genes were overlaid with a druggable gene
list (compiled from two sources, Open Biosystems and
Qiagen), with the expectation that for select genes identi-
fied in the shRNA screen, an agent may already exist that
could be analyzed in preclinical models for synergistic
activity with paclitaxel. The overlay of the gene lists
yielded 428 genes (Figure 1A). From a whole-genome
vector-based shRNAmir library, we generated a sub-
library consisting of 1,078 shRNAs targeting the 428
genes, with 1 to 11 shRNAs per gene. Since the transfec-
tion efficiency of plasmid-based vectors in most breast
cancer cell lines is < 10%, we used a highly transfectable
cell line, HeLa, for our primary screen with the assump-
tion that genes/pathways related to paclitaxel sensitivity
are conserved across cancer cell lines. Positive hits from
the first screen in HeLa cells were validated in secondary
screens using two triple-negative breast cancer (TNBC)
cell lines as described below.

shRNAs for each gene in our sub-library were indepen-
dently transfected into HeLa cells in a 96-well-plate for-
mat and cells were split 24 h after transfection into six
replicate plates. After 48 h, half of the plates (n = 3)
received an IC50 concentration of paclitaxel (5 nM) and
half received vehicle (DMSO) treatment. In order to
detect significant differences in drug sensitivity in the
assay, we allowed time for multiple cell divisions. After
four days of drug treatment, cell viability was measured
using an Alamar Blue assay to identify genes that alter
paclitaxel sensitivity (effect of shRNA and drug). Com-
parison of the mean viability values of three replicates for
each shRNA from the two individual screens revealed

high reproducibility (r = 0.89, Pearson's correlation coef-
ficient) (Figure 1B). We combined the results from the
duplicate screens in the final analyses.

To account for plate-to-plate variability, we normalized
across all the plates using non-silencing (NS) control shR-
NAs that were present in each plate. To identify genes
that when targeted promote paclitaxel sensitivity or resis-
tance; we generated a sensitivity index (SI) score for each
shRNA obtained from replicate experiments after drug
treatment, as previously described (Figure 1C) [32]. The
SI score accounts for the individual effect of shRNAs and
the effect of drug on cell viability. A positive SI score is a
measure of sensitivity and a negative SI score is indicative
of resistance to paclitaxel treatment. In this study, we
chose gene targets that are amplified/overexpressed in
breast and that increase paclitaxel sensitivity (+SI value),
as these are more likely to be better targets for pharmaco-
logical inhibition.

For selection of hits from our primary shRNA screen,
we used a bootstrap algorithm to identify gene targets
that had > 3 shRNAs based on the mean SI > 0.078 (upper
quartile) and the corresponding 95% confidence interval
(Table 1). These criteria allowed for high-confidence hits
to be selected. As the number of positive scoring (+SI)
shRNAs for each gene increased, our confidence for these
genes increased, as these are unlikely due to false-posi-
tives or off-target effects of individual shRNAs. However,
since this method biased our hit selection for those genes
that had more shRNAs in our sub-library, we selected
additional hits represented by genes that had ≤3 shRNAs
but with a much more stringent cutoff of mean SI value >
0.150 (Table 1). FRAP1 (mTOR) (mean SI = 0.212; Table
1) was previously identified through an RNAi screen as a
target of paclitaxel sensitivity, and was used in our screen
as a positive control in each plate [30]. CASP3 shRNA
(mean SI = -0.042) was used as a negative control in each
plate as we found that this gene, when downregulated,
induces paclitaxel resistance (Table 1). Three of the four
shRNAs that target EGFR were highly sensitive to pacli-
taxel activity (mean SI = 0.136, Table 1). EGFR is a known
target of paclitaxel sensitivity as erlotinib, an EGFR inhib-
itor, increases paclitaxel activity in vivo [54-57]. Addition-
ally, TUBG1, tubulin gamma-1, a component of the γ-
tubulin ring complex (γ-TuRC), involved in mitotic spin-
dle formation, enhanced paclitaxel sensitivity (mean SI
value = 0.152, Table 1). γ-TuRC has previously been
shown to enhance paclitaxel sensitivity, in vitro [33].
These data collectively validated our primary shRNA
screening approach.

To determine if the results of the shRNA screen were
reproducible in breast cancer cells, we validated the top
36 high-confidence hits (genes) from the shRNA screen
that were amplified/overexpressed in breast cancer and
had positive SI values (Table 1). Some of the genes
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Figure 1 shRNA screen to identify paclitaxel sensitizers. A. The overlay of druggable genome libraries (Qiagen and Open Biosystems) and genes 
deregulated in breast cancer resulted in 428 candidate druggable genes. B. Reproducibility of shRNA screen by correlation of the effect of shRNAs on 
cell growth compared to non-silencing shRNA in vehicle-treated plates of two replicate experiments. Spearman correlation coefficient, r = 0.89. C. 
Each shRNA was scored for the level of paclitaxel sensitivity using the sensitivity index (SI) as described in Materials and Methods. The SI score ranges 
from -1 to 1. Positive significant SI scores indicate sensitization and negative significant SI scores indicate antagonism. The scatter plot of all shRNAs is 
shown in rank order. The dashed lines indicate the relative threshold of significant drug sensitivity.
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selected are targets of agents that have not been tested for
efficacy in combination with paclitaxel in the preclinical
setting and are of biological relevance and interest (for
example, transforming growth factor beta (TGFβ) signal-
ing). Two independent siRNA oligos were designed for
each of the 36 genes selected and reverse-transfected into
two TNBC cell lines, MDA-MB-231 and MDA-MB-468.
Duplicate experiments were performed and resulted in
high reproducibility (correlation coefficients approxi-
mately 0.70 to 0.80, data not shown).

We averaged the SI value for the two siRNAs from
duplicate experiments for each gene and the top hits for
each cell line were selected for further analysis (Table 2).
Four genes, PPM1D, CENPF, BCL2L1, and FRAP1 were
sensitizers of paclitaxel in both cell lines (bold, Table 2).
Since paclitaxel efficacy is dependent on mitotic activity
(that is, cell cycle transit into M-phase), we postulated
that siRNAs that decreased cell viability > 30% in
untreated plates were unlikely candidates for enhancing
paclitaxel activity as cell cycle slowing or arrest limits the
efficacy of paclitaxel. However, we did note the effect that

some siRNAs had on breast cancer cell viability in
untreated plates as the targeted gene may be of potential
interest for further investigation for breast cancers that
do not have targeted therapy, such as TNBC. For exam-
ple, IGF1 siRNA in MDA-MB-468 cells led to a 60%
reduction in viability compared to NS siRNA control
(data not shown). However, we did not observe signifi-
cant sensitivity to paclitaxel (SI = -0.031) for IGF1 siR-
NAs in these cells, likely due to the large loss of cell
viability prior to paclitaxel treatment.

To ensure that drug sensitivity correlated with relative
decreases in gene expression and to eliminate any possi-
ble off-target effects from shRNAs and siRNAs, we used
Dharmacon ON-TARGETplus individual and pooled siR-
NAs as a third independent RNAi approach on select
positive hits and our results with PPMID are shown as an
example. ON-TARGETplus siRNAs for a top hit, PPM1D,
were transfected in two breast cancer cell lines, MCF-7
and MDA-MB-468. PPM1D knockdown was measured at
48 h after transfection by quantitative real-time PCR.
Three of the four individual and the pooled ON-TAR-

Table 1: Paclitaxel sensitivity index for indicated genes from shRNA screen

> 3 clones mean SI > 0.078 < 3 clones mean SI > 0.150

Gene shRNAs Mean SI 95% CI Genomic dereg* Gene shRNAs Mean SI Genomic dereg*

YWHAZ 6 0.193 0.154 to 0.242 amp/OE PCK1 1 0.461 amp/OE

RPS6KB1 4 0.186 0.135 to 0.242 amp/OE SREBF2 1 0.391 amp/OE

COG2 5 0.186 0.110 to 0.265 amp/OE SRC 1 0.276 amp/OE

PTK2 5 0.184 0.121 to 0.287 amp/OE FNTA 1 0.263 amp/OE

PPM1D 4 0.179 0.120 to 0.241 amp/OE BCL2L1 1 0.247 amp/OE

SKP1A 6 0.166 0.075 to 0.259 amp/OE COMMD1 3 0.220 amp/OE

MARK1 5 0.157 0.006 to 0.345 amp/OE COG8 1 0.214 amp/OE

NFYB 4 0.148 0.085 to 0.186 amp/OE FRAP1 1 0.212 NA

RBBP4 4 0.139 0.080 to 0.198 amp/OE ERBB2 1 0.180 amp/OE

IL10 4 0.136 0.081 to 0.205 amp/OE IQGAP1 3 0.176 amp/OE

EGFR 4 0.136 0.087 to 0.378 amp/OE PHB 3 0.159 amp/OE

SP1 5 0.130 0.080 to 0.138 amp/OE NDUFS6 1 0.159 amp/OE

STX16 4 0.107 0.053 to 0.175 amp/OE COG1 1 0.159 amp/OE

PTPN7 4 0.095 0.019 to 0.170 amp/OE PRPF4B 3 0.156 amp/OE

SENP1 5 0.095 0.022 to 0.168 amp/OE FADD 3 0.156 amp/OE

CENPF 4 0.085 0.030 to 0.140 amp/OE ERK1 1 0.154 amp/OE

IGF1 4 0.078 0.016 to 0.137 amp/OE TGFB1 1 0.153 amp/OE

TUBG1 3 0.152 amp/OE

CASP3
(control)

5 -0.042 -0.061 to -0.021 del/UE IKBKB 2 0.151 amp/OE

*as determined by DNA copy number and gene expression analysis by Neve et al.
SI, sensitivity index; CI, confidence interval
amp/OE, amplification/overexpressed; del/UE, deletion/underexpressed
NA, not available
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GETplus siRNAs for PPM1D showed > 80% reduction in
PPM1D mRNA levels in MCF-7 cells and > 60% reduc-
tion in MDA-MB-468 cells (Additional File 2). Impor-
tantly, knockdown of PPM1D was correlated with
increased paclitaxel sensitivity over a range of paclitaxel
doses in both cell lines (Additional File 2). The use of
multiple shRNAs and validation with independent siR-
NAs limited the likelihood that the observed sensitivity
was due to off-target effects.

Candidate pharmacological inhibitors that enhance 
paclitaxel sensitivity
A primary goal of this study was to identify gene targets
that are druggable, to which pharmacological agents have
been developed, and that can be used in novel combina-
tions with paclitaxel in preclinical studies. The list of top
hits from the validation siRNA screen for both cell lines is
shown in Table 2 with associated chemical agents identi-
fied using in silico drug databases (see Materials and
Methods). In some cases, agents linked to genes in the list
represent FDA-approved drugs, some of which have
already been successfully used in combination with pacli-
taxel (for example, FRAP1; rapamycin [58,59], EGFR;
erlotinib [54,60,61]). Gene targets with inhibitors known
to enhance paclitaxel sensitivity both in preclinical [62-
67] and clinical models [54,58,61,68,69] (noted in Table 2)
were not studied further; however, their discovery vali-

dated our RNAi screening approach. We also did not pur-
sue hits that had non-specific inhibitors and those that
had no available agents despite being considered drugga-
ble (for example, MARK1); however, those gene targets
still remain of interest. Since some hits are involved in
intricate signaling pathways, there could be other drug
targetable molecules within the same pathway, which
could impact paclitaxel sensitivity. For example, a top hit
in our screen, RPS6KB1, is downstream of mTOR and
PI3K, two prominent signaling pathways in breast cancer
with known direct inhibitors, rapamycin and LY294002,
and that have been shown to sensitize cells to paclitaxel
[59,70].

Three gene targets from our list were of particular
interest. These genes encode proteins to which agents
have been developed and thus we could test the com-
pounds in combination with paclitaxel for biological
effect. The first was PPM1D, a member of the PP2C fam-
ily of serine/theronine protein phosphatases, and a
known negative regulator of cell stress response pathways
including those regulated by p53, CHEK1, and p38 MAP
kinase [71]. PPM1D is amplified and overexpressed in
breast cancers [72,73] and inhibition of its activity,
through use of small molecules such as CCT007093,
inhibits the growth of tumor cell lines that overexpress
PPM1D [74,75]. The second gene target of interest was
SP1, a constitutively expressed transcription factor that

Table 2: Top gene targets from siRNA screen that increase paclitaxel sensitivity and the corresponding chemical inhibitors

MDA-MB-231 MDA-MB-468 Previous 
combination with 

paclitaxel

Gene Mean
SI

Mean
SI

Drug/chemical inhibitor Pre-
clinical

Clinical Ref

PPM1D 0.055 0.136 thioxanthen-9-one; CCT007093; anti-
estrogens*

no no

CENPF 0.049 0.113 farnesyltransferase inhibitors* yes yes [62,68,69]

BCL2L1 0.041 0.093 ABT-737; AT-101 yes no [63,64]

FRAP1 0.037 0.078 rapamycin; RAD001 yes yes [58,59]

IGF1 0.038 NVP-AEW541; 9-cis-retinoic acid*; 
raloxifene*

yes no [67]

EGFR 0.154 erlotinib; gefitinib; cetuximab yes yes [54,60,61]

ERK1 0.148 ERK/MEK inhibitors yes no [65,66]

RPS6KB1 0.140 rapamycin*; RAD001* yes yes [58,59]

TGFB1 0.121 LY2109761; LY2157299; SD-208 no no

SP1 0.085 mithramycin; arsenic trioxide* no no

*indirect inhibitors
SI, sensitivity index
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regulates basal promoter activity of many housekeeping
genes. SP1-binding activity has been shown to be higher
in human breast carcinomas than in normal tissues and
may play a role in tumorigenesis by regulating the expres-
sion of genes involved in angiogenesis, cell growth, and
apoptosis resistance [76,77]. Mithramycin A binds to
dsDNA and inhibits SP1 binding sites (GC-rich regions of
promoters) thus inhibiting SP1 transcriptional activity
[78]. Finally, TGFβ1 is a ligand that regulates a signaling
pathway that becomes deregulated in many types of
malignancies including breast cancer [79]. TGFβ1 can act
in a paracrine manner to promote tumor growth and can
activate PI3K/AKT, a signaling program associated with
drug resistance [80]. Thus, the ligand TGFβ1 and its
receptors TGFβ receptor (TGFβR) type I and II have been
pursued as anti-cancer targets. LY2109761 is a small mol-
ecule inhibitor of TGFβR I and II and has been shown to
inhibit tumor cell migration, invasion, as well as sup-
pressing metastasis in vivo [80-82].

Pharmacological agents enhance paclitaxel cell growth 
inhibition of breast cancer cells
To observe potential enhanced activity of drug combina-
tions, < IC50 concentrations of CCT007093 or mithramy-
cin were combined with a < IC50 concentration of
paclitaxel. These combinations resulted in increased
growth inhibition of three breast cancer cell lines tested,
MDA-MB-231, MDA-MB-468, and MCF-7 relative to
single agent treatment (Figure 2A). CCT007093 alone
had little effect on MDA-MB-231 or MDA-MB-468 cell
growth (< 15% inhibition) but significantly decreased
proliferation in combination with paclitaxel, 47% and 55%
inhibition (P < 0.05), respectively. MCF-7 cells, which
contain an amplification of PPM1D [73], are sensitive to
single agent CCT007093 treatment (38% inhibition of cell
growth, Figure 2A) and synergized with paclitaxel result-
ing in a 79% inhibition of cell growth (P < 0.01). Mith-
ramycin in combination with paclitaxel also significantly
inhibited cell growth in the triple-negative MDA-MB-231
and MDA-MB-468 cells relative to the effect observed
when either drug was used alone (P < 0.05). However,
mithramycin treatment of MCF-7 cells failed to enhance
paclitaxel activity greater than the additive effects of
either drug alone (additive effective = 50%, observed
effect = 51%). Of note, we did not observe any appreciable
drug effects on cell viability in 2D cultures with the
TGFβR inhibitor LY2109761, alone or in combination
with paclitaxel in parallel assays with the cell lines
described above (data not shown).

Novel drug combinations with paclitaxel inhibit 3D growth 
of breast cancer cell lines
To determine the effect of the novel drug combinations
on paclitaxel sensitivity in 3D cultures, we grew two cell

lines, MDA-MB-468 and MCF-7, as mammospheres, a
culture method that has been developed to analyze breast
epithelial function, morphology, and invasiveness [51,52].
Paclitaxel treatment alone reduced mammosphere for-
mation and overall cell number by 37% in MCF-7 and
36% in MDA-MB-468 cells (Figure 3A, B). CCT007093
treatment alone reduced MCF-7 mammospheres by 46%
versus < 1% reduction of MDA-MB-468 mammospheres,
a line that does not have appreciable PPM1D expression
levels. However, CCT007093 treatment enhanced pacli-
taxel sensitivity and reduced mammosphere cell number
by 89% in MDA-MB-468 and 92% in MCF-7 cultures.
Likewise, we observed a significant reduction in the num-
ber of cells in the mammospheres that formed with the
combination of mithramycin and paclitaxel in both
MDA-MB-468 and MCF-7 cells (92% and 86% reduction,
respectively). Although we did not observe any apprecia-
ble drug synergy with the TGFβR inhibitor LY2109761 in
2D, monolayer cell culture, we did observe a significant
effect in 3D cultures. When used in combination with
paclitaxel, LY2109761 inhibited mammosphere forma-
tion and reduced cell number by 72% and 92% compared
to control in MDA-MB-468 and MCF-7 cells, respec-
tively; however, it had minimal effect on mammosphere
cell growth when used as a single agent (< 20% reduc-
tion).

CCT007093 and mithramycin synergistically enhance 
paclitaxel activity in paclitaxel-sensitive and -resistance 
TNBC cell lines
There are currently no targeted therapies for patients
with TNBC. Frequently, patients with this type of breast
cancer receive paclitaxel, due to its initial effects and
higher response rates as compared to other chemothera-
pies [83]. However, not all patients have a complete
response and those that are resistant or have residual dis-
ease after initial or secondary chemotherapy have a worse
prognosis and outcome [83,84]. In addition, TNBC
patients that initially respond to chemotherapy have a
higher incidence and faster relapse compared to patients
with non-TNBC [85]. Thus, improving the effect of initial
paclitaxel treatment is an important goal in successfully
treating patients with TNBC until more improved and/or
targeted therapies are developed.

Along these lines, we determined the relative paclitaxel
sensitivity of a panel of TNBC cell lines by determining
the paclitaxel IC50 values for 22 TNBC cell lines (Figure
4A). The distribution of IC50 values across the panel led
us to classify 18 cell lines as relatively paclitaxel-sensitive
and four cell lines (CAL120, SW527, HDQP1, and MT3,
which had relatively high IC50 values (> 20 nM)) as rela-
tively paclitaxel-resistant. We determined if the four
resistant cell lines could be sensitized to paclitaxel using
the novel drug combinations presented above and
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Figure 2 Novel drug combinations sensitize breast cancer cells to paclitaxel. A. MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cell lines 
were seeded in six-well plates and treated with vehicle (control), < IC50 concentrations of the putative PPM1D inhibitor, CCT007093 (CCT); paclitaxel 
(tax); or a combination of both (CCT + tax). Cells were treated for 72 h, washed, trypsinized and counted. The percent of viable cells relative to control 
was plotted for each drug or combination. B. Same as A with < IC50 concentration the putative SP1-binding inhibitor, mithramycin (mith). Error bars 
represent standard deviation of triplicates from three independent experiments. * indicates P < 0.05, ** indicates P < 0.01.
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Figure 3 Analysis of drug combinations on growth of breast cancer cells grown in 3D cultures. A. Cells were seeded on Matrigel in eight-well 
chamber slides as described in Materials and Methods. 3D cultures formed after two days and were treated every two to three days with single agents, 
vehicle (control), 1 nM paclitaxel (tax), 500 nM LY2109761 (LY), 10 μM CCT007093 (CCT), 25 nM mithramycin (mith) (upper panels) or a combination 
of drugs (lower panels). After 10 to 14 days, mammospheres were visualized using phase-contrast microscopy. Bar scale, 50 μm. B. To count cell num-
bers, the Matrigel was dissolved, mammospheres were collected, trypsinized and single cells were counted by trypan blue exclusion assay using a 
hemocytometer. The percent cell number relative to control was plotted for each drug or combination for the two cell lines. Error bars represent stan-
dard deviation from replicates from three independent experiments.
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Figure 4 Drug combinations to enhance cell death of TNBC cell lines. A. Twenty-two triple-negative cell lines were each seeded in 96-well plates. 
The next day cells were treated with vehicle control or paclitaxel (0.3 to 30 nM). IC50 values for each cell line were generated based on the median-
effect plot from three independent experiments. IC50 values represent the inhibitor concentration required for a 50% reduction in cell viability relative 
to vehicle-treated controls. Error bars represent standard deviation of four replicates from three independent experiments. B. Cell lines were seeded 
in 96-well plates and treated with single agents (IC50 values) or a combination of drugs (CCT007093 + paclitaxel or mithramycin + paclitaxel) of the 
IC50 concentrations of each drug (1:1 ratio) serial-diluted (IC50-IC25-IC12.5). Combination index (CI) values were calculated using the Chou-Talalay meth-
od with CalcuSyn software (Biosoft). CI values significantly > 1 are antagonistic, not significantly different than 1 are additive, and values < 1 are syn-
ergistic. Error bars represent standard deviation of quadruplicates from three independent experiments.
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assayed the two lines used in our RNAi screening, MDA-
MB-231 and MDA-MB-468 for comparison (Figure 4A).
A four-day cell viability assay after combination treat-
ments was used to assess drug synergy, defined as the
combination of two agents that have a greater therapeutic
effect than would be expected by the addition of individ-
ual effects of each drug. The well-established Chou and
Talalay method was used to determine drug synergy, as
described in Materials and Methods [53]. Combination
index (CI) values were derived from the median-effect
plots of single agents alone or in combination and statisti-
cal tests were used to determine whether the CI values at
multiple dose-effect levels (IC50, IC25, IC12.5) were statisti-
cally significantly different from 1 (P < 0.05). CI values
significantly < 1 indicate synergy, not significantly differ-
ent from 1 indicates additive, and a CI value significantly
> 1 indicates antagonism.

CCT007093 was synergistic with paclitaxel (average CI
value significantly < 1, P < 0.05) in two paclitaxel-sensi-
tive cell lines, MDA-MB-468 and MDA-MB-231, average
CI value of 0.56 and 0.38, respectively, and in two of the
four paclitaxel-resistant cell lines CAL120 (average CI =
0.89) and HDQP1 (average CI = 0.65) (Figure 4B).
CCT007093 was additive with paclitaxel in the two other
paclitaxel-resistant cell lines SW527 and MT3 (average
CI values not significantly different than 1 (P > 0.05)).
Mithramycin was synergistic with paclitaxel in the two
paclitaxel-sensitive lines MDA-MB-468 and MDA-MB-
231, average CI value of 0.66 and 0.54, respectively, and
the paclitaxel-resistant cell line HDQP1 average CI value
0.87. However, mithramycin and paclitaxel were antago-
nistic, average CI values significantly > 1, in reducing cell
viability at high effective drug doses (IC50 and IC25) in the
paclitaxel-resistant lines CAL120, SW527 and MT3 (Fig-
ure 4B). Collectively these data indicate that novel drug
combinations with paclitaxel can effectively reduce cell
viability of select paclitaxel-sensitive and importantly,
paclitaxel-resistant TNBC cell lines.

Discussion
Our RNAi screen represents a directed approach to iden-
tifying breast cancer relevant, druggable targets to
enhance drug sensitivity. The screen was validated by our
finding that several of the positive hits are genes that are
known targets of paclitaxel sensitivity and have been clin-
ically targeted in combination with taxanes
[54,58,61,68,69]. We identified additional novel gene tar-
gets and respective agents that were not previously iden-
tified by drug sensitivity RNAi screens or whose
inhibitors were not previously combined with paclitaxel.

We found PPM1D as a target for paclitaxel sensitivity in
our RNAi screens and in follow-up studies observed syn-
ergistic inhibition of tumor cell growth with use of the
PPM1D inhibitor CCT007093 in high PPM1D, wild-type

p53 expressing MCF-7 cells. The oncogenic activity of
PPM1D expression is attributed to its phosphatase activ-
ity and ability to deregulate tumor suppressor genes such
as p53, Chk1, and p38 [71]. PPM1D contributes to the
development of human cancers by suppressing p53 acti-
vation and thus has been an attractive therapeutic target
in tumors that overexpress PPM1D and those with wild-
type functional p53 activity [73]. Indeed, others have
found that suppression of PPM1D expression by RNAi
inhibits proliferation and induces apoptosis in breast can-
cer cell lines with wild-type p53 (BT-474) and those with
PPM1D amplification (MCF-7 and ZR-75-1) [86]. How-
ever, the effect of inhibition of PPM1D on tumor cell
growth and drug sensitivity is not limited to tumor cells
that harbor these amplifications as we observed synergis-
tic or additive activity of CCT007093 with paclitaxel in
TNBC cell lines (MDA-MB-231 and MDA-MB-468,
mutant p53 cell lines) including some paclitaxel-resistant
lines. Likewise, Belova et al. identified chemical com-
pounds that inhibit PPM1D activity and showed that
these compounds could significantly inhibit tumor cell
growth in MCF-7 cells and those with low PPM1D,
mutant p53 expression MDA-MB-231 [74]. Interestingly,
PPM1D inhibitors in both of these cell lines were able to
potentiate the effects of doxorubicin but failed to
enhance activity in other cell lines (MDA-MB-361) [74].

We found that mithramycin, an inhibitor of SP1 bind-
ing, could synergize with paclitaxel in some TNBC
(basal-like) cell lines, MDA-MB-231, MDA-MB-468, and
HDQP1. SP1 is a zinc finger transcription factor impor-
tant in the regulation of genes involved in cell survival,
growth and differentiation, and tumor development and
progression [77]. SP1 cooperates with other prominent
transcription factors including oncogenes such as MYC,
which may contribute to tumor cell proliferation and
growth [87,88]. MYC has recently been shown to have
elevated activity and gene signatures present in basal-like
TNBCs [89,90]. Thus, inhibiting SP1 binding with mith-
ramycin may block oncogenic transcriptional activity and
cooperate with anti-mitotic agents such as paclitaxel to
inhibit tumor cell growth. In addition, SP1 is a potent
transactivator of IGF-IR and EGFR, two prominent genes
overexpressed in breast cancer cells (for example, MDA-
MB-468) and both of which were identified as hits in our
screen [91,92].

Despite extensive preclinical studies aimed at therapeu-
tically targeting the TGFβ signaling pathway, there is a
lack of reports in which TGFβ inhibitors are combined
with paclitaxel. We found that the TGFβR inhibitor
LY2109761 is synergistic with paclitaxel in breast cancer
cells grown in 3D cultures but not 2D cultures, indicating
the importance of performing drug combination in more
than one growth context. TGFβ protects mammary epi-
thelial cells from apoptosis in the absence of serum,
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which may be through activation of the PI3K/AKT cell
survival pathway [80,93]. Thus, inhibition of TGFβ may
sensitize cells that are grown in low-serum and/or
anchorage-independent 3D conditions to apoptosis-
inducing agents like paclitaxel. In support of this, others
have shown that inhibition of TGFβ in human breast car-
cinoma cells grown in 3D cultures that secrete high levels
of TGFβ increases the cytotoxic response to ionizing
radiation and several chemotherapeutic drugs, namely
cisplatin [94]. Likewise, inhibition of TGFβ can prevent
radiation-induced acceleration of metastatic cancer pro-
gression [95,96]. On the contrary, Ahmed et al. showed
that the loss of the ECM protein TGFβI is sufficient to
induce specific resistance to paclitaxel and mitotic spin-
dle abnormalities in ovarian cancer cells [97]. In ovarian
and breast tumor specimens, TGFβI expression was
shown to be tightly co-regulated with other genes that
induce paclitaxel sensitivity, such as the adhesion glyco-
protein, THBS1 [97].

The mechanism by which inhibition of TGFβ signaling
cooperates with paclitaxel is not well understood. Intrac-
ellular TGFβ signaling proteins Smad2 and Smad3 bind
microtubules, and upon TGFβ stimulation, these tran-
scription factors dissociate from microtubules, are phos-
phorylated and relocate to the nucleus [98]. TGFβ
signaling may serve as a growth promoter and/or
enabling changes in tumor cell adhesion, migration, and
host-tumor interactions [99]. Thus, loss of TGFβ signal-
ing may sensitize cells to paclitaxel, an agent that can also
alter adhesion and migration due to significant changes in
microtubule dynamics that are required for these biologi-
cal activities.

The ever-increasing volume of genomic information
paired with bioinformatic and biostatistical analyses is
making genotype-driven health care a reality. The tre-
mendous amount of tumor-derived genomic information
available now, and after completion of several large-scale
cancer sequencing efforts, combined with biological vali-
dation of mutations to determine relevant drivers, will
allow for much more facile identification of new targets
for drug discovery, as well as more precise alignment of
patients with a particular targeted therapy. Validation of
putative drug targets through loss-of-function screening,
similar to that performed herein, will likely be a fre-
quently used approach to generate requisite pre-clinical
data to investigate novel single agent and drug combina-
tions. The exciting challenge ahead of us is to integrate
the ever-expanding genomic information as quickly as
possible for human benefit.

Conclusions
We used a genomic-based approach that included loss-
of-function RNAi screening to identify druggable targets
involved in paclitaxel sensitivity in breast cancer cells. We

identified pharmacological agents that target hits from
our screens, several which sensitized breast cancer cells
to paclitaxel. A potential translation of our discoveries is
new treatment options for patients with TNBC disease,
those without current clinically proven targeted thera-
pies. In summary, we provide a platform in which inte-
grated genomic information can be rationally used to
design functional screens to identify druggable targets to
improve current treatments or to discover novel cancer
treatment strategies.

Additional material

Abbreviations
2D: two-dimensional; 3D: three-dimensional; CI: combination index; DMEM:
Dulbecco's modified Eagle's medium; ECM: extracellular matrix; ER: estrogen
receptor; IC: concentration that inhibits growth compared to control; NS: non-
silencing; PR: progesterone receptor; RNAi: RNA interference; shRNA: short hair-
pin RNA; SI: sensitivity index; siRNA: small interfering RNA; TNBC: triple-negative
breast cancer.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
JAB and JAP designed the study, analyzed data, and prepared the manuscript.
CLA contributed to the interpretation of the results and discussion. CBM, BDL,
and CP assisted with the RNAi screen and drug combination experiments. FY
and YS provided a model and performed statistical analysis of the data gener-
ated from the RNAi screen. All authors read and approved the submitted man-
uscript.

Acknowledgements
This work was supported by the National Institutes of Health Grants: 
CA009385-25 (Bauer); CA62212 (Arteaga); CA95131 (Specialized Program of 
Research Excellence in Breast Cancer); CA105436 and CA070856 (Pietenpol), 
ES00267, and CA68485 (core services)

Author Details
1Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt 
University School of Medicine, Preston Research Building, 2200 Pierce Avenue, 
Nashville, TN 37232, USA, 2Department of Biostatistics, Vanderbilt-Ingram 
Cancer Center, Vanderbilt University School of Medicine, Preston Research 
Building, 2200 Pierce Avenue, Nashville, TN 37232, USA and 3Department of 
Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of 
Medicine, Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, 
USA

Additional file 1 Growth conditions of breast cancer cell lines. Cell cul-
turing conditions for panel of triple-negative breast cancer cell lines.
Additional file 2 Knockdown of PPM1D expression correlates with 
increased paclitaxel sensitivity in breast cancer cells. A. Non-silencing 
(NS) control, four individually designed PPM1D-1 (P1 to P4) or pooled 
PPM1D siRNAs (Dharmacon ON-TARGET plus) were transfected into MCF-7 
and MDA-MB-468 cells. Cells were harvested 72 h after transfection, RNA 
purified, and the relative PPM1D mRNA expression was measured by quan-
titative real-time PCR. PPM1D mRNA knockdown by individual or pooled 
siRNAs is shown relative to non-silencing control. Error bars represent stan-
dard deviation from three independent experiments. B. Following transfec-
tion of siRNAs, as indicated above, MCF-7 and MDA-MB-468 cells were 
seeded in 12-well plates and treated with paclitaxel (0 to 3 nM) for two days. 
Cells were counted and quantified at 10 days after plating. The dose 
response curves of the surviving fractions are plotted relative to vehicle 
control treated cells. Error bars represent standard deviation of triplicate 
wells from three independent experiments.

http://www.biomedcentral.com/content/supplementary/bcr2595-S1.DOCX
http://www.biomedcentral.com/content/supplementary/bcr2595-S2.PPT


Bauer et al. Breast Cancer Research 2010, 12:R41
http://breast-cancer-research.com/content/12/3/R41

Page 14 of 16
References
1. Hortobagyi G: Docetaxel in breast cancer and a rationale for 

combination therapy.  Oncology (Williston Park) 1997, 11:11-15.
2. Hortobagyi GN: Paclitaxel-based combination chemotherapy for breast 

cancer.  Oncology (Williston Park) 1997, 11:29-37.
3. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, 

Metivier J, Booser D, Ibrahim N, Valero V, Royce M, Arun B, Whitman G, 
Ross J, Sneige N, Hortobagyi GN, Pusztai L: Gene expression profiles 
predict complete pathologic response to neoadjuvant paclitaxel and 
fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in 
breast cancer.  J Clin Oncol 2004, 22:2284-2293.

4. Dressman HK, Hans C, Bild A, Olson JA, Rosen E, Marcom PK, Liotcheva VB, 
Jones EL, Vujaskovic Z, Marks J, Dewhirst MW, West M, Nevins JR, Blackwell 
K: Gene expression profiles of multiple breast cancer phenotypes and 
response to neoadjuvant chemotherapy.  Clin Cancer Res 2006, 
12:819-826.

5. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser 
D, Theriault RL, Buzdar AU, Dempsey PJ, Rouzier R, Sneige N, Ross JS, 
Vidaurre T, Gomez HL, Hortobagyi GN, Pusztai L: Pharmacogenomic 
predictor of sensitivity to preoperative chemotherapy with paclitaxel 
and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer.  
J Clin Oncol 2006, 24:4236-4244.

6. Thuerigen O, Schneeweiss A, Toedt G, Warnat P, Hahn M, Kramer H, Brors 
B, Rudlowski C, Benner A, Schuetz F, Tews B, Eils R, Sinn HP, Sohn C, Lichter 
P: Gene expression signature predicting pathologic complete response 
with gemcitabine, epirubicin, and docetaxel in primary breast cancer.  
J Clin Oncol 2006, 24:1839-1845.

7. McGrogan BT, Gilmartin B, Carney DN, McCann A: Taxanes, microtubules 
and chemoresistant breast cancer.  Biochim Biophys Acta 2008, 
1785:96-132.

8. Noguchi S: Predictive factors for response to docetaxel in human breast 
cancers.  Cancer Sci 2006, 97:813-820.

9. Villeneuve DJ, Hembruff SL, Veitch Z, Cecchetto M, Dew WA, Parissenti 
AM: cDNA microarray analysis of isogenic paclitaxel-and doxorubicin-
resistant breast tumor cell lines reveals distinct drug-specific genetic 
signatures of resistance.  Breast Cancer Res Treat 2006, 96:17-39.

10. Burkhart CA, Kavallaris M, Band Horwitz S: The role of beta-tubulin 
isotypes in resistance to antimitotic drugs.  Biochim Biophys Acta 2001, 
1471:O1-9.

11. Hasegawa S, Miyoshi Y, Egawa C, Ishitobi M, Tamaki Y, Monden M, 
Noguchi S: Mutational analysis of the class I beta-tubulin gene in 
human breast cancer.  Int J Cancer 2002, 101:46-51.

12. Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M, Ross JS, 
Zhang P, Buchholz TA, Kuerer H, Green M, Arun B, Hortobagyi GN, 
Symmans WF, Pusztai L: Microtubule-associated protein tau: a marker of 
paclitaxel sensitivity in breast cancer.  Proc Natl Acad Sci USA 2005, 
102:8315-8320.

13. Estevez LG, Cuevas JM, Anton A, Florian J, Lopez-Vega JM, Velasco A, Lobo 
F, Herrero A, Fortes J: Weekly docetaxel as neoadjuvant chemotherapy 
for stage II and III breast cancer: efficacy and correlation with biological 
markers in a phase II, multicenter study.  Clin Cancer Res 2003, 9:686-692.

14. Tham YL, Gomez LF, Mohsin S, Gutierrez MC, Weiss H, Hilsenbeck SG, 
Elledge RM, Chamness GC, Osborne CK, Allred DC, Chang JC: Clinical 
response to neoadjuvant docetaxel predicts improved outcome in 
patients with large locally advanced breast cancers.  Breast Cancer Res 
Treat 2005, 94:279-284.

15. Learn PA, Yeh IT, McNutt M, Chisholm GB, Pollock BH, Rousseau DL Jr, 
Sharkey FE, Cruz AB, Kahlenberg MS: HER-2/neu expression as a 
predictor of response to neoadjuvant docetaxel in patients with 
operable breast carcinoma.  Cancer 2005, 103:2252-2260.

16. Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, Hung MC: Overexpression 
of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, 
which inhibits p34Cdc2 kinase.  Mol Cell 1998, 2:581-591.

17. Lafarge S, Sylvain V, Ferrara M, Bignon YJ: Inhibition of BRCA1 leads to 
increased chemoresistance to microtubule-interfering agents, an 
effect that involves the JNK pathway.  Oncogene 2001, 20:6597-6606.

18. Zhou C, Smith JL, Liu J: Role of BRCA1 in cellular resistance to paclitaxel 
and ionizing radiation in an ovarian cancer cell line carrying a defective 
BRCA1.  Oncogene 2003, 22:2396-2404.

19. Brooks TA, Minderman H, O'Loughlin KL, Pera P, Ojima I, Baer MR, Bernacki 
RJ: Taxane-based reversal agents modulate drug resistance mediated 
by P-glycoprotein, multidrug resistance protein, and breast cancer 
resistance protein.  Mol Cancer Ther 2003, 2:1195-1205.

20. Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker 
RJ, Fruehauf JP: Levels of multidrug resistance (MDR1) P-glycoprotein 
expression by human breast cancer correlate with in vitro resistance to 
taxol and doxorubicin.  Clin Cancer Res 1998, 4:389-398.

21. Shabbits JA, Mayer LD: P-glycoprotein modulates ceramide-mediated 
sensitivity of human breast cancer cells to tubulin-binding anticancer 
drugs.  Mol Cancer Ther 2002, 1:205-213.

22. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge 
R, Mohsin S, Osborne CK, Chamness GC, Allred DC, O'Connell P: Gene 
expression profiling for the prediction of therapeutic response to 
docetaxel in patients with breast cancer.  Lancet 2003, 362:362-369.

23. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E, 
Noguchi S, Kato K: Prediction of docetaxel response in human breast 
cancer by gene expression profiling.  J Clin Oncol 2005, 23:422-431.

24. Bauer JA, Chakravarthy AB, Rosenbluth JM, Mi D, Seeley EH, De Matos 
Granja-Ingram N, Olivares MG, Kelley MC, Mayer IA, Meszoely IM, Means-
Powell JA, Johnson KN, Tsai CJ, Ayers GD, Sanders ME, Schneider RJ, 
Formenti SC, Caprioli RM, Pietenpol JA: Identification of markers of 
taxane sensitivity using proteomic and genomic analyses of breast 
tumors from patients receiving neoadjuvant paclitaxel and radiation.  
Clin Cancer Res 16:681-690.

25. Juul N, Szallasi Z, Eklund AC, Li Q, Burrell RA, Gerlinger M, Valero V, 
Andreopoulou E, Esteva FJ, Symmans WF, Desmedt C, Haibe-Kains B, 
Sotiriou C, Pusztai L, Swanton C: Assessment of an RNA interference 
screen-derived mitotic and ceramide pathway metagene as a 
predictor of response to neoadjuvant paclitaxel for primary triple-
negative breast cancer: a retrospective analysis of five clinical trials.  
Lancet Oncol 2010, 11:358-65.

26. Schwartz J: Current combination chemotherapy regimens for 
metastatic breast cancer.  Am J Health Syst Pharm 2009, 66:S3-8.

27. Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham 
R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley 
M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, 
Linsley PS: Small interfering RNA screens reveal enhanced cisplatin 
cytotoxicity in tumor cells having both BRCA network and TP53 
disruptions.  Mol Cell Biol 2006, 26:9377-9386.

28. Honma K, Iwao-Koizumi K, Takeshita F, Yamamoto Y, Yoshida T, Nishio K, 
Nagahara S, Kato K, Ochiya T: RPN2 gene confers docetaxel resistance in 
breast cancer.  Nat Med 2008, 14:939-948.

29. Ji D, Deeds SL, Weinstein EJ: A screen of shRNAs targeting tumor 
suppressor genes to identify factors involved in A549 paclitaxel 
sensitivity.  Oncol Rep 2007, 18:1499-1505.

30. MacKeigan JP, Murphy LO, Blenis J: Sensitized RNAi screen of human 
kinases and phosphatases identifies new regulators of apoptosis and 
chemoresistance.  Nat Cell Biol 2005, 7:591-600.

31. Menendez JA, Vellon L, Colomer R, Lupu R: Pharmacological and small 
interference RNA-mediated inhibition of breast cancer-associated fatty 
acid synthase (oncogenic antigen-519) synergistically enhances Taxol 
(paclitaxel)-induced cytotoxicity.  Int J Cancer 2005, 115:19-35.

32. Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E, Elustondo F, 
Chang J, Temple J, Ahmed AA, Brenton JD, Downward J, Nicke B: 
Regulators of mitotic arrest and ceramide metabolism are 
determinants of sensitivity to paclitaxel and other chemotherapeutic 
drugs.  Cancer Cell 2007, 11:498-512.

33. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton 
M, Minna JD, Michnoff C, Hao W, Roth MG, Xie XJ, White MA: Synthetic 
lethal screen identification of chemosensitizer loci in cancer cells.  
Nature 2007, 446:815-819.

34. Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, 
Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, Schoenmakers E, Viens 
P, Jacquemier J, Birnbaum D, Bertucci F, Chaffanet M: Integrated profiling 
of basal and luminal breast cancers.  Cancer Res 2007, 67:11565-11575.

35. Bergamaschi A, Kim YH, Wang P, Sorlie T, Hernandez-Boussard T, Lonning 
PE, Tibshirani R, Borresen-Dale AL, Pollack JR: Distinct patterns of DNA 
copy number alteration are associated with different 
clinicopathological features and gene-expression subtypes of breast 
cancer.  Genes Chromosomes Cancer 2006, 45:1033-1040.

36. Han W, Jung EM, Cho J, Lee JW, Hwang KT, Yang SJ, Kang JJ, Bae JY, Jeon 
YK, Park IA, Nicolau M, Jeffrey SS, Noh DY: DNA copy number alterations 

Received: 29 March 2010 Revised: 4 June 2010 
Accepted: 24 June 2010 Published: 24 June 2010
This article is available from: http://breast-cancer-research.com/content/12/3/R41© 2010 Bauer et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Breast Cancer Research 2010, 12:R41

http://breast-cancer-research.com/content/12/3/R41
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9110340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15136595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16896004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16622258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18068131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16805818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16322897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11342188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12576436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16261403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15834928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9844631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11641785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12717416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14617793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9516927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12907009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20068102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20189874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19923317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17000754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18724378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17982636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15864305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15657900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17560332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17429401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18089785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16897746


Bauer et al. Breast Cancer Research 2010, 12:R41
http://breast-cancer-research.com/content/12/3/R41

Page 15 of 16
and expression of relevant genes in triple-negative breast cancer.  
Genes Chromosomes Cancer 2008, 47:490-499.

37. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, 
Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo 
WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, 
Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A 
collection of breast cancer cell lines for the study of functionally 
distinct cancer subtypes.  Cancer Cell 2006, 10:515-527.

38. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk 
A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, 
Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, 
Albertson DG, Waldman FM, Gray JW: Genomic and transcriptional 
aberrations linked to breast cancer pathophysiologies.  Cancer Cell 
2006, 10:529-541.

39. Leary RJ, Lin JC, Cummins J, Boca S, Wood LD, Parsons DW, Jones S, 
Sjoblom T, Park BH, Parsons R, Willis J, Dawson D, Willson JK, Nikolskaya T, 
Nikolsky Y, Kopelovich L, Papadopoulos N, Pennacchio LA, Wang TL, 
Markowitz SD, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE: 
Integrated analysis of homozygous deletions, focal amplifications, and 
sequence alterations in breast and colorectal cancers.  Proc Natl Acad 
Sci USA 2008, 105:16224-16229.

40. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, 
Gelmon K, Guliany R, Senz J, Steidl C, Holt RA, Jones S, Sun M, Leung G, 
Moore R, Severson T, Taylor GA, Teschendorff AE, Tse K, Turashvili G, Varhol 
R, Warren RL, Watson P, Zhao Y, Caldas C, Huntsman D, Hirst M, Marra MA, 
Aparicio S: Mutational evolution in a lobular breast tumour profiled at 
single nucleotide resolution.  Nature 2009, 461:809-813.

41. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, 
Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, 
Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan 
R, Sieuwerts AM, Martens JW, Silver DP, Langerod A, Russnes HE, Foekens 
JA, Reis-Filho JS, van 't Veer L, Richardson AL, Borresen-Dale AL, et al.: 
Complex landscapes of somatic rearrangement in human breast 
cancer genomes.  Nature 2009, 462:1005-1010.

42. Nikolsky Y, Sviridov E, Yao J, Dosymbekov D, Ustyansky V, Kaznacheev V, 
Dezso Z, Mulvey L, Macconaill LE, Winckler W, Serebryiskaya T, Nikolskaya 
T, Polyak K: Genome-wide functional synergy between amplified and 
mutated genes in human breast cancer.  Cancer Res 2008, 68:9532-9540.

43. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, 
Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, 
Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, 
Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, 
Kinzler KW, Velculescu VE: The consensus coding sequences of human 
breast and colorectal cancers.  Science 2006, 314:268-274.

44. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca 
SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya 
T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis 
J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, 
Pethiyagoda CL, Pant PV, et al.: The genomic landscapes of human 
breast and colorectal cancers.  Science 2007, 318:1108-1113.

45. Boyd ZS, Wu QJ, O'Brien C, Spoerke J, Savage H, Fielder PJ, Amler L, Yan Y, 
Lackner MR: Proteomic analysis of breast cancer molecular subtypes 
and biomarkers of response to targeted kinase inhibitors using 
reverse-phase protein microarrays.  Mol Cancer Ther 2008, 7:3695-3706.

46. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, 
Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, Liu W, 
Stivers D, Baggerly K, Carey M, Lluch A, Monteagudo C, He X, Weigman V, 
Fan C, Palazzo J, Hortobagyi GN, Nolden LK, Wang NJ, Valero V, Gray JW, 
Perou CM, Mills GB: Characterization of a naturally occurring breast 
cancer subset enriched in epithelial-to-mesenchymal transition and 
stem cell characteristics.  Cancer Res 2009, 69:4116-4124.

47. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G: Genome-wide 
analysis of aberrant methylation in human breast cancer cells using 
methyl-DNA immunoprecipitation combined with high-throughput 
sequencing.  BMC Genomics 11:137.

48. Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, Chambers AF, 
Rodenhiser DI: Multi-platform whole-genome microarray analyses 
refine the epigenetic signature of breast cancer metastasis with gene 
expression and copy number.  PLoS One 5:e8665.

49. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, 
Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, 
Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: 

MicroRNA gene expression deregulation in human breast cancer.  
Cancer Res 2005, 65:7065-7070.

50. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, 
Ginzinger D, Getts R, Haqq C: Optimized high-throughput microRNA 
expression profiling provides novel biomarker assessment of clinical 
prostate and breast cancer biopsies.  Mol Cancer 2006, 5:24.

51. Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and 
oncogenesis of MCF-10A mammary epithelial acini grown in three-
dimensional basement membrane cultures.  Methods 2003, 30:256-268.

52. Lee GY, Kenny PA, Lee EH, Bissell MJ: Three-dimensional culture models 
of normal and malignant breast epithelial cells.  Nat Methods 2007, 
4:359-365.

53. Chou TC, Talalay P: Quantitative analysis of dose-effect relationships: 
the combined effects of multiple drugs or enzyme inhibitors.  Adv 
Enzyme Regul 1984, 22:27-55.

54. Modi S, D'Andrea G, Norton L, Yao TJ, Caravelli J, Rosen PP, Hudis C, 
Seidman AD: A phase I study of cetuximab/paclitaxel in patients with 
advanced-stage breast cancer.  Clin Breast Cancer 2006, 7:270-277.

55. Finn RS, Press MF, Dering J, Arbushites M, Koehler M, Oliva C, Williams LS, 
Di Leo A: Estrogen receptor, progesterone receptor, human epidermal 
growth factor receptor 2 (HER2), and epidermal growth factor receptor 
expression and benefit from lapatinib in a randomized trial of 
paclitaxel with lapatinib or placebo as first-line treatment in HER2-
negative or unknown metastatic breast cancer.  J Clin Oncol 2009, 
27:3908-3915.

56. Di Leo A, Gomez HL, Aziz Z, Zvirbule Z, Bines J, Arbushites MC, Guerrera 
SF, Koehler M, Oliva C, Stein SH, Williams LS, Dering J, Finn RS, Press MF: 
Phase III, double-blind, randomized study comparing lapatinib plus 
paclitaxel with placebo plus paclitaxel as first-line treatment for 
metastatic breast cancer.  J Clin Oncol 2008, 26:5544-5552.

57. Dai CL, Tiwari AK, Wu CP, Su XD, Wang SR, Liu DG, Ashby CR Jr, Huang Y, 
Robey RW, Liang YJ, Chen LM, Shi CJ, Ambudkar SV, Chen ZS, Fu LW: 
Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer 
cells by inhibiting the activity of ATP-binding cassette subfamily B 
member 1 and G member 2.  Cancer Res 2008, 68:7905-7914.

58. Campone M, Levy V, Bourbouloux E, Berton Rigaud D, Bootle D, Dutreix C, 
Zoellner U, Shand N, Calvo F, Raymond E: Safety and pharmacokinetics 
of paclitaxel and the oral mTOR inhibitor everolimus in advanced solid 
tumours.  Br J Cancer 2009, 100:315-321.

59. Mondesire WH, Jian W, Zhang H, Ensor J, Hung MC, Mills GB, Meric-
Bernstam F: Targeting mammalian target of rapamycin synergistically 
enhances chemotherapy-induced cytotoxicity in breast cancer cells.  
Clin Cancer Res 2004, 10:7031-7042.

60. Dai Q, Ling YH, Lia M, Zou YY, Kroog G, Iwata KK, Perez-Soler R: Enhanced 
sensitivity to the HER1/epidermal growth factor receptor tyrosine 
kinase inhibitor erlotinib hydrochloride in chemotherapy-resistant 
tumor cell lines.  Clin Cancer Res 2005, 11:1572-1578.

61. Fountzilas G, Pectasides D, Kalogera-Fountzila A, Skarlos D, Kalofonos HP, 
Papadimitriou C, Bafaloukos D, Lambropoulos S, Papadopoulos S, Kourea 
H, Markopoulos C, Linardou H, Mavroudis D, Briasoulis E, Pavlidis N, Razis E, 
Kosmidis P, Gogas H: Paclitaxel and carboplatin as first-line 
chemotherapy combined with gefitinib (IRESSA) in patients with 
advanced breast cancer: a phase I/II study conducted by the Hellenic 
Cooperative Oncology Group.  Breast Cancer Res Treat 2005, 92:1-9.

62. Schafer-Hales K, Iaconelli J, Snyder JP, Prussia A, Nettles JH, El-Naggar A, 
Khuri FR, Giannakakou P, Marcus AI: Farnesyl transferase inhibitors 
impair chromosomal maintenance in cell lines and human tumors by 
compromising CENP-E and CENP-F function.  Mol Cancer Ther 2007, 
6:1317-1328.

63. Shoemaker AR, Oleksijew A, Bauch J, Belli BA, Borre T, Bruncko M, 
Deckwirth T, Frost DJ, Jarvis K, Joseph MK, Marsh K, McClellan W, Nellans 
H, Ng S, Nimmer P, O'Connor JM, Oltersdorf T, Qing W, Shen W, 
Stavropoulos J, Tahir SK, Wang B, Warner R, Zhang H, Fesik SW, Rosenberg 
SH, Elmore SW: A small-molecule inhibitor of Bcl-XL potentiates the 
activity of cytotoxic drugs in vitro and in vivo.  Cancer Res 2006, 
66:8731-8739.

64. Kutuk O, Letai A: Alteration of the mitochondrial apoptotic pathway is 
key to acquired paclitaxel resistance and can be reversed by ABT-737.  
Cancer Res 2008, 68:7985-7994.

65. Xu R, Sato N, Yanai K, Akiyoshi T, Nagai S, Wada J, Koga K, Mibu R, 
Nakamura M, Katano M: Enhancement of paclitaxel-induced apoptosis 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18314908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18852474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19812674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20033038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19010930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17932254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19056674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19435916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20181289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20084286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16784538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17396127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6382953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16942645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19620495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18955454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18829547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19127256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17431110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16951189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18829556


Bauer et al. Breast Cancer Research 2010, 12:R41
http://breast-cancer-research.com/content/12/3/R41

Page 16 of 16
by inhibition of mitogen-activated protein kinase pathway in colon 
cancer cells.  Anticancer Res 2009, 29:261-270.

66. MacKeigan JP, Collins TS, Ting JP: MEK inhibition enhances paclitaxel-
induced tumor apoptosis.  J Biol Chem 2000, 275:38953-38956.

67. Mukohara T, Shimada H, Ogasawara N, Wanikawa R, Shimomura M, 
Nakatsura T, Ishii G, Park JO, Janne PA, Saijo N, Minami H: Sensitivity of 
breast cancer cell lines to the novel insulin-like growth factor-1 
receptor (IGF-1R) inhibitor NVP-AEW541 is dependent on the level of 
IRS-1 expression.  Cancer Lett 2009, 282:14-24.

68. Ready NE, Lipton A, Zhu Y, Statkevich P, Frank E, Curtis D, Bukowski RM: 
Phase I study of the farnesyltransferase inhibitor lonafarnib with 
weekly paclitaxel in patients with solid tumors.  Clin Cancer Res 2007, 
13:576-583.

69. Khuri FR, Glisson BS, Kim ES, Statkevich P, Thall PF, Meyers ML, Herbst RS, 
Munden RF, Tendler C, Zhu Y, Bangert S, Thompson E, Lu C, Wang XM, 
Shin DM, Kies MS, Papadimitrakopoulou V, Fossella FV, Kirschmeier P, 
Bishop WR, Hong WK: Phase I study of the farnesyltransferase inhibitor 
lonafarnib with paclitaxel in solid tumors.  Clin Cancer Res 2004, 
10:2968-2976.

70. Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB: Inhibition of 
phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro 
and in vivo ovarian cancer models.  Cancer Res 2002, 62:1087-1092.

71. Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA: The 
type 2C phosphatase Wip1: an oncogenic regulator of tumor 
suppressor and DNA damage response pathways.  Cancer Metastasis 
Rev 2008, 27:123-135.

72. Rauta J, Alarmo EL, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A: The 
serine-threonine protein phosphatase PPM1 D is frequently activated 
through amplification in aggressive primary breast tumours.  Breast 
Cancer Res Treat 2006, 95:257-263.

73. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, 
Ambrosino C, Sauter G, Nebreda AR, Anderson CW, Kallioniemi A, Fornace 
AJ Jr, Appella E: Amplification of PPM1 D in human tumors abrogates 
p53 tumor-suppressor activity.  Nat Genet 2002, 31:210-215.

74. Belova GI, Demidov ON, Fornace AJ Jr, Bulavin DV: Chemical inhibition of 
Wip1 phosphatase contributes to suppression of tumorigenesis.  
Cancer Biol Ther 2005, 4:1154-1158.

75. Rayter S, Elliott R, Travers J, Rowlands MG, Richardson TB, Boxall K, Jones K, 
Linardopoulos S, Workman P, Aherne W, Lord CJ, Ashworth A: A chemical 
inhibitor of PPM1 D that selectively kills cells overexpressing PPM1D.  
Oncogene 2008, 27:1036-1044.

76. Zannetti A, Del Vecchio S, Carriero MV, Fonti R, Franco P, Botti G, D'Aiuto G, 
Stoppelli MP, Salvatore M: Coordinate up-regulation of Sp1 DNA-
binding activity and urokinase receptor expression in breast 
carcinoma.  Cancer Res 2000, 60:1546-1551.

77. Black AR, Black JD, Azizkhan-Clifford J: Sp1 and kruppel-like factor family 
of transcription factors in cell growth regulation and cancer.  J Cell 
Physiol 2001, 188:143-160.

78. Miller DM, Polansky DA, Thomas SD, Ray R, Campbell VW, Sanchez J, Koller 
CA: Mithramycin selectively inhibits transcription of G-C containing 
DNA.  Am J Med Sci 1987, 294:388-394.

79. Tan AR, Alexe G, Reiss M: Transforming growth factor-beta signaling: 
emerging stem cell target in metastatic breast cancer?  Breast Cancer 
Res Treat 2009, 115:453-495.

80. Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, 
Zent R, Arteaga CL: Activated type I TGFbeta receptor kinase enhances 
the survival of mammary epithelial cells and accelerates tumor 
progression.  Oncogene 2006, 25:3408-3423.

81. Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese 
JL, Chiao PJ: LY2109761, a novel transforming growth factor beta 
receptor type I and type II dual inhibitor, as a therapeutic approach to 
suppressing pancreatic cancer metastasis.  Mol Cancer Ther 2008, 
7:829-840.

82. Fransvea E, Angelotti U, Antonaci S, Giannelli G: Blocking transforming 
growth factor-beta up-regulates E-cadherin and reduces migration 
and invasion of hepatocellular carcinoma cells.  Hepatology 2008, 
47:1557-1566.

83. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, 
Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi 
GN, Pusztai L: Response to neoadjuvant therapy and long-term survival 
in patients with triple-negative breast cancer.  J Clin Oncol 2008, 
26:1275-1281.

84. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley 
LA, Rawlinson E, Sun P, Narod SA: Triple-negative breast cancer: clinical 
features and patterns of recurrence.  Clin Cancer Res 2007, 13:4429-4434.

85. Anders CK, Carey LA: Biology, metastatic patterns, and treatment of 
patients with triple-negative breast cancer.  Clin Breast Cancer 2009, 
9(Suppl 2):S73-81.

86. Parssinen J, Alarmo EL, Karhu R, Kallioniemi A: PPM1 D silencing by RNA 
interference inhibits proliferation and induces apoptosis in breast 
cancer cell lines with wild-type p53.  Cancer Genet Cytogenet 2008, 
182:33-39.

87. Parisi F, Wirapati P, Naef F: Identifying synergistic regulation involving c-
Myc and sp1 in human tissues.  Nucleic Acids Res 2007, 35:1098-1107.

88. Wang LG, Ferrari AC: Mithramycin targets Sp1 and the androgen 
receptor transcription level: potential therapeutic role in advanced 
prostate cancer.  Translational Oncogenomics 2007, 2006:19-31.

89. Chandriani S, Frengen E, Cowling VH, Pendergrass SA, Perou CM, Whitfield 
ML, Cole MD: A core MYC gene expression signature is prominent in 
basal-like breast cancer but only partially overlaps the core serum 
response.  PLoS One 2009, 4:e6693.

90. Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, 
Musgrove EA, Ormandy CJ: Meta-analysis and gene set enrichment 
relative to er status reveal elevated activity of MYC and E2F in the 
"basal" breast cancer subgroup.  PLoS One 2009, 4:e4710.

91. Maor S, Yosepovich A, Papa MZ, Yarden RI, Mayer D, Friedman E, Werner H: 
Elevated insulin-like growth factor-I receptor (IGF-IR) levels in primary 
breast tumors associated with BRCA1 mutations.  Cancer Lett 2007, 
257:236-243.

92. Wang L, Guan X, Zhang J, Jia Z, Wei D, Li Q, Yao J, Xie K: Targeted 
inhibition of Sp1-mediated transcription for antiangiogenic therapy of 
metastatic human gastric cancer in orthotopic nude mouse models.  
Int J Oncol 2008, 33:161-167.

93. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL: Transforming growth 
factor beta enhances epithelial cell survival via Akt-dependent 
regulation of FKHRL1.  Mol Biol Cell 2001, 12:3328-3339.

94. Ohmori T, Yang JL, Price JO, Arteaga CL: Blockade of tumor cell 
transforming growth factor-betas enhances cell cycle progression and 
sensitizes human breast carcinoma cells to cytotoxic chemotherapy.  
Exp Cell Res 1998, 245:350-359.

95. Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, 
Arteaga CL: Inhibition of TGF-beta with neutralizing antibodies 
prevents radiation-induced acceleration of metastatic cancer 
progression.  J Clin Invest 2007, 117:1305-1313.

96. Teicher BA, Holden SA, Ara G, Chen G: Transforming growth factor-beta 
in in vivo resistance.  Cancer Chemother Pharmacol 1996, 37:601-609.

97. Ahmed AA, Mills AD, Ibrahim AE, Temple J, Blenkiron C, Vias M, Massie CE, 
Iyer NG, McGeoch A, Crawford R, Nicke B, Downward J, Swanton C, Bell 
SD, Earl HM, Laskey RA, Caldas C, Brenton JD: The extracellular matrix 
protein TGFBI induces microtubule stabilization and sensitizes ovarian 
cancers to paclitaxel.  Cancer Cell 2007, 12:514-527.

98. Dong C, Li Z, Alvarez R Jr, Feng XH, Goldschmidt-Clermont PJ: 
Microtubule binding to Smads may regulate TGF beta activity.  Mol Cell 
2000, 5:27-34.

99. Yang EY, Moses HL: Transforming growth factor beta 1-induced 
changes in cell migration, proliferation, and angiogenesis in the 
chicken chorioallantoic membrane.  J Cell Biol 1990, 111:731-741.

doi: 10.1186/bcr2595
Cite this article as: Bauer et al., RNA interference (RNAi) screening approach 
identifies agents that enhance paclitaxel activity in breast cancer cells Breast 
Cancer Research 2010, 12:R41

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19331159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19345478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18265945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16254685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12021785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16258255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17700519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10749121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11424081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2962490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18841463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16186809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18413796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18318443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18250347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17671126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19596646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18328948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17264126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19690609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19270750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17766039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18575762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9851876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17415413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8612316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18068629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10678166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1696268

	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Reagents and resources
	Cell culture
	shRNA and siRNA screens
	Statistical analysis
	Cell growth and viability assays
	Mammosphere cultures
	Drug synergy analysis

	Results
	RNAi screening for genes that sensitize cells to paclitaxel
	Candidate pharmacological inhibitors that enhance paclitaxel sensitivity
	Pharmacological agents enhance paclitaxel cell growth inhibition of breast cancer cells
	Novel drug combinations with paclitaxel inhibit 3D growth of breast cancer cell lines
	CCT007093 and mithramycin synergistically enhance paclitaxel activity in paclitaxel-sensitive and -resistance TNBC cell lines

	Discussion
	Conclusions
	Additional material
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

