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Advances in gene transfer technology have greatly expanded the opportunities for
developing immunotherapy strategies for breast carcinoma. Genetic immunotherapy
approaches include the transfer of genes encoding cytokines and costimulatory molecules
to modulate immune function, as well as genetic immunization strategies which rely on the
delivery of cloned tumor antigens. Improved gene transfer vectors, coupled with a better
understanding of the processes that are necessary to elicit an immune response and an
expanding number of target breast tumor antigens, have led to renewed enthusiasm that
effective immunotherapy may be achieved. It is likely that immunotherapeutic interventions
will find their greatest clinical application as adjuvants to traditional first-line therapies,
targeting micrometastatic disease and thereby reducing the risk of cancer recurrence.
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Introduction

A central issue in the management of women with breast
cancer is the prevention of metastatic disease. Although
primary surgical treatment is generally effective at control-
ling local disease, many patients have micrometastases at
the time of diagnosis. A substantial proportion of women
diagnosed with breast cancer will have a subsequent
recurrence of disease, and it is in these women in whom
significant morbidity and mortality occurs. Adjuvant thera-
pies with hormones or chemotherapy have resulted in a
modest decrease in the relapse rate, but novel approaches
are needed. A primary difficulty lies in defining a treatment
that will effectively destroy disseminated tumor cells
without significant toxicity to the patient. Immunotherapy

attempts to achieve this goal by recruiting the host's
immune system to identify and destroy aberrant tumor
cells. Studies of the interaction of tumor cells with cells of
the immune system has led to the development of novel,
more rational strategies for imnmunotherapy.

Cancer immunity and evasion of immune
response

It has long been apparent that tumor cells exhibit some
degree of immunogenicity, and attempts to enhance the
immune response to tumor cells date back more than 90
years [1,2]. Cancer immunotherapy strategies are based
on eliciting or augmenting a specific host immune
response to tumor-associated antigens (TAAs) that are

APC = antigen presenting cell; CEA = carcinoembryonic antigen; CTL = cytotoxic T lymphocyte; DC = dendritic cell; GM-CSF =
granulocyte—macrophage colony-stimulating factor; HLA = human leukocyte antigen; IL = interleukin; KLH = keyhole limpet haemocyanin; MHC =
major histocompatibility complex; TAA = tumor-associated antigen; TAP = transporter associated with antigen processing.
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present on tumor cells. Such approaches are particularly
aimed at enhancing the function of the cellular immune
response, as it is believed that killing of tumor cells is pri-
marily mediated through the action of T cells.

There is considerable evidence that the immune system can
recognize tumor cells by virtue of TAAs, and a limited
immune response to many of these antigens is detectable in
patients. Breast cancer patients exhibit both circulating anti-
bodies and cytotoxic T lymphocytes (CTLs) that are specific
for breast tumor antigens, including HER-2/neu (erbB-2)
[3,4], MAGE-1 [5], and MUC-1 [6]. In addition, both CD4+
and CD8* T cells have been identified as components of
breast tumor infiltrating lymphocytes [7]. Despite these spe-
cific immune responses, tumor cells manage to evade
detection and/or destruction. Recent advances in tumor
immunology [8°] have provided a more complete under-
standing of the interaction of tumors with the immune
system, and have delineated the diverse mechanisms by
which tumor cells circumvent the immune response.

Tumor cells themselves may exhibit altered properties as a
means to avoid T-cell recognition. These can include
downregulation of expression of specific antigens [9,10],
or major histocompatibility complex (MHC) molecules
[11,12]. Defects in the antigen-processing machinery,
specifically the peptide transporter associated with
antigen processing (TAP) molecules, may lead to an
overall decrease in immunogenic peptides on the tumor
cell surface [13]. In breast cancer, downregulation of TAP
expression with concurrent loss of human leukocyte
antigen (HLA) class | expression is common in high-grade
lesions [14°]. As an alternative mechanism, tumors may
influence T-cell responsiveness by secreting immuno-
suppressive molecules such as interleukin (IL)-10 and
transforming growth factor-B [15,16], or by directly killing
Fas-positive infiltrating T cells through expression of the
Fas ligand [17,18]. The interaction of Fas with Fas ligand
induces apoptosis in the infiltrating lymphocytes. Finally, a
common reason that T cells do not respond to tumors may
be that TAAs are presented by antigen-presenting cells in
such a way that anergy and tolerance is induced, rather
than T-cell activation [19,20].

The importance of appropriate immunostimulatory mole-
cules during antigen presentation has recently been
appreciated. The long-standing immune surveillance
theory holds that immune responsiveness is based on the
recognition of self versus nonself [21], and that tolerance
to self is established in the neonatal period. That theory
has been challenged because it has become more appar-
ent that the environment in which an antigen is presented
is critical in determining the type and extent of immune
response induced [22]. The danger theory [23] suggests
that it is the release of alarm signals, induced by cells
experiencing stress, that promotes a potent immune
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The microenvironment is critical to the stimulation of an effective T-cell-
mediated antitumor immune response. Presentation of the antigen (@)
to T cells by antigen-presenting cells (APCs) must include the
engagement of costimulatory molecules such as B7 (V) on the APC
with CD28 (Y) on the T cell. Detection of antigen in the absence of
this signal can result in tolerance. Release of cytokines including
interleukin (IL)-12, granulocyte—macrophage colony-stimulating factor
(GM-CSF) (by APCs), IL-2 and interferon (IFN)y (by T cells) stimulate a
strong cellular immune response, whereas local production of IL-10 or
transforming growth factor (TGF)- blunts T cell responsiveness.
Finally, for cytotoxic T lymphocytes (CTLs) to be able to recognize their
targets, the tumor cells have functional major histocompatibility
complex class | tumor antigen presentation ().

response. Therefore, the presence of costimulatory mole-
cules that activate T cells during antigen presentation is
critical to the development of a robust immune response.
Effective antigen-presenting cells express the costimula-
tory molecule B7 in conjunction with the antigen on the
cell surface. This molecule also engages the T cell, provid-
ing the necessary signal to promote activation. The effec-
tiveness of this response is modulated by the presence of
cytokines, with stimulatory cytokines such as IL-12
enhancing T-cell response (Fig. 1). Without appropriate
stimulatory signals, T cells encountering an antigen move
to anergy or undergo apoptosis.

This new understanding of the potential defects in the elic-
itation of tumor-specific immune response has led to the
development of strategies that address these deficiencies.
Furthermore, these observations suggest that it should be
possible, with proper manipulation of the immune cells
and the local cytokine milieu, to induce an immune
response to both self and nonself molecules. As the
processes required for autologous tumor rejection become



better characterized, new strategies are being developed
to potentiate the immunogenicity of tumor cells.

Whole cell tumor vaccines

A variety of strategies that rely on transfer of cloned genes
have been developed to elicit or enhance host immune
response to tumor cells. Transfer of genes that encode
immunostimulatory molecules (cytokines and/or costimula-
tory molecules) directly into tumor cells is one means to
enhance their immunogenicity. Several cytokines have
been evaluated by this approach. Initial studies focused on
IL-2. Although it was shown to be effective in boosting
antitumor immunity, IL-2 can be associated with unaccept-
able toxicity when delivered systemically [24]. To over-
come the toxicity of systemic delivery, direct ex vivo
transduction of tumor cells with cytokine-encoding com-
plementary DNAs has been explored in mouse models of
mammary carcinoma [25,26]. After irradiation, transduced
cells may be used as a vaccine, providing a scenario in
which tumor antigens are available in an environment of
locally high concentrations of the immunostimulatory mole-
cules. The presence of this cytokine allows direct activa-
tion of CD8* cytolytic T cells (CTLs), bypassing the need
for CD4+ help [27]. In addition to IL-2, a variety of other
cytokines have been explored in this manner. Interferon-y
has pleiotropic effects, including upregulation of MHC
molecules and the recruitment of cells of the immune
system [28,29]. Granulocyte—-macrophage colony-stimu-
lating factor (GM-CSF) [30] and IL-12 [31] have also
shown efficacy in animal model studies. GM-CSF is
notable because it promotes dendritic cell (DC) differenti-
ation, and may thus mediate the most effective presenta-
tion of tumor antigens (see below). Some encouraging
initial results have been reported using this cytokine in
prostate cancer patients [32]. IL-12 is also of interest
because it particularly enhances the cellular arm of the
immune system.

To further increase the effectiveness of whole cell tumor
vaccines, several groups have combined immunostimula-
tory genes for transduction of tumor cells. Transduction of
tumor cells with different cytokines [33] or cytokines with
the B7 costimulatory gene [34,35] has proved to be more
effective than using a single cytokine alone. Genes that
encode cytokines delivered in combination with a
chemokine [36°] also enhance immune responses, pre-
sumably as a result of more efficient recruitment of rele-
vant lymphocytes to the site. Augmentation of cytokine
effectiveness may also be achieved by interfering with
inhibitory signals delivered to T cells. This was accom-
plished by blocking the interaction of CTL-antigen-4 on T
cells with B7 on the antigen-presenting cell. Blocking this
inhibitory signal while delivering GM-CSF transduced
mammary carcinoma cells led to a more robust antitumor
response [37°]. The manipulation of the antigen-present-
ing environment has thus proved to be an effective means
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of generating a potent antitumor immune response in
otherwise weakly immunogenic models. The collective
success of these animal model studies has provided the
basis for the development of gene therapy clinical trials
using tumor cells transduced with immunostimulatory mol-
ecules [38]. These trials will begin to investigate whether
these strategies can be successfully translated into the
clinical setting.

Target antigens for breast cancer
immunotherapy

Although the use of cell-based vaccines as described
above is advantageous in that it does not depend on
defining the relevant tumor rejection antigens, the use of
cloned tumor antigens in a vaccine strategy offers some
advantages compared with whole cell preparations. Dose
of antigen, an important parameter in the induction of an
immune response, is more readily controlled with delivery
of cloned tumor antigens. Furthermore, there are fewer
safety concerns associated with a defined tumor vaccine,
because the likelihood of eliciting an immune response to
irrelevant proteins is decreased. Genetic modification of
the encoded tumor antigen to optimize presentation is
also readily accomplished when using cloned tumor anti-
gens [39]. Finally, the use of a defined tumor antigen
allows for direct monitoring of both T-cell and humoral
immune responses to the antigen of interest. This end
point allows valuable information to be gathered from early
clinical trials, even if the therapy itself does not result in
noticeable effects on tumor burden.

Potential targets currently under investigation for vaccina-
tion in breast carcinoma include the HER-2/neu protein
[3,4,40,41], carcinoembryonic antigen (CEA) [41],
MAGE-1 [5], and MUC-1 [6,42,43]. These antigens have
been pursued on the basis of the high levels of expression
in breast tumor tissue compared with normal tissue, as
well as an understanding of the epitopes recognized by
CTLs. Mutant cellular proteins such as mutant p53 may
also provide useful targets for immunotherapy. In addition
to these relatively well characterized antigen targets, a
number of potential new targets are being studied that
may have relevance to breast cancer immunotherapy.

One new approach to tumor antigen identification focuses
on identifying genes that encode MHC class lI-restricted
antigens [44]. Initially used to identify a melanoma antigen,
this general approach may be applied for the definition of
breast TAAs that are recognized by CD4+ cells, expanding
the targets for immunotherapy. Another approach seeks to
identify TAAs based on a serologic assay rather than T-cell
responsiveness. This approach, termed ‘serologic identifi-
cation of antigens by recombinant expression cloning’
(SEREX), is based on the observation that cancer patients
exhibit circulating antibodies directed towards tumor anti-
gens, and that these antibodies may provide a useful
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reagent for the identification new tumor antigens [45,46].
Serologic identification of antigens by recombinant expres-
sion cloning analysis has greatly expanded the list of poten-
tial targets for breast cancer immunotherapy [47°], but
whether these antigens will be able to elicit a potent T-cell
response remains to be determined. In this regard, simulta-
neous stimulation of both cellular and humoral immune
responses has been demonstrated and is not unexpected,
because both rely on helper T-cell function [48°]. The
expanding list of antigen targets will be of considerable
importance in the development of effective immunothera-
pies, because each of these antigens is expressed only on
a portion of breast tumors. Simultaneous immunization
against multiple antigens is likely to be most effective,
because it will protect against clonal outgrowth of tumor
cells downregulating a single target antigen.

Vectors for gene transfer

A variety of vectors have been employed for transfer of
genes that encode tumor antigens or immunostimulatory
molecules. These vectors may deliver genes to tumor cells
expanded ex vivo for whole cell vaccination, to tumor cells
in vivo via direct intratumoral injection, or to muscle or skin
for immunization against cloned tumor antigens.

Retroviral-mediated gene transfer was the method of
choice in most initial studies [49,50]. Although effective in
animal models, these viruses are difficult to produce in
high titers and are associated with a relatively low level of
transduction.

Recombinant vaccinia virus is a potent stimulator of cel-
lular and humoral immune response [51,52], suggesting
potential of this vector in cancer immunotherapy applica-
tions. Immunization of mice with a recombinant vaccinia
virus that encoded CEA resulted in a strong cellular and
humoral immune response, and the animals exhibited a
delayed type hypersensitivity in response to challenge
with CEA-expressing tumor cells [53]. Another pox virus
vector, the recombinant canarypox virus termed ALVAC,
is unable to produce a productive infection in mammalian
cells, but can direct high levels of transgene expression,
making it a potentially useful vector for immunotherapy
[54]. Based on preclinical studies, both recombinant
vaccinia and ALVAC vectors are currently under investi-
gation in phase 1 clinical trials for cancer immunotherapy
[65,56].

Adenovirus is another viral vector commonly used for gene
therapy applications that may be exploited for immunother-
apy. This vector is readily prepared in high titers and medi-
ates high levels of transient transgene expression in a
variety of cell types. Unfortunately, pre-existing immunity to
naturally occurring adenovirus is common, and may com-
promise the effectiveness of this vector when used for in
vivo delivery [57].

To circumvent immune responses to viral vectors and to
simplify vaccine production, nucleic acids that encode rel-
evant tumor antigens or immunostimulatory molecules can
be delivered by nonviral means. Liposomes may be used
for this purpose [58], but genes may also be delivered
‘naked’. The feasibility of such an approach was first rec-
ognized when DNA injected intramuscularly was found to
be taken up by a small proportion of host cells, in which it
may be expressed locally for extended periods of time
[59]. In animal models, DNA immunization has been
shown to elicit effective antitumor immune responses to
CEA and neu [60-62]. Interestingly, the properties of
plasmid DNA produced in a bacterial system, namely the
lack of CpG dinucleotide methylation, acts as an
immunostimulant in mammals, enhancing the immune
response to the encoded antigen [63]. In addition to
plasmid DNA, self-replicating RNA offers a potentially
powerful method of antigen delivery [64°,65]. Again, the
nucleic acid itself is immunostimulatory. In this case, the
double-stranded RNA intermediate generated during the
replication process may act as a ‘danger’ signal, amplify-
ing the immune response. Apoptosis induced by this
vector and subsequent uptake of apoptotic cells by DCs
probably also contribute to the potent response.

In addition to direct intramuscular injection, biolistic delivery
of naked DNA or RNA (using the ‘gene gun’) to the skin
offers an alternative method of nonviral gene transfer for
immunization [66]. The advantages of this method include
the small amounts of nucleic acid needed for delivery, as well
as ease of delivery. The disadvantage of this approach has
been that this route of delivery favors the development of a T-
helper 2, or predominantly antibody response, whereas a T-
helper 1, or cellular immune response is preferred for cancer
immunotherapy. This unfavorable characteristic may be sur-
mountable by codelivery of cytokines that shift the immune
response to a T-helper 1-type response [67°].

In summary, a number of vectors with diverse characteris-
tics are available for gene delivery in the context of genetic
immunotherapy. The choice of appropriate vector is depen-
dent on the particular application; however, the vector
development field is rapidly evolving. It is likely that refine-
ments in vectors that improve targeting and transgene
expression will further the field of genetic immunotherapy.

Dendritic cell-based vaccines

DCs have been recognized as important mediators of
immune response. They are specialized antigen-presenting
cells that are highly potent in their presentation of antigen
to naive or quiescent CD4* and CD8* T cells [68]. They
capture, process, and present antigens in combination with
MHC class | and Il molecules, activating specific CTLs.
This ability to stimulate CTLs directly and effectively makes
DCs ideal targets to exploit for manipulation of the immune
system for cancer immunotherapy purposes.



Cell culture techniques have evolved that now permit the in
vitro generation of large numbers of DCs from bone marrow or
peripheral blood mononuclear cells, making DC vaccination
technically feasible. Recently published pilot clinical trials of
antigenic protein or peptide-pulsed DCs in non-Hodgkin's lym-
phoma and melanoma have demonstrated the general safety
of this approach, as well as some evidence of antigen-specific
immune responses and occasional clinical tumor regressions
[69,70]. A controlled study [71] in which healthy individuals
were injected subcutaneously with autologous monocyte-
derived DCs pulsed with keyhole limpet haemocyanin (KLH),
tetanus toxoid, or an HLA-A2-restricted influenza matrix
peptide demonstrated priming of CD4* T cells to KLH, boost-
ing of tetanus toxoid-specific T-cell immunity, and increases in
influenza peptide-specific CD8* T, respectively, whereas injec-
tion of antigens alone failed to immunize control individuals.
Although these findings are preliminary, they suggest the
potential for DC-mediated vaccination strategies.

In addition to peptide or protein pulsing into DCs, several
studies have focused on delivering genes that encode
tumor antigens to the DCs. One advantage offered by this
approach is enhanced efficiency of MHC peptide loading
compared with pulsing of DCs with intact protein. Further-
more, compared with peptide pulsing, transfer of the
antigen-encoding gene and intracellular synthesis of the
complete protein allows the host to select antigenic epi-
topes from the entire protein, rather than being restricted
to a single epitope. Several promising gene transfer
approaches exist that have been used to transduce DCs
ex vivo and promote therapeutic tumor immunity in model
systems. These include retroviral, poxvirus, and adenoviral
vectors, a targeted adenoviral vector, as well as naked
RNA [72-76,77°,78].

Conclusion

The prospects for successful immunotherapy of cancer
have improved based on insights from a wide range of
fields related to tumor immunology. Appreciation of the
basis of poor immunogenicity of tumor cells, cloning and
functional analysis of cytokines, and recognition of the crit-
ical cells and costimulatory molecules that are involved in
immune recognition have facilitated the development of
rational strategies to stimulate antitumor immune
responses. In the coming years, the development of
advanced generation gene transfer vectors should
enhance our ability to target appropriate cells specifically
and to achieve optimal transgene expression, and defini-
tion of breast tumor antigens will expand the targets for
immunotherapy. These new developments will be brought
to bear on the design of clinical trials of novel immunother-
apies. Evaluation of these new genetic immunotherapy
strategies in clinical trials that employ careful immune
response analysis studies should guide further develop-
ment in the field, allowing it to reach its full potential and
offering new hope to those with breast cancer.
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