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Abstract

Introduction Mounting molecular evidence suggests that
invasive lobular carcinoma (ILC) is developing from in situ
lesions, atypical lobular hyperplasia (ALH), and lobular
carcinoma in situ (LCIS). However, little is known about the
mechanisms promoting the progression of lobular breast cancer
(LBC) to invasive disease. Here, we investigated whether c-Src
kinase, an established inducer of invasive states, contributes to
the progression from ALH/LCIS to ILC.

Methods Immunochemistry for c-Src and other cancer-related
molecules was performed on archived tissue specimens from
57 LBC patients. Relative c-Src activity was estimated by
comparing fluorescence intensity of ILC with that of adjacent
ALH/LCIS and nonneoplastic epithelia after staining with an
antibody against active ¢-Src. Expression of active c-Src was
correlated with markers of invasion and malignancy and with
relapse among LBC patients.

Results Levels of activated c-Src were increased in ILC relative
to ALH/LCIS (1.63-fold £ 0.24 SD) and nonneoplastic epithelia
(1.47 = 0.18 SD). Increased c-Src levels correlated with the

activation of c-Src downstream targets (Fak, Stat-3) and the
expression of mesenchymal markers. ILC cells with activated c-
Src co-expressed metastatic markers (Opn, Cxcr4) and
included cells positive for the cancer stem cell marker Aldh1. A
tendency for high c-Src levels (P=0.072) was observed among
the seven LBC patients with relapsed disease.

Conclusions Our data indicate elevated c-Src activity in ILC
relative to noninvasive neoplastic tissue. The associated
molecular changes suggest that c-Src promotes LBC
invasiveness by inducing an epithelial-mesenchymal transition.
Therefore, c-Src antagonists might counteract the acquisition of
invasiveness during LBC progression. Inhibition of c-Src may
also affect ILC cells thought to have a high metastatic potential
and to be capable of initiating/maintaining tumor growth.
Together with the possible association between high c-Src
levels and disease recurrence, our findings encourage the
evaluation of c-Src antagonists for the treatment of LBC.

Introduction
Antagonists of the kinase c-Src are gaining increased atten-

tion as chemotherapeutic agents in breast cancer. Both in
vitro studies and transgenic models suggest a central role or
even a requirement for c-Src during the development and pro-
gression of breast disease (reviewed in [1-3]). Importantly, c-
Src activity is elevated in human breast cancer tissue relative
to adjacent epithelium, and increased activity has been asso-
ciated with a worse outcome [4-6]. The major potential of c-

Src inhibitors is that they also may be active against triple-neg-
ative and otherwise resistant breast cancer, for which existing
therapy is inefficient [2,3]. However, these data are based
largely on the major breast cancer histotype, ductal carcinoma.
Whether c-Src also has a role in lobular breast carcinoma
(LBC, which includes some of the triple-negative tumors)
remains to be shown. This is a considerable gap in knowledge,
because the clinical management is more challenging for LBC
compared with ductal disease, and the increase in LBC inci-

ALH: atypical lobular hyperplasia; EMT: epithelial-mesenchymal transition; FFPE: formalin-fixed paraffin-embedded; ILC: invasive lobular carcinoma;

LBC: lobular breast cancer; LCIS: lobular carcinoma in situ.
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dence is disproportionately high relative to other breast cancer
histotypes [7]. Therefore, new chemotherapeutic strategies
are particularly relevant for LBC.

How exactly c-Src promotes breast cancer is not clear but may
involve an array of cellular processes including proliferation,
motility, invasion, survival, and angiogenesis [8]. Increasing
evidence from breast and other cancers, however, suggests
that a key feature of c-Src is to drive adhesive and motility
changes crucial for invasion and metastasis [3,9]. We have
studied very early stages of diffuse gastric cancer and
observed that c-Src activity is induced when cancer cells
undergo an epithelial-mesenchymal transition (EMT) to invade
beyond the gastric mucosa [10].

Similar to diffuse gastric cancer, LBC is characterized by a dis-
cohesive growth pattern due to downregulation of the cell-cell
adhesion molecule E-cadherin [11]. Indeed, germline mutation
of the E-cadherin gene (CDH1) predisposes to both diffuse
gastric cancer and LBC [12,13]. Given this common etiology,
the parallels between diffuse gastric cancer and LBC may
extend beyond E-cadherin and include the events associated
with progression to invasive disease.

Although no consensus has been established, molecular evi-
dence strongly suggests that invasive lobular carcinoma (ILC)
develops from lobular in situ lesions: atypical lobular hyperpla-
sia (ALH) and lobular carcinoma in situ (LCIS) [14]. Thus, lob-
ular in situ lesions appear not to be merely risk markers, but
rather true, albeit nonobligate precursors of ILC.

To this end, we reasoned whether the progression from LCIS
to ILC may require an increase in c-Src activity and a concom-
itant dedifferentiation of epithelial morphology. We thus
assessed c-Src expression in a series of archived LBC sam-
ples and correlated its activity with cellular and clinical param-
eters to determine the role of the kinase in the progression of
human LBC.

Materials and methods

Patients

Formalin-fixed paraffin embedded (FFPE) tissue was retro-
spectively obtained from 57 patients (age 42 to 97 years;
average, 65.5 years) who had undergone surgery for lobular
disease at the Dunedin Public Hospital (Dunedin, New Zea-
land). The diagnosis was confirmed by an experienced pathol-
ogist (H-S Y) on hematoxylin and eosin-stained sections.
Paraffin blocks were selected based on the simultaneous
presence of ILC and LCIS/ALH or ILC and nonneoplastic epi-
thelium, respectively. The patients' clinicopathologic charac-
teristics were retrieved from the Oncology Unit (Dunedin
Hospital), the Pathology Department (University of Otago),
and from local general practitioners (GPs). Patients received
5-fluorouracil as standard therapy. None of the patients was
given hormone therapy. Ethical approval for the study was
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given by the Lower South Regional Ethics Committee of New
Zealand. Under this approval (for the collection of archived tis-
sue), the Ethics Committee deemed the request for consent
as unnecessarily intrusive for cured patients and the relatives
of those deceased. Specific informed consent was thus not
required for this study, consistent with the prevailing ethical
consensus in New Zealand.

Immunochemistry

Immunohistochemistry and immunofluorescence were per-
formed on 4-um paraffin sections boiled in citrate buffer (pH
6). Antibodies against active c-Src (clone 28, dilution 1:600,
order nr. AH00551) and phospho-(P)-Fak (against pY861-
Fak, 1:50, 44-626G) were from Biosource (Camarillo, CA,
USA). Stat-3 (1:1,000, 9139) and P-Stat-3 (1:100, 9131)
were from Cell Signaling (Danvers, MA, USA). c-Src (1:1,000,
sc-8056), Fak (1:1,000, sc-932), and rabbit CK18 (1:100, sc-
101727) were from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). CD10 (1:100, NCL-CD10-270), Muc-1 (1:100,
NCL-MUC-1), CK5 (1:200, NCL-CK5), CK14 (1:20, NCL-
LLO02), mouse CK18 (1:40, NCL-CK18), estrogen receptor
(1:80, NCL-ER-6F), and progesterone receptor (1:200, NCL-
PCR-312) were from Novocastra (Benton, UK). Vimentin
(1:400, M0725) and N-cadherin (1:50, M3613) were from
Dako (Glostrup, Denmark). Additional antibodies were -
casein (1:400, ab6408, Abcam, Cambridge, UK), Cxcr-4
(1;50, 35-8800, Zymed Laboratories, San Francisco, CA,
USA), osteopontin (1:100, 499265, Calbiochem, San Diego,
CA, USA), and Aldh1 (1:150, EP1932Y, Epitomics, Burlin-
game, CA, USA). Primary detection was performed as
described [10]. Omission of primary or secondary antibodies
or both was performed for specificity control. Where available,
tissue with a known expression pattern was used as positive
control (for example, samples of invasive colorectal and diffuse
gastric cancer for c-Src). Additionally, the state-independent
expression pattern (antibody against total protein) was exam-
ined as a control for state-specific antibodies.

c-Src activity

Src activity was estimated by measuring the intensity of
immunofluorescence after staining with the clone 28 antibody.
Fluorescence images were selected that contained either ILC
and ALH/LCIS components, or ILC and nonneoplastic epithe-
lium, or all three components. For each component, an area of
homogeneous composition was defined, and average fluores-
cence intensity was measured by using ImagelJ software [15].
In the absence of homogeneous areas (for example, ILC), indi-
vidual cells were encircled in a number to equal the total area
of neighboring components (for example, LCIS or epithelium),
and the cells' average fluorescence intensity was measured.
The ratio between the intensity of the different components
within the same image was used as a measure for the relative
activity of c-Src. Alternatively, 250 to 1,000 invasive cancer
cells were counted, and the proportion of cells with strong c-
Src activity was determined.



Results

E-cadherin and differentiation status of investigated LBC
samples

Immunochemistry demonstrated downregulation of E-cad-
herin in all LBC samples available for this study (Figures 1 and
2). Staining with breast-lineage markers (cytokeratin 5 and
cytokeratin 14 for basal cells, CD10 for myoepithelial cells,
cytokeratin 18 and MUCH1 for luminal cells, B-casein for alveo-
lar cells) indicated that the vast majority (more than 90%) of
LBC cells differentiated along the luminal epithelial lineage
(Figure 1).

c-Src activity is increased in ILC compared with LCIS and
nonneoplastic mammary epithelium

To assess the activity of c-Src in ILC relative to in situ lesions
and nonneoplastic epithelium, immunochemistry with the
clone 28 antibody was performed on FFPE sections from 57
LBC patients. In all cases, expression of active c-Src was
membranous/cytoplasmic on immunofluorescence. In the
majority of samples, nonneoplastic epithelium and in situ
lesions displayed moderate expression of activated c-Src. In
contrast, c-Src activity appeared increased on visual inspec-
tion in invasive carcinoma cells relative to adjacent ALH/LCIS
or epithelium (Figure 2). To obtain an objective measure for the
relative c-Src activity, fluorescence intensity was determined
across ILC, LCIS, and epithelial components, and intensity
ratios were calculated for each sample separately. Averaged
across all samples, fluorescence intensity was 1.63 (£ 0.24
SD) times higher in ILC relative to LCIS, 1.47 (£ 0.18 SD)

Figure 1
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times higher in ILC relative to nonneoplastic epithelium, and
similar (0.98 £ 0.17 SD) in LCIS and nonneoplastic epithelium
(Figure 8). These results indicate that c-Src activity is specifi-
cally increased in invasive carcinoma cells compared with both
in situ lesions (range, 1.25 to 2.07 times) and nonneoplastic
epithelium (range, 1.16 to 1.98 times). Similar to the expres-
sion pattern of active c-Src, total c-Src was increased in ILC
relative to in situ lesions and nonmalignant epithelium (see
Additional data file 1), suggesting that the elevated c-Src
activity is due to increased expression of the kinase.

We further examined whether expression of active c-Src in
nonneoplastic epithelium from LBC patients is different from
that in normal epithelium from healthy individuals. We per-
formed double immunofluorescence with the clone 28 anti-
body and an antibody against cytokeratin 18 on epithelial
tissue from 10 randomly selected LBC patients and from six
breast-reduction surgery patients. For each patient, the ratio
between mean c-Src fluorescence intensity and mean cytoker-
atin 18 fluorescence intensity was calculated. The average flu-
orescence ratio (c-Src/CK18) was 1.027 (SD, 0.049; range,
0.967 to 1.099) for LBC patients, and 1.086 (SD, 0.114;
range, 0.916 to 1.234) for reduction-surgery patients. These
results suggest no significant difference exists in c-Src activity
between tumor-adjacent and healthy epithelium.

Differentiation of lobular breast cancer (LBC) cells. Upper panels: Nonneoplastic epithelium surrounded by invasive LBC cells. CK5 (blue) and
CK18 (green) were detected with sequential staining, as both primary antibodies are from mouse. The basal cells (CK5) therefore stained with both
secondary antibodies in this case. Lower panel: Invasive cancer cells and adjacent lobular carcinoma in situ (LCIS) stained for E-cadherin (red) and

CK18 (green).
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Figure 2
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Elevated c-Src activity in invasive lobular breast cancer (LBC) cells. (a) atypical lobular hyperplasia (ALH) and lobular carcinoma in situ (LCIS) sur-
rounded by invasive carcinoma cells. /n situ lesions are marked with asterisks. Arrows point to examples of invasive cells with strong c-Src activity.
(b) Nonneoplastic epithelium (membranous E-cadherin) surrounded by invasive carcinoma cells with active c-Src. (c) Nonneoplastic (E-cadherin)
and neoplastic in situ components (dotted line) surrounded by and interspersed by invasive cells. (d) Immunohistochemical examples of an invasive
lobular carcinoma (ILC) with moderately increased c-Src activity (left, LCIS marked with asterisk), an ILC with strong c-Src activity (middle), and a
LCIS with low c-Src activity (right). To assess the extent of immunohistochemical c-Src staining, H-scores were determined to be 155 for ILC and
583 for LCIS (left), 291 for ILC (middle), and 51 for LCIS (right). An antibody against total c-Src was used as control.
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Relative c-Src activity in lobular breast cancer (LBC) samples. Relative
fluorescence intensity in matched pairs of invasive lobular carcinoma
(ILC) and lobular carcinoma in situ (LCIS), of ILC and nonneoplastic
epithelium (N), and of LCIS and nonneoplastic epithelium. LCIS
includes atypical lobular hyperplasia (ALH). Bars represent the average
intensity ratio between indicated components from 57 LBC samples,
and error bars represent the corresponding SD. The dark side bars
indicate the data range.

Increased c-Src activity correlates with the activation of
Fak, Stat-3, and the expression of mesenchymal markers
in ILC cells

Because c-Src activity was increased in invasive relative to
noninvasive cells, the kinase may contribute to the invasive-
ness of lobular carcinoma cells. To investigate whether c-Src
activity in LBC may be associated with an epithelial-mesenchy-
mal transition (EMT), we examined the co-expression of c-Src
downstream targets implicated in the transition to an invasive,
mesenchymal-like state.

Both Stat-3 and Fak can be activated by c-Src by phosphor-
ylation and are thought to contribute to c-Src-mediated inva-
sion [16,17]. Immunofluorescence using antibodies against
the phosphorylated, active forms of Stat-3 and Fak demon-
strated that both proteins are active in ILC cells with elevated
c-Src activity (Figure 4a to 4c). Nuclear translocation of Stat-
3 was barely observed in the in situ lesions. In contrast, about
80% of c-Src-positive ILC cells had nuclear expression of acti-
vated Stat-3 (Figure 4a and 4b). However, nuclear Stat-3 also
was observed in a minority of ILC cells with low levels of active
c-Src (data not shown), suggesting that Stat-3 activation may
not be strictly dependent on c-Src. Fak activity was low in
ALH/LCIS cells (Figure 4b), and elevated in 20% to 40% of
ILC cells relative to noninvasive cells. Fak activity in ILC cells
strongly correlated with c-Src activity (Figure 4c), suggesting
that c-Src is a main activator of Fak in LBC. Further, c-Src-pos-
itive ILC cells but not LCIS cells expressed the mesenchymal
marker vimentin (Figure 4d). About 20% of ILC cells in addi-
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tion displayed upregulation of the mesenchymal N-cadherin
(Figure 4e).

The increased activation of c-Src and its downstream targets
Stat-3 and Fak, together with the expression of mesenchymal
markers in ILC cells relative to in situ neoplastic cells, associ-
ates the c-Src system with the induction of an EMT during pro-
gression from in situ to invasive disease. Because the majority
of ILC cells remain cytokeratin 18 positive, the observed EMT
appears incomplete.

ILC cells with activated c-Src include cells with a high
malignant potential

To assess whether increased c-Src activity in ILC cells may be
associated with a propensity to metastasize, we examined the
expression of proteins thought to mark breast cancer cells with
a high malignant potential.

Osteopontin (Opn) has been specifically associated with
breast cancer metastasis to the bone and appears to be
required for this process [18,19]. We observed low to moder-
ate expression of Opn in the in situ lesions and strong expres-
sion in invasive cancer cells (Figure 5a). Strong Opn
expression was present in more than 90% of ILC cells with
activated c-Src, consistent with the proposed role of c-Src in
the regulation of OPN expression [20] and in physiologic bone
metabolism [21].

The chemokine receptor Cxcr4 is another protein that has
been associated with an unfavorable outcome and the occur-
rence of lymph node metastasis in breast cancer [22]. We
were not able to perform double immunofluorescence for c-
Src and Cxcr4 to assess their coexpression, given the
reported upregulation of the receptor by c-Src [23]. However,
Cxcr4 was strongly expressed in the vast majority of c-Src-
positive ILC cells (Figure 5¢), suggesting that the increased c-
Src activity may be associated with the elevated Cxcr4 levels.

Together, more than 90% of ILC cells displayed increased
activation of c-Src and overexpression of both Opn and Cxcr4,
suggesting that c-Src activity is associated with an elevated
malignant potential of invasive LBC cells.

ILC cells with activated c-Srcinclude cells positive for the
breast cancer stem cell marker Aldh1

Breast cancer belongs to the solid tumors believed to be initi-
ated and maintained by cancer stem cells. Originally, these
tumor-driving cells were identified as a fraction of breast can-
cer cells with high and low expression of the cell-surface mark-
ers CD44 and CD24, respectively [24]. In our LBC samples,
however, CD44high/CD24low cells accounted for an average of
609% of all cancer cells and were positive for cytokeratin 18, a
marker for differentiated luminal cells (data not shown). We
thus examined the expression of Aldh1, another proposed
marker for breast cancer stem cells [25]. Indeed, Aldh1 and
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Figure 4

The correlation of c-Src activity with an EMT. (a) Nuclear pStat-3 (blue) in invasive lobular carcinoma (ILC) cells with activated c-Src (red). Note the
weak nuclear Stat-3 staining in lobular carcinoma in situ (LCIS; asterisk). An antibody against total Stat-3 was used as a control. (b) Left panel:
widespread Stat-3 activation in ILC cells. Middle panel: increased levels of activated Fak in ILC cells surrounding nonneoplastic epithelium and LCIS
(asterisks). Right panel: expression of pFak in LCIS (asterisk) and ILC (right). An antibody against total Fak was used as a control. (¢) Colocalization
of active c-Src (green) and active Fak (red) in ILC cells. (d) ILC cells with activated c-Src (green) are positive for the mesenchymal marker vimentin
(red). (e) Expression of the mesenchymal N-cadherin (green) in a subset of invasive cancer cells.
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Expression of metastatic markers in invasive lobular breast cancer (LBC) cells. (a) Co-expression of osteopontin (green) in invasive lobular carci-
noma (ILC) cells positive for vimentin (red). Asterisks mark in situ lesions. (b) LBC cells with activated c-Src (green) coexpress the bone metastatic
marker osteopontin (red). (¢) Cxcr4, a marker for lymph node metastasis, was weakly expressed in the in situ lesions (left) and strongly expressed in

the vast majority of invasive cancer cells (middle and right).

cytokeratin 18 were expressed in a mutually exclusive way in
both LCIS (Figure 6a) and ILC (Figure 6b), consistent with
Aldh1 marking undifferentiated breast cancer stem cells. The
Aldh1+ cells constituted between 0 and 5% of all neoplastic
cells and were found mostly at the invasive front in ILC sam-
ples. Notably, essentially all (>95%) Aldh1+ILC cells also had
increased c-Src activity (Figure 6¢ and 6d). These findings
suggest that invasive LBC cells with overactive ¢-Src include
the vast majority of the putative breast cancer stem cells.

Disease recurrence occurs in LBC patients with a high c-
Src kinase activity in their invasive components

To assess whether elevated c-Src activity is clinically relevant,
we examined an association between disease recurrence and
relative c-Src activity. Seven of the 57 LBC patients had
relapsed disease. Mean relative c-Src activity (ILC versus
LCIS) was 1.82 £ 0.15 SD in the patients with relapse and
1.62 £ 0.24 SD in the patients without relapse (Figure 7).
Although this difference was not statistically significant, a ten-
dency was seen for a higher c-Src activity in patients with
relapsed compared with nonrelapsed disease (P = 0.072;

two-tailed Mann-Whitney test). Furthermore, estrogen- and
progesterone-receptor status was determined with immuno-
histochemistry in the seven patients with relapses and in the
10 patients without relapse with the lowest c-Src activity. All
examined patients were positive for the hormone receptors
(see Additional data file 1), suggesting that the hormone-
receptor status was not related to the observed association
between c-Src activity and relapse.

The activity of c-Src kinase might therefore be associated with
an increased likelihood of recurrence in LBC.

Discussion

Among the various novel targeted approaches in cancer
chemotherapy, inhibition of c-Src kinase appears to hold
promise in counteracting invasive stages that ultimately lead to
the spread and metastasis of cancer cells. The potential of c-
Src to drive invasion-associated mesenchymal changes during
carcinoma progression has been well illustrated for colorectal
cancer [9]. We recently reported that c-Src may have a similar
role in diffuse gastric cancer, a carcinoma morphologically and
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Figure 6

Expression of the breast cancer stem cell marker Aldh1 in lobular breast cancer (LBC). (a) A lobular carcinoma in situ (LCIS) stained for cytokeratin
18 (green) and aldh1 (red). Note the mutually exclusive expression of the two proteins. (b) An invasive lobular carcinoma (ILC) stained for cytokeratin
18 (green) and aldh1 (red). Aldh1-positive cells were frequently observed at invasive fronts. (¢) Coexpression of aldh1 (red) in ILC cells positive for
active c-Src (green). The asterisk marks an LCIS. (d) Aldh1 expression (red) in ILC cells with strong c-Src activity (green).

etiologically related to LBC [10]. Here, we present evidence to
extend the invasion-promoting role of c-Src to lobular carci-
noma of the breast and to suggest antagonists of the kinase
as novel therapeutic options for this delicate disease.

In this study, we observed increased levels of active c-Src in
invasive LBC cells relative to adjacent in situ LBC lesions or
to nonneoplastic epithelia in the majority of LBC patients. We
used immunofluorescence intensity from an antibody against
activated c-Src as a measure for c-Src activity. Such an
approach can provide only a rough estimate for c-Src activity,
as the actual kinase activity will depend on more parameters
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than the expression level alone. Activity assays in fresh tissue
samples would be required for a clean assessment; however,
given that early-stage LBC is an incidental microscopic finding
in most cases, tissue availability is usually limited to archived
specimens. Nonetheless, the consistently increased levels in
ILC relative to LCIS/ALH and epithelium suggest that a bio-
logic function underlies the expression pattern of activated c-
Src.

Indeed, the potential downstream targets of c-Src, Stat-3 and
Fak, were both activated in ILC but not in LCIS/ALH or nonne-
oplastic epithelium, consistent with an actual increase in c-Src
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Relative c-Src activity in non-recurrent versus recurrent lobular breast
cancer (LBC) patients. The box plot shows the increase in active c-Src
fluorescence of invasive lobular carcinomas (ILCs) relative to their adja-
cent in situ lesions in the groups of patients with nonrelapsed (NR) and
relapsed (R) disease. The median value is indicated by the lines across
the boxes. Box lengths refer to the interquartile range. Lower and upper
whiskers represent the minimal and maximal values, respectively.

activity. Stat-3 is a well-defined c-Src target, in invasive breast
cancer cells and animal models, and is required for experimen-
tal breast cancer metastasis [17,26,27]; in addition, its activity
correlates with that of c-Src in advanced breast cancer [28].
Even though Stat-3-mediated feedback downregulation of c-
Src has been reported [17], it is highly likely that the specific
activation of Stat-3 is due to the elevated Src activity in ILC
cells. Conversely, extensive cross-regulation exists between c-
Src and Fak, and mutual control has been observed in breast
cancer cells for the two kinases [29-32]. However, because
ILC cells with active Fak were contained as a subpopulation
within the c-Src-positive ILC cells, it is more likely that c-Src
was upstream in our studied cases. We thus propose that the
elevated c-Src activity contributes to the activation of Stat-3
and Fak in ILC cells.

Because the increased expression of active c-Src and the acti-
vation of its downstream targets was paralleled by the expres-
sion of mesenchymal markers, we further propose that an EMT
is involved in the acquisition of invasiveness of LBC cells. c-
Src, Stat-3, and Fak have all been previously associated with
the induction/execution of EMTs; however, whether an EMT
plays a part in LBC progression is not established. Experimen-
tal models of lobular carcinoma clearly support this hypothesis
[33], but evidence from human tissue is less straightforward.
Notably, recent studies on clinical material indicate strong
expression of EMT-associated genes in invasive LBC [34,35];
however, the majority of ILC cells remain cytokeratin positive,
arguing against a mesenchymal phenotype. This apparent
conflict is easily resolved if one accepts that EMTs in a patho-
logic context do not need to be complete. The simultaneous
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expression of epithelial and mesenchymal markers strongly
suggests that epithelial ILC cells have gained some mesen-
chymal features that facilitate invasion. To this end, a partial
EMT is consistent with a functional acquisition of novel prop-
erties needed at a specific disease stage rather than a proper
execution of an intrinsic developmental program. A partial EMT
also would be consistent with the characteristic feature of
LBC, downregulation of E-cadherin, as loss of adhesion is one
key step during the process of an EMT. A partial EMT may
therefore suffice to turn stationary but nonadhesive LCIS cells
into migratory ILC cells. Of note, mesenchymal features were
evident only in ILC but not in LCIS. This observation indicates
that downregulation of E-cadherin alone is not enough to
induce an EMT in vivo, contrary to the perception of E-cad-
herin as a master regulator of EMTs [36,37], but supported by
the observation that forced expression of E-cadherin cannot
reverse the EMT-induced, mesenchymal phenotype in experi-
mental breast cancer [33,34].

What leads to the relative upregulation of activated c-Src in
ILC cells is not known but appears to be related to an
increased protein amount. Amplification of the gene encoding
c-Src has not been reported; however, gains at 20q11-13
(encompassing the SRC locus at 20q12-13) have repeatedly
been observed in ILC [38-42]. Therefore, amplification of SRC
might be a mechanism to account for the increased c-Src
activity. An alternative pathway recently was demonstrated for
invasive ductal carcinoma cells, in which upregulation of the
homeobox transcription factor Msx2 causes activation of c-Src
and a concomitant EMT [43]. Furthermore, the very high pro-
portion of ILC with active c-Src could suggest that increased
c-Src activity might be a consequence of E-cadherin downreg-
ulation itself. Consistent with this notion, E-cadherin degrada-
tion by Ca2* depletion has been shown to lead to c-Src
activation in breast cancer cells [44]. Conversely, functional E-
cadherin adhesion also can lead to ¢-Src activation, with c-Src
either reinforcing or weakening the adhesive contacts [45].
This complex interplay might explain why c-Src activity and
invasiveness appear to increase only slowly after E-cadherin
downregulation.

Whatever the mechanism, our data indicate that inhibition of c-
Src activity would affect ILC cells that appear to have a high
malignant potential. More than 90% of ILC cells displayed
increased c-Src activity and were positive for the metastatic
markers Opn and Cxcr4. In addition, the ILC cells with
increased c-Src activity also included most of the cells positive
for the breast cancer stem cell marker Aldh1. It is not clear
whether c-Src inhibition would reverse the Opn/Cxcr4/Aldh1-
positive phenotype. If not, c-Src antagonists may simply
reduce the spread of highly malignant ILC cells. However,
both the OPN and CXCR4 genes can be induced by c-Src
[20,23], and the induction of an EMT has been associated
with the generation of breast cancer stem cells [46]. It thus
remains possible that inhibition of c-Src could result in the
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abrogation of an EMT along with a reduced number of Aldh1-
positive cells and the suppression of Opn and Cxcr4 produc-
tion. In such a case, c-Src antagonists may effectively reduce
the spread and the malignant potential of ILC cells. Some sup-
port for a clinical benefit for c-Src antagonists in LBC comes
from our observation that patients with relapses tended to
have high levels of active c-Src compared with patients with-
out relapses. A larger patient cohort will be needed to deter-
mine whether high c-Src activity is indeed associated with a
higher likelihood of relapse in LBC. We also were not able to
perform a Kaplan-Meier survival analysis, as the follow-up
times of our patients were too heterogeneous. Notwithstand-
ing these limitations, the observed tendency is consistent with
the association of high c-Src activity with lower recurrence-
free survival in ductal breast cancer patients [6]. Together, it
appears likely that inhibitors of c-Src kinase will interfere with
the spread of malignant LBC cells and affect the outcome of
patients with lobular carcinoma.

Conclusions

In this study, we observed increased expression levels of
active c-Src in ILC relative to LCIS and nonneoplastic epithelia
from LBC patients. The increase in active c-Src was paralleled
by the activation of EMT-associated c-Src downstream targets
and the expression of mesenchymal markers. These findings
provide in vivo evidence for a contribution of c-Src kinase to
the progression of lobular carcinoma to invasive disease and
suggest that c-Src promotes LBC invasiveness by the acqui-
sition of mesenchymal features. ILC cells with active c-Src fur-
ther expressed markers of metastatic breast cancer and
included presumed breast cancer stem cells positive for
Aldh1. Together with the observation of high c-Src levels in
patients with relapses, our data suggest a clinical benefit of c-
Src inhibition in LBC patients, advocating the evaluation of c-
Src inhibitors as novel chemotherapeutic options in lobular
carcinoma.
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