
Available online http://breast-cancer-research.com/content/11/3/R40
Open AccessVol 11 No 3Research article
Expression of FOXA1 and GATA-3 in breast cancer: the prognostic 
significance in hormone receptor-negative tumours
André Albergaria1,2, Joana Paredes2, Bárbara Sousa2, Fernanda Milanezi2, Vítor Carneiro3, 
Joana Bastos4,5, Sandra Costa1, Daniella Vieira6, Nair Lopes2, Eric W Lam7, Nuno Lunet4,5 and 
Fernando Schmitt2,8

1Development Domain, Institute of Life and Health Sciences (ICVS), School of Health Sciences of Minho University – Campus de Gualtar, Braga 
4710-057, Portugal
2Cancer Genetics Group, Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Rua Dr Roberto Frias s/n, Porto 4200-
465, Portugal
3Department of Pathology of Hospital of Divino Espírito Santo, Rua da Grotinha, Ponta Delgada 9500-370, Portugal
4Department of Hygiene and Epidemiology, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
5Institute of Public Health of the University of Porto (ISPUP), Praça Gomes Teixeira s/n, Porto 4099-002, Portugal
6Department of Pathology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, Santa Catarina CEP 88040-
970, Brazil
7Department of Oncology, Cancer Research UK Laboratories, MRC Cyclotron Building, Imperial College of London, Hammersmith Hospital, Du Cane 
Road, London W12 0HS, UK
8Department of Pathology, Medical Faculty of University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal

Corresponding author: Fernando Schmitt, fschmitt@ipatimup.pt

Received: 5 Jan 2009 Revisions requested: 9 Feb 2009 Revisions received: 26 May 2009 Accepted: 23 Jun 2009 Published: 23 Jun 2009

Breast Cancer Research 2009, 11:R40 (doi:10.1186/bcr2327)
This article is online at: http://breast-cancer-research.com/content/11/3/R40
© 2009 Albergaria et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction The expression of additional genes, other than
oestrogen receptor (ER), may be important to the hormone-
responsive phenotype of breast cancer. Microarray analyses
have revealed that forkhead box A1 (FOXA1) and GATA binding
protein 3 (GATA-3) are expressed in close association with
ERα, both encoding for transcription factors with a potential
involvement in the ERα-mediated action in breast cancer. The
purpose of this study was to explore if the expression of FOXA1
and GATA-3 may provide an opportunity to stratify subsets of
patients that could have better outcome, among the ERα-
negative/poor prognosis breast cancer group.

Methods We evaluate FOXA1 and GATA-3 expression in 249
breast carcinomas by immunohistochemistry, associating it with
breast cancer molecular markers, clinicopathological features
and patient's survival. The clinicopathological features and
immunohistochemical markers of the tumours were compared
using the chi-square test and ANOVA. Disease-free survival was
analysed through Kaplan–Meier survival curves and Cox
regression.

Results FOXA1 expression was demonstrated in 42% of
invasive carcinomas, while GATA-3 was detected in 48% of the
cases. FOXA1 expression was inversely associated with tumour
size, Nottingham Prognostic Index, histological grade, lymph
vascular invasion, lymph node stage and human epidermal
growth factor receptor-2 (HER-2) overexpression, while GATA-
3 expression showed inverse association with histological grade
and HER-2. Both FOXA1 and GATA-3 were directly associated
with ERα and progesterone receptor. Among FOXA1-positive
tumours, 83.1% are comprised in the luminal A subtype, similar
to GATA-3 where 87.7% of positive tumours were classified
within this molecular subtype. In the subset of ERα-negative
patients, those who were FOXA1-negative had a 3.61-fold
increased risk of breast cancer recurrence when compared with
the FOXA1-positive.

Conclusions FOXA1 was a significant predictor of good
outcome in breast cancer, whereas GATA-3 was an important
luminal marker. The expression of FOXA1 may be used for risk
stratification among ERα-negative patients.
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CK: cytokeratin; EGFR: epidermal growth factor receptor; ER: oestrogen receptor; FOXA-1: forkhead box A1; GATA-3: GATA binding protein 3; 
HER-2: human epidermal growth factor receptor 2; PBS: phosphate-buffered saline; P-cadherin: placental cadherin; PR: progesterone receptor.
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Introduction
The expression of oestrogen receptor (ER) is an important
prognostic and predictive factor in breast cancer and has rel-
evant implications for the biology of this type of carcinomas.
Patients with tumours that express ER have a longer disease-
free interval and overall survival than patients with tumours
lacking ER expression [1].

According to international treatment guidelines for early breast
cancer, patients with ERα and/or progesterone receptor (PR)
expression should receive an adjuvant endocrine therapy,
since their expression is associated with higher response rates
to anti-hormonal treatment [2]. However, the association
between ERα expression and hormonal responsiveness is far
from perfect, since approximately 30% of ER-positive tumours
do not respond to hormonal treatment and 5 to 15% of ER-
negative tumours curiously respond to endocrine therapy [3].

In order to overcome and explore this unpredictable breast
tumour behaviour, numerous studies, based on cDNA micro-
arrays, have shown that the gene expression profile in breast
cancer can provide molecular phenotypes that identify distinct
tumour subclasses [4-6], patient survival prediction [5-7], and
differences in tumour biology or clinical features. The molecu-
lar classification of breast cancers distinguishes three major
subtypes: the ER-positive/luminal-like subtype, a gene expres-
sion cluster characteristic of the luminal cells and anchored by
a cluster of transcription factors that include ER; the basal-like
subtype, comprising tumours that express basal cell markers
(namely keratin 5, keratin 14, integrin β4 and laminin); and the
human epidermal growth factor receptor-2 (HER-2)-overex-
pressing subtype, usually associated with gene amplification
of the HER-2 proto-oncogene and high expression of several
genes in the ERBB2 amplicon at 17q22.24 [4,5,8]. These
studies have largely contributed to understanding the complex
behaviour of certain types of breast cancer, including the ones
that respond better to endocrine therapies, regardless of ER
expression.

Oestrogen plays an important role in the regulation of growth,
proliferation and differentiation of mammary epithelium. The
action of oestrogen is mediated through the ER, which func-
tions as an oestrogen-activated transcription factor. The
expression of an additional set of genes that is not part of the
canonical oestradiol-response pathway may also be essential
in clarifying the hormone-responsive phenotype, since intrinsic
differences in the list of transcription factors bound to the ER
gene promoter have been described [9].

Additionally, the distinct behaviour observed between ER-pos-
itive luminal subtypes A and B (a subgroup of tumours with low
to moderate expression of the luminal-specific genes including
the ER cluster) may in part be due to the influence of additional
factors, including transcriptional factors, co-activators and co-

repressors modulating ER activity [10], which can also be
explored towards a therapeutic purpose.

In 2004 Lacroix and Leclercq compiled considerable exten-
sive data describing the strong association and cross-talk
between ERα, forkhead box A1 (FOXA1) and GATA binding
protein 3 (GATA-3) [11]. In most of these studies, GATA-3
and FOXA1 have been highlighted within the ERα pathway in
the luminal A subtype [4-6,12]; FOXA1, a forkhead family tran-
scription factor, has been receiving considerable attention,
since it interacts with cis-regulatory regions of heterochroma-
tin, enhancing the interaction of ERα with DNA [13]. Carroll
and colleagues recently described several robust data demon-
strating the requirement of FOXA1 for optimal expression of
nearly 50% of ERα-regulated genes and oestrogen-induced
proliferation [13,14].

FOXA1 is expressed in the liver, pancreas, bladder, prostate,
colon and lung, as well as in the mammary gland, and can bind
to the promoters of more than 100 genes associated with met-
abolic processes, regulation of signalling pathways and cell
cycle [15-17]. Some studies have shown that FOXA1 can act
either as a growth stimulator/activator or as a repressor. As a
stimulator, FOXA1 binds to chromatinised DNA and opens the
chromatin, enhancing binding of ERα to its target genes [18]
– which suggests a growth-promoting role for this forkhead
protein [14,18]. In breast cancer, however, FOXA1 overex-
pression can also block the metastatic progression by influ-
encing the expression of the BRCA1-associated cell-cycle
inhibitor p27 and promoting E-cadherin expression [19,20].
Recent studies also suggest FOXA1 as a favourable prognos-
tic factor in breast cancer, with potential relevance in the sub-
classification of luminal/ER-positive tumours into two
subgroups with different biological behaviour and prognosis,
the luminal A and the luminal B [5].

FOXA1 and ERα have been explored as potential participants
involved in mammary tumours together with another gene,
GATA-3 [21,22], which regulates the lineage determination
and differentiation of many cells types. In the breast, GATA-3
plays a central role in luminal epithelia differentiation and the
subsequent formation of the ductal tree of differentiated epi-
thelial cells [23], suggesting that this protein might be involved
in breast tumorigenesis [24].

Meta-analysis of four microarray datasets indicated that
GATA-3 was a strong predictor of clinical outcome in breast
tumours and is among the best predictors of ER-positive sta-
tus [4,9,25-27]. Among all of the molecular subgroups of
breast cancer, the luminal A subtype has a relatively favourable
outcome and the highest GATA-3 and ERα expression levels,
compared with luminal B and basal-like breast carcinomas
[24].
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As a result of all of these extensive studies underlying GATA-
3 and ERα in mammary epithelia, it has been clear that GATA-
3 is a crucial regulator of tumour differentiation and suppres-
sor of tumour dissemination [22]. It has been also suggested
that these functions in mammary luminal cells may be linked by
transcriptional regulators, whereas FOXA1 appears as a can-
didate gene, which is necessary for the transcriptional activity
of ERα and its binding to oestrogen-responsive elements in
target gene promoters [13,18]. As FOXA1 may also be a
downstream effector of GATA-3, it may be a bridge between
GATA-3 and ER pathways [22], controlling and regulating the
biology of luminal mammary cells, breast cancer progression
and behaviour.

Based on this intricate and functional complex between
FOXA1 and GATA-3 in breast cancer biology, it is reasonable
to consider that these transcription factors, in addition to ERα,
are important in establishing and clarifying the hormone-
responsive phenotype and prognosis in breast cancer. This
gene set may therefore be used as a diagnostic tool for more
accurate determination of ERα status, in the decision on endo-
crine therapeutic strategies, as well as in the assessment of
breast cancer patient's outcome.

In the present study we provide an immunohistochemical
approach studying FOXA1 and GATA-3 expression, in order
to predict the tumour behaviour of breast cancer patients. In
the whole series, we verified that patients harbouring FOXA1-
positive tumours show a better disease-free survival. Interest-
ingly, and for the first time, we also found the same power of
risk stratification among the ERα-negative breast cancer
patients, demonstrating the clinical importance of this biomar-
ker in breast cancer molecular classification and prognosis.
These results show that FOXA1 and ERα should be used
together in order to subclassify breast carcinomas and to pre-
dict the outcome of breast cancer patients.

Materials and methods
Patient selection
A series of 249 cases of primary operable invasive breast car-
cinomas were retrieved from the files of the Department of
Pathology, Hospital do Divino Espírito Santo, Azores, Portugal
and from the Federal University of Santa Catarina, Florianopo-
lis – SC, Brazil. These samples were obtained from patients
with age ranging from 30 to 89 years. All of the formalin-fixed
paraffin-embedded histological sections were reviewed by
three pathologists (VC, FS and FM) and the diagnoses were
confirmed as follows: 208 invasive ductal carcinomas, seven
invasive lobular carcinomas, three mixed breast carcinomas,
three tubular breast carcinomas, eight medullary breast carci-
nomas and 20 invasive breast carcinomas of other special his-
tological types. These tumours have been fully characterized
for clinical and pathological features – namely, age, tumour
size, histological type, lymph nodes invasion, tumour grade,
Nottingham Prognostic Index, ERα, PR and HER-2 status. The

patients' clinical and pathological characteristics are summa-
rized in Table 1.

Follow-up information was available for 218 cases, ranging
from a minimum of 2 months to a maximum of 129 months
(median 32 months). The disease-free survival data interval
was evaluated and defined as the time from the date of surgery
to the date of breast-cancer-derived relapse/metastasis.
Owing to the short follow-up of the studied series and the con-
sequent limited number of death events, overall survival was
not analysed.

The present study was conducted under the national regula-
tive law for the usage of biological specimens from tumour
banks, where the samples are exclusively available for
research purposes in the case of retrospective studies.

Tissue microarray construction and 
immunohistochemical analysis
Representative areas of different lesions were carefully
selected on haematoxylin and eosin-stained sections and were
marked on individual paraffin blocks. Two tissue cores (2 mm
in diameter) were obtained from each selected specimen and
were precisely deposited into a recipient paraffin block using
a tissue microarray workstation (tissue microarray builder
ab1802; Abcam, Cambridge, UK) as described elsewhere
[28,29]. In each tissue microarray block, non-neoplastic breast
tissue cores were also included as controls.

Immunohistochemistry was performed in 3 μm formalin-fixed,
paraffin-embedded sections. Expression for the most com-
monly used breast cancer markers – namely, HER-2, ER, PR,
P-cadherin, epidermal growth factor receptor (EGFR), vimen-
tin and basal cytokeratins (CK5, CK14) – was assessed. The
immunohistochemistry technique was performed using an
Envision Detection System (DAKO Cytomation Envision Sys-
tem HRP; DAKO Corporation, Carpinteria, CA, USA) or the
classical streptavidin – avidin – biotin complex method
according to the manufacturer's instructions. Imunohisto-
chemistry assay conditions and antibodies specifications were
based on previously published studies from our group [28-30].
Immunoreactivity for ERα, PR, P-cadherin, CK5, CK14, EGFR,
vimentin and HER-2 was classified by estimating the percent-
age of tumour cells showing characteristic staining, in accord-
ance with previous work [28-30].

Expression of FOXA1 was analysed using a mouse mono-
clonal antibody (clone 2F83, ab40868; AbCam), as well as
GATA-3 expression (clone H-63-31, Sc-268; Santa Cruz Bio-
technology Inc., Santa Cruz, CA, USA). Sections were depar-
affinized with xylene and rehydrated in a series of decreasing
concentration of ethanol solutions. Heat-induced epitope
retrieval was carried out in 10 mM citrate buffer (sodium cit-
rate) (pH 6) or in 1 mM ethylenediamine tetraacetic acid buffer
(pH 8) (LabVision Corporation, Fremont, CA, USA), in a 98°C
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Table 1

Patient characteristics and tumour parameters

Variable Data

Age at diagnosis (years)

Mean and standard deviation 57 ± 14.2

Range 59 (minimum 30; maximum 89)

Tumour size (mm)

Mean and standard deviation 32 ± 21 mm

Range 145 (minimum 5; maximum 150)

Lymphovascular invasion

Present 111 (44.6)

Absent 111 (44.6)

Not assessed 27 (10.8)

Lymph node sage

Negative 111 (44.6)

1 to 3 lymph nodes 57 (22.9)

>3 lymph nodes 54 (21.7)

Not assessed 27 (10.8)

Tumour grade

Grade I 51 (20.5)

Grade II 116 (46.6)

Grade III 82 (32.9)

Histology

Invasive ductal carcinoma (not otherwise specified) 208 (83.5)

Invasive lobular carcinoma 7 (2.8)

Mixed 3 (1.2)

Tubular 3 (1.2)

Medullary 8 (3.3)

Other special types 20 (8.0)

Nottingham Prognostic Index

<3.4 46 (18.5)

3.4 to 5.4 106 (42.6)

>5.4 55 (22.0)

Not assessed 42 (16.9)

Oestrogen receptor-α status

Positive 141 (56.6)

Negative 107 (43.0)

Unknown 1 (0.4)

Progesterone receptor status

Positive 89 (35.8)

Negative 154 (61.8)

Unknown 6 (2.4)

Human epidermal growth factor receptor 2 status

Positive 42 (16.9)

Negative 201 (80.7)

Unknown 6 (2.4)

Data presented as n (%) unless stated otherwise.
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water bath, for 14 and 20 minutes for FOXA1 and GATA-3,
respectively. After cooling retrieval solutions for at least 30
minutes at room temperature, the slides were treated for 10
minutes with 3% H2O2 in methanol, in order to block endog-
enous peroxidase. Slides were incubated with monoclonal
antibodies for FOXA1 (1:450) and GATA-3 (1:100) for 2
hours at room temperature and were labelled with the Envision
Detection System from DAKO. Colour reaction product was
developed with 3,3'-diaminobenzidine, tetrahydrochloride
(DAB plus; DAKO Glostrup, Denmark) as a substrate, and
nuclear contrast was achieved with haematoxylin/ammoniacal
water counterstaining. Formalin-fixed, paraffin-embedded sec-
tions from normal breast gland were used as FOXA1 and
GATA-3 positive controls. Negative controls were performed
by replacing the primary antibody with PBS/nonimmune
mouse serum.

The scoring method used for FOXA1 and GATA-3 expression
was based on a semi-quantitative scoring system previously
described by Thorat and colleagues, where the cutoff value for
FOXA1 positivity was validated [31]. In this scoring system,
the percentage of staining was categorized as: 0 = no nuclear
expression; 1 = 1 to 10% positive tumour nuclei; 2 = 11 to
20%; and so on until a maximum score of 10 = 91 to 100%
positive tumour nuclei. The intensity was scored as: 1+ =
weak staining; 2+ = moderate staining; and 3+ = strong stain-
ing. The numeric final score was generated by the multiplica-
tion product of percentage and intensity of nuclear expression
(scoring = percentage × intensity) [10,32]. Based on this
semiquantitative scoring system, scores between 0 and 3
were classified as negative, and scores ≥ 4 to a maximum of
30 were considered positive.

Statistical analysis
Statistical analysis was performed using Stata™, version 9.2
software (StataCorp, College Station, TX, USA). Continuous
variables were presented as the mean ± standard deviation,
and categorical variables were presented as the number (per-
centage). The clinicopathological features and immunohisto-
chemical markers of the tumours were compared across
groups of expression of FOXA1 and GATA-3 using analysis of
variance and the chi-square test, respectively, for continuous
and categorical variables.

Survival curves were estimated by the Kaplan – Meier method
using the log-rank test to assess significant differences for dis-
ease-free patient survival. A maximum cutoff value of 60
months (5 years) was considered, since this is the expected
clinical time for breast cancer recurrence. Cox regression
models were fitted to estimate hazard ratios and the corre-
sponding 95% confidence interval for the classical prognostic
factors, FOXA1 and GATA-3. In all analyses, a significant level
of 5% was considered.

Results
FOXA1 and GATA-3 expression in normal and malignant 
breast tissues
From the total 249 cases, only cases with clear and restricted
nuclear expression for FOXA1 and GATA-3 were selected for
immunohistochemistry classification. Three representative
cases were selected to build a panel, illustrated in Figure 1,
comprising a classical example of the following molecular sub-
types of breast cancer: luminal A subtype (Figure 1, L1 to L7),
basal-like subtype (Figure 1, B1 to B7) and HER-2-overex-
pressing subtype (Figure 1, H1 to H7). Strong immunoexpres-
sion of FOXA1 and GATA-3 in the nuclei of malignant cells, as
well as in some luminal epithelial cells from adjacent normal
ducts, is shown in Figure 1 (L3 and L4). FOXA1 was positive
(score ≥ 4) in the nuclei of 42% (93 out of 224) of the invasive
carcinomas, while GATA-3 was detected in 48% (97 out of
204) of the cases.

Association between FOXA1 and GATA-3 expression 
and clinicopathological features and biological markers
The expression of FOXA1 was inversely associated with
tumour size (P = 0.005), Nottingham Prognostic Index (P =
0.002), histological grade (P = 0.001), vascular invasion (P =
0.012), lymph node stage (P = 0.022) and HER-2 overexpres-
sion (P = 0.017), and was directly associated with ERα
expression (P < 0.0001) and PR expression (P < 0.0001).
GATA-3 expression showed an inverse association with histo-
logical grade (P = 0.013) and HER-2 overexpression (P <
0.0001), and a direct association with ERα expression (P <
0.001) and PR expression (P < 0.001) (Table 2).

When we compared the expression of FOXA1 and GATA-3
with the molecular subtype, we found that 83.1% and 87.7%
of FOXA1 and GATA-3, respectively, were comprised in the
luminal A subtype (P < 0.0001) (Table 3 and Figure 1, L1 to
L7). Basal-like subtype tumours were negative for FOXA1
(Figure 1, B3) and for GATA-3 (Figure 1, B4) in 85.7% and
84.6% of the cases, respectively (Table 3).

The immunohistochemical evaluation of FOXA1 and GATA-3
in breast tumour samples revealed that in 201 of interpretable
cases a very significant direct association between the expres-
sion of FOXA1 and GATA-3 was observed (P < 0.0001)
(Table 3).

On the evaluation of these two transcription factors with other
important immunohistochemical markers in breast cancer, we
found a strong inverse association with basal-like phenotype
markers – namely, CK14 (P = 0.007, P = 0.0002), CK5 (P =
0.027, P < 0.0001), vimentin (P = 0.003, P = 0.0006) and P-
cadherin (P = 0.012, P < 0.0001) for FOXA1 and GATA-3,
respectively. GATA-3, but not FOXA1, showed an interesting
inverse association with EGFR (P = 0.001) (Table 3).
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Survival and patient outcome analysis
Kaplan–Meier survival curves demonstrate that patients with
FOXA1-positive breast carcinomas showed a significant dif-
ference towards the longer disease-free survival time (P <
0.001; Figure 2a). Although these are no statistically signifi-
cant differences in survival according to GATA-3 expression

(P = 0.055; Figure 2b), the positivity for this marker is also
associated with a better outcome for breast cancer patients.

As previously demonstrated in other studies, univariate Cox
proportional hazard analysis showed that the tumour size,
lymph node stage, tumour grade, as well as the expression of
ER, PR and HER-2 were significant predictors for disease-free

Figure 1

Immunohistochemistry panel showing differential expression pattern of FOXA1 and GATA-3Immunohistochemistry panel showing differential expression pattern of FOXA1 and GATA-3. An example of luminal A (L1 to L7), basal-like (B1 to 
B7) and human epidermal growth factor receptor 2 (HER-2)-overexpressing (H1 to H7) invasive breast tumours. Expression of the most commonly 
used breast cancer markers is also illustrated for comparison with the forkhead box A1 (FOXA1) and GATA binding protein 3 (GATA-3) expression. 
(L1, B1, H1) Haematoxylin-eosin stainings from each of the selected core cases. (L3, L4) Strong and restricted nuclear expression of FOXA1 and 
GATA-3 in the normal breast duct (internal control) and in the luminal A invasive tumour (grade II). (B3, B4) Negative expression of FOXA1 and 
GATA-3 in basal subtype tumour (grade III). (H3, H4) HER-2-overexpressing tumour showing negativity for FOXA1 and GATA-3 expression (grade 
III). All microscopy images are at 40× magnification. ER, oestrogen receptor; P-CAD, P-cadherin; CK, cytokeratin.
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Table 2

Association between FOXA1 and GATA3 expression and the clinicopathological features of the infiltrative breast carcinomas

Variable N FOXA1-negative 
(%)

FOXA1-positive 
(%)

P value n GATA3-negative 
(%)

GATA3-positive 
(%)

P value

Tumour size (mm) 209 35.2 ± 24.0 (126) 26.8 ± 15.7 (83) 0.005 191 34.4 ± 25.2 (100) 28.6 ± 16.7 (91) 0.064

Lymphovascular 
invasion

203 185

Present 97 67 (69.1) 30 (30.9) 0.012 92 49 (53.3) 43 (46.7) 0.829

Absent 106 55 (51.9) 51 (48.1) 93 51 (54.8) 42 (45.2)

Lymph node stage 203 185

Negative 106 55 (51.9) 51 (48.1) 0.022 93 51 (54.8) 42 (45.2) 0.166

1 to 3 lymph nodes 49 31 (63.3) 18 (36.7) 46 20 (43.5) 26 (56.5)

>3 lymph nodes 48 36 (75) 12 (25) 46 29 (63) 17 (37)

Grade 224 204

Grade I 44 25 (56.8) 19 (43.2) 0.001 40 24 (60) 16 (40) 0.013

Grade II 105 50 (47.6) 55 (52.4) 96 40 (41.7) 56 (58.3)

Grade III 75 56 (74.7) 19 (25.3) 68 43 (63.2) 25 (36.8)

Histology 224 204

IDC 188 113 (60.1) 75 (39.9) 0.119 171 91 (53.2) 80 (46.8) 0.104

ILC 6 2 (33.3) 4 (66.7) 6 0 (0) 6 (100)

Tubular 1 1 (100) 0 (0) 1 0 (0) 1 (100)

Medullary 7 5 (71.4) 2 (28.6) 7 5 (71.4) 2 (28.6)

Other 19 7 (36.8) 12 (63.2) 16 9 (56.2) 7 (43.8)

Mixed 3 3 (100) 0 (0) 3 2 (66.7) 1 (33.3)

Nottingham 
Prognostic Index

190 172

<3.4 44 18 (40.9) 26 (59.1) 0.002 40 19 (47.5) 21 (52.5) 0.293

3.4 to 5.4 96 59 (61.5) 37 (38.5) 86 44 (51.2) 42 (48.8)

>5.4 50 38 (76) 12 (24) 46 29 (63) 17 (37)

ERα 224 204

Positive 133 60 (45.1) 73 (54.9) <0.0001 122 41 (33.6) 81 (66.4) <0.0001

Negative 91 71 (78) 20 (22) 82 66 (80.9) 16 (19.5)

PR 223 204

Positive 83 33 (39.7) 50 (60.3) <0.0001 74 22 (29.7) 52 (70.3) <0.0001

Negative 140 98 (70) 42 (30) 130 85 (65.4) 45 (34.6)

HER-2 220 201

Positive 35 27 (77.1) 8 (22.9) 0.017 34 29 (85.3) 5 (14.7) <0.0001

Negative 185 103 (55.7) 82 (44.3) 167 77 (46.1) 90 (53.9)

FOXA-1, forkhead box A1; GATA-3, GATA binding protein 3; IDC, invasive ductal carcinoma (not otherwise specified); ILC, invasive lobular 
carcinoma; ERα, oestrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2.
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survival. In accordance with the trend shown by the Kaplan–
Meier curves, the expression of FOXA1 was also a significant
predictor for disease-free survival, showing that negative
cases carry a fourfold increased risk of recurrence (hazard
ratio = 4.25, 95% confidence interval = 1.76 to 10.28) when
compared with the positive ones. In contrast, GATA-3 expres-
sion was revealed not to be important as a predictive marker
for better outcome in this series (hazard ratio = 1.97, 95%
confidence interval = 0.96 to 4.01) (Table 4).

Prognostic significance of FOXA1 and GATA-3 
expression in ER-negative breast cancer
Several studies have shown that FOXA1 and GATA-3 expres-
sion are strong predictors of better clinical outcome in breast

tumours and are among the best predictors of ERα-positive
status [9-12,26,31,33,34]. Since FOXA1 and GATA-3 show
an intrinsic high correlation between themselves and with ERα
status, however, the prognostic and predictive value of these
markers may simply reflect this high expression association. A
cohort of ERα-negative patients was therefore studied in order
to evaluate the predictive importance of FOXA1 and GATA-3
expression in this subset of breast carcinomas.

When the association analysis was performed in the subset of
ERα-negative patients, FOXA1 and GATA-3 failed to show
any significant association with the studied clinicopathological
features. Analysing the association of these transcription fac-
tors with the immunohistochemical biomarkers in breast can-

Table 3

Association between FOXA1 and GATA3 expression and the immunohistochemical markers in infiltrative breast carcinomas

Variable N FOXA1-negative (%) FOXA1-positive (%) P value n GATA3-negative (%) GATA3-positive (%) P value

EGFR 223 203

Positive 13 10 (7.6) 3 (3.3) 0.171 11 11 (10.4) 0 (0) 0.001

Negative 210 121 (92.4) 89 (96.7) 192 95 (89.6) 97 (100)

P-cadherin 220 202

Positive 75 53 (40.8) 22 (24.4) 0.012 71 52 (49.1) 19 (19.8) <0.0001

Negative 145 77 (59.2) 68 (75.6) 131 54 (50.9) 77 (80.2)

Cytokeratin 5 224 204

Positive 50 36 (27.5) 14 (15) 0.027 48 39 (36.4) 9 (9.3) <0.0001

Negative 174 95 (72.5) 79 (85) 156 68 (63.6) 88 (90.7)

Cytokeratin 14 219 201

Positive 14 13 (10.1) 1 (1.5) 0.007 14 14 (13.3) 0 (0) 0.0002

Negative 205 116 (89.9) 89 (98.9) 187 91 (86.7) 96 (100)

Vimentin 203 194

Positive 34 28 (23.1) 6 (7.3) 0.003 32 26 (25) 6 (6.7) 0.0006

Negative 169 93 (76.9) 76 (92.7) 162 78 (75) 84 (93.3)

FOXA1 - - - - 201

Positive - - - 82 16 (15.4) 66 (68) <0.0001

Negative - - - 119 88 (84.6) 31 (32)

GATA-3 201 - - - -

Positive 97 31 (26.1) 66 (80.5) <0.0001 - - -

Negative 104 88 (73.9) 16 (19.5) - - -

Subtype 202 187

Luminal A 125 56 (47) 69 (83.1) <0.0001 114 36 (36.7) 78 (87.7) <0.0001

Luminal B 8 4 (3.4) 4 (4.8) 8 5 (5.1) 3 (3.4)

HER-2 27 23 (19.3) 4 (4.8) 26 24 (24.5) 2 (2.2)

Basal 42 36 (30.3) 6 (7.3) 39 33 (33.7) 6 (6.7)

FOXA-1, forkhead box A1; GATA-3, GATA binding protein 3; EGFR, epidermal growth factor receptor; HER-2, human epidermal growth factor 
receptor 2.
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cer, no significant associations were found concerning
FOXA1 expression. GATA-3 negativity, however, showed sig-
nificant association with P-cadherin and CK14 expression.
Although not statistically significant, we also observed a trend
towards the association of GATA-3 with the other studied
basal-like phenotype markers (namely, EGFR, CK5 and vimen-
tin), where the majority of the negative cases for GATA-3 are
positive for those proteins (Table 5).

In this subset of ERα-negative patients, however, an associa-
tion between loss of FOXA1 expression and worst disease-
free survival was found (P = 0.064), in contrast with GATA-3
expression (P = 0.488) (Figure 2c and 2d, respectively). More-
over, in order to quantify the risk of these survival associations,
univariate analysis was performed for FOXA1 and GATA-3 as
well as for the classical prognostic factors in breast cancer. In
line with the Kaplan–Meier curves, GATA-3 negativity does
not account for an increased risk of recurrence in ERα-nega-
tive tumours. FOXA1 expression, however, is able to stratify
this relative risk among this subset of carcinomas, since its
loss accounts for a 3.61-fold increased risk for breast cancer
recurrence (Table 6). These results suggest a protective role

for this forkhead protein in this poor-outcome breast cancer
subgroup.

Additionally, the multivariate Cox hazard analysis, with models
including tumour size and lymph vascular invasion, demon-
strates the independent value of FOXA1 expression as a pre-
dictor of patient outcome in ERα-negative tumours. FOXA1
negativity is strongly related to breast cancer recurrence, this
association being very close to statistical significance
(FOXA1-negative vs. FOXA1-positive: hazard ratio = 7.02,
95% confidence interval = 0.92 to 53.37; P = 0.060). This
analysis also confirmed that GATA-3 expression is not an
important predictor of breast cancer recurrence in ERα-nega-
tive carcinomas (GATA-3-negative vs. GATA-3-positive
patients: hazard ratio = 1.46, 95% confidence interval = 0.40
to 5.29; P = 0.559).

Discussion
Several studies of global gene expression revealed high levels
of FOXA1 often associated with the expression of ERα
[6,35,36]. In addition, other gene whose expression has been
highly correlated with ERα in breast cancer encodes the tran-
scription factor GATA-3 [6,11,26,27]. Indeed, FOXA1, GATA-

Figure 2

Kaplan–Meier survival curves for disease-free survivalKaplan–Meier survival curves for disease-free survival. (a) Survival functions for forkhead box A1 (FOXA1) in the whole breast cancer patient series 
(P < 0.001). (b) Survival functions for GATA binding protein 3 (GATA-3) in the whole breast cancer patient series (P = 0.055). (c) Survival functions 
for FOXA1 in the oestrogen receptor α-negative breast cancer patient cohort (P = 0.064). (d) Survival functions for GATA-3 in the oestrogen recep-
tor α-negative breast cancer patient cohort (P = 0.488).
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3 and ERα form a transcriptional circuit required for growth,
differentiation and hormonal dependency of the lineage of
mammary luminal cells [22,37]. Previous work using immuno-
histochemistry has shown that the expression of FOXA1
[10,31,33] and of GATA-3 [9,34,37] is in close association
with ERα expression in breast cancer, highlighting their prog-
nostic and predictive value in this malignancy. In fact, since
these three proteins are components of a transcriptional net-
work that dictates the phenotype of hormonal-dependent
breast cancer [37], the study of their expression would
improve our understanding of the ERα, FOXA1 and GATA-3
relationship in breast cancer patients.

In the present study the staining pattern of FOXA1 and GATA-
3 in normal breast tissue is strikingly similar to that of ERα,
which suggests the same cellular co-localization of these three
cross-functional proteins. In the studied series, the expression
of FOXA1 was inversely associated with clinicopathological
features – namely, with tumour size, tumour grade, Nottingham
Prognostic Index, lymph vascular invasion, lymph node stage
and HER-2 overexpression – while its expression was directly
associated with ERα, PR and the luminal A subtype. Thorat
and colleagues, in a recent published study of 139 cases, did

not demonstrate a significant association with tumour size,
lymph node status or HER-2 [31]. Moreover, these authors
also found an inverse association between FOXA1 and basal-
like phenotype markers (namely, CK5 and CK14). Importantly,
in our study we reinforced this inverse association between
FOXA1 expression and the expression of P-cadherin or vimen-
tin.

The requirement of this forkhead for optimal expression of at
least 50% of ERα-regulated genes and oestrogen-induced
proliferation was recently described [13], and our and other
results may just represent the strong regulatory interdepend-
ency between ERα and FOXA1. Since ERα is one of the cen-
tral genes for the regulation of growth/proliferation of
mammary epithelia, and for the hormone-responsive pheno-
type of breast tumours [9], FOXA1 appears an important bio-
logical-regulatory factor with prognostic consequences in this
setting. In fact, in the present study, FOXA1 expression was
shown to be an important predictor of disease-free survival, in
addition to the robust association with clinicopathological fea-
tures. Interestingly, univariate analysis showed that the evalua-
tion of FOXA1 expression has an important value in the
assessment of the prognostic risk for breast cancer patient

Table 4

Univariate Cox proportional hazard analysis (disease-free survival) in the whole breast cancer series

Variable Evaluation Hazard ratio (95% confidence interval) P value

Tumour size T1 (≤ 2 mm) 1

T2 (2 < T ≤ 5 mm) 1.57 (0.70 to 3.51) 0.265

T3 (>5 mm) 3.12 (1.16 to 8.41) 0.024

Lymph node stage Negative 1

1 to 3 lymph nodes 0.56 (0.20 to 1.56) 0.272

>3 lymph nodes 2.68 (1.30 to 5.49) 0.007

Tumour grade Grade I 1

Grade II 2.60 (0.58 to 11.56) 0.208

Grade III 7.65 (1.80 to 32.48) 0.006

ER expression ER-positive 1

ER-negative 2.94 (1.52 to 5.57) 0.001

PR expression PR-positive 1

PR-negative 2.16 (1.04 to 4.46) 0.038

HER-2/neu expression HER-2/neu-negative 1

HER-2/neu-positive 2.47 (1.19 to 5.09) 0.014

FOXA1 expression FOXA1-positive 1

FOXA1-negative 4.25 (1.76 to 10.28) 0.001

GATA-3 expression GATA-3-positive 1

GATA-3-negative 1.97 (0.96 to 4.01) 0.061

ER, oestrogen receptor; FOXA-1, forkhead box A1; GATA-3, GATA binding protein 3; HER-2, human epidermal growth factor receptor 2; PR, 
progesterone receptor.
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Table 5

Association between FOXA1 and GATA3 expression, clinicopathological features and immunohistochemical markers in ER-
negative cohort

Variable n FOXA1-negative 
(%)

FOXA1-positive (%) P value n GATA3-negative 
(%)

GATA3-positive (%) P value

Tumour size 80 36.7 ± 24.2 (65) 36.6 ± 24.8 (15) 0.987 74 34.46 ± 23.6 (60) 43.4 ± 27.4 (14) 0.229

Lymphovascular 
invasion

83 78

Present 35 29 (82.8) 6 (17.2) 0.391 35 29 (82.8) 6 (17.2) 0.867

Absent 48 36 (75) 12 (25) 43 35 (81.4) 8 (18.6)

Lymph node stage 83 78

Negative 48 36 (75) 12 (25) 0.456 43 35 (81.4) 8 (18.6) 0.609

1 to 3 lymph 
nodes

12 11 (91.7) 1 (8.3) 12 11 (91.7) 1 (8.3)

>3 lymph nodes 23 18 (78.3) 5 (21.7) 23 18 (78.3) 5 (21.7)

Grade 87 80

Grade I 8 6 (75) 2 (25) 0.166 8 8 (100) 0 (0) 0.366

Grade II 33 23 (69.7) 10 (30.3) 28 22 (78.6) 6 (21.4)

Grade III 46 40 (86.9) 6 (13.1) 44 36 (81.8) 8 (18.2)

Nottingham 
Prognostic Index

76 71

<3.4 11 9 (81.8) 2 (18.2) 0.982 10 9 (90) 1 (10) 0.615

3.4 to 5.4 34 27 (79.4) 7 (20.6) 32 26 (81.3) 6 (18.7)

>5.4 31 25 (80.6) 6 (19.4) 29 22 (75.8) 7 (24.2)

HER-2 85 79

Positive 26 23 (88.5) 3 (11.5) 0.254 26 24 (92.3) 2 (7.7) 0.102

Negative 59 46 (77.9) 13 (22.1) 53 41 (77.4) 12 (22.6)

EGFR 86 80

Positive 12 10 (83.3) 2 (16.7) 0.771 11 11 (100) 0 (0) 0.100

Negative 74 59 (79.7) 15 (20.3) 69 55 (79.7) 14 (20.3)

P-cadherin 87 80

Positive 53 45 (84.9) 8 (15.1) 0.107 52 47 (90.4) 5 (9.6) 0.011

Negative 34 24 (70.6) 10 (29.4) 28 19 (67.8) 9 (32.2)

Cytokeratin 5 87 80

Positive 33 28 (84.8) 5 (15.2) 0.318 32 29 (90.6) 3 (9.4) 0.118

Negative 54 41 (75.9) 13 (24.1) 48 37 (77.1) 11 (22.9)

Cytokeratin 14 85 78

Positive 14 13 (92.8) 1 (7.2) 0.188 14 14 (100) 0 (0) 0.053

Negative 71 55 (77.5) 16 (22.5) 64 50 (78.1) 14 (21.9)

Vimentin 82 75

Positive 27 25 (92.6) 2 (7.4) 0.074 25 24 (96) 1 (4) 0.064

Negative 55 42 (76.4) 13 (23.6) 50 40 (80) 10 (20)

FOXA1 - 78

Positive - - - - 15 6 (40) 9 (60) <0.0001

Negative - - - 63 58 (92.1) 5 (7.9)

GATA-3 78 -

Positive 14 5 (35.7) 9 (64.3) <0.0001 - - - -

Negative 64 58 (90.6) 6 (9.4) - - -

ER, oestrogen receptor; EGFR, epidermal growth factor receptor; FOXA-1, forkhead box A1; GATA-3, GATA binding protein 3; HER-2, human 
epidermal growth factor receptor 2.
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recurrence, with a magnitude of association similar to the
observed for the classical prognostic factors, such as tumour
size and lymph node stage, tumour grade, and ER and HER-2
expression. This finding is in line with previously published
works, where both Badve and colleagues and Habashy and
colleagues also demonstrated that FOXA1 expression is able
to significantly predict a better survival for breast cancer
patients [10,33], although the multivariate analysis showed
that it is not an independent prognostic marker, exactly as
shown for ER. These studies still suggest that ERα/FOXA1-
expressing cells, after acquiring tumorigenicity, may promote
selective clonal expansion, resulting in a specific subtype of
breast cancer – the luminal subtype A. Thorat and colleagues
also suggested that FOXA1 immunohistochemistry may be
used as a marker for tumours pertaining to luminal subtype A
breast cancer, which has an exceptionally good prognosis
[31].

In contrast to FOXA1, GATA-3 failed the association with
most of the clinicopathological features – the exception being
an inverse association with HER-2 expression and tumour his-
tological grade, although it was also directly associated with
ERα and PR expression, as well as with tumours from the lumi-
nal A subtype. These results are partially in line with previous
work from Mehra and colleagues, which found that low levels
of GATA-3 expression were associated with higher tumour
histological grade, positive lymph nodes, larger tumour size,

negative ER expression and HER-2 overexpression [24]. In the
present study we could not find an association between
GATA-3 expression and lymph node status, in agreement with
a recent cohort study from Voduc and colleagues comprising
more than 3,000 invasive breast cancers [34]. Regarding the
association between GATA-3 and ERα, 66% of the cases co-
expressed these markers – which is a larger percentage than
those previously described by Mehra and colleagues (46%)
and by Voduc and colleagues (39%) [24,34].

Through the analysis of Kaplan–Meier survival curves it was
not possible to demonstrate a significant association between
GATA-3 expression and disease-free survival in this breast
cancer series, which is in accordance with data from the large
cohort study of Voduc and colleagues [34]. The univariate
analysis confirmed this observation, although there is an asso-
ciation between the positivity for this marker and the better
outcome for breast cancer patients.

Interestingly, the strength of the inverse association that was
observed between GATA-3 and basal-like markers – namely,
CK5, CK14, vimentin, EGFR and P-cadherin – suggests that
GATA-3 can be important for the differentiation state of the
malignant cells, where its presence, together with other differ-
entiation involved partners, may drive the luminal profile of a
malignant cell population within the tumour. Actually, this
growth and differentiation role for GATA-3 in normal mammary

Table 6

Univariate Cox proportional hazard analysis (disease-free survival) in the oestrogen-receptor-negative cohort

Variable Evaluation Hazard ratio (95% confidence interval) P value

Tumour size T1 (≤ 2 mm) 1

T2 (2 < T ≤ 5 mm) 1.45 (0.40 to 5.21) 0.567

T3 (>5 mm) 3.57 (0.88 to 14.4) 0.073

Lymph node stage Negative 1

1 to 3 lymph nodes 0.47 (0.10 to 2.16) 0.338

>3 lymph nodes 2.49 (1.02 to 6.03) 0.044

Tumour grade Grade I a

Grade II 1

Grade III 2.85 (1.05 to 7.57) 0.040

HER-2/neu expression HER-2/neu-negative 1

HER-2/neu-positive 2.04 (0.90 to 4.61) 0.086

FOXA1 expression FOXA1-positive 1

FOXA1-negative 3.61 (0.83 to 15.60) 0.086

GATA-3 expression GATA-3-positive 1

GATA-3-negative 1.53 (0.44 to 5.28) 0.495

FOXA-1, forkhead box A1; GATA-3, GATA binding protein 3; HER-2, human epidermal growth factor receptor 2. aThere were no oestrogen-
receptor-negative cases classified as grade I among the patients with available follow-up information.
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epithelial cells has been already widely described
[9,22,34,38]. Moreover, GATA-3-induced genes were found
in the luminal cluster of gene expression studies, highlighting
its putative ability to maintain a luminal differentiated pheno-
type [34].

In the past, several studies have shown that FOXA1 expres-
sion and GATA-3 expression are among the best predictors of
ERα-positive status [9-12,26,31,33,34]. Additionally, some
reports have proven that FOXA1 expression is able to signifi-
cantly differentiate patients with a better survival within the
luminal A subgroup, or even within the ERα-positive cohort
(including luminal A and luminal B subtypes) [10,31]. These
authors claim that FOXA1 can serve as a clinical marker for the
luminal A subtype, and that its prognostic ability in these low-
risk breast cancers may prove to be useful in clinical treatment
decisions. In contrast, Habashy and colleagues did not find
any clinical relevance in the immunohistochemical assessment
of FOXA1 in breast cancer routine practice [33], since it was
not able to stratify ER-positive (luminal-like) tumours into clini-
cally significant subgroups.

Although never assessed, the difference between these stud-
ies can be possibly due to the endocrine and chemotherapy
administered to the different series of patients, which can
block the ERα-associated pathways and confound interpreta-
tion of the results. Moreover, since ERα, FOXA1 and GATA-3
show an intrinsic high correlation between themselves, the
prognostic and predictive values of these markers may simply
reflect this high expression association and the described bio-
logical interactions.

In order to study whether there was a prognostic value for the
expression of these two transcription factors in the absence of
ERα expression, we therefore decided to perform an explora-
tory subgroup analysis in a cohort of ERα-negative patients.
The aim was to test, for the first time, the possible utility of
FOXA1 and/or GATA-3 as classifiers for breast cancer recur-
rence in this high-risk subset of patients, revealing a stratifica-
tion of ER-negative tumours with different biological
behaviours. Interestingly, only FOXA1-positive expression
showed a clear protective effect for breast cancer relapse in
this cohort of patients with poor prognosis. Patients with loss
of FOXA1 tumour expression showed an increased risk for
breast cancer recurrence compared with the patients that
were positive for this marker. The relative risk estimate was
higher than that calculated for HER-2 positivity, which is a
well-known prognostic factor in hormone-independent breast
carcinomas. Moreover, the multivariate analysis, including the
tumour size and lymph node status, demonstrated the inde-
pendent value of FOXA1 as a predictor of patient outcome in
ERα-negative tumours.

In conclusion, our results confirmed the strong association
between ERα and FOXA1 in breast cancer and confirmed the

role of FOXA1 as a significant breast cancer predictor of good
outcome in univariate analysis, directly associated with luminal
A and inversely associated with basal-like subtype of breast
cancer. GATA-3 was neither a predictor for breast cancer dis-
ease-free survival nor a prognostic marker, but was shown to
be an important and robust luminal differentiation marker, even
stronger than FOXA1. Based on these findings, the expres-
sion assessment of FOXA1 and GATA-3 in breast cancer
patients can provide important clinical information – not only
regarding the favourable prognostic nature and tumour behav-
iour, but the expression can also constitute an important tool
to define and assess the luminal A subtype in breast cancer.
We demonstrated that FOXA1 expression also has an impor-
tant role as breast cancer predictor of good outcome in ER-
negative breast carcinomas.

Based on our results, we can consider that the expression of
FOXA1, as an ER-associated gene, may be important to the
hormone-responsive phenotype of breast cancer, regardless
of the tumour ER status. The absence of FOXA1 in luminal/ER-
positive breast cancer patients may contribute to identify the
30% of ER-positive tumours that are not hormone responsive.
Additionally, because of the known cross-talk and functional
network between FOXA1 and the regulation of ERα and its
downstream targets, the expression of FOXA1 in ER-negative
breast cancer patients may represent the existence of an alter-
native oestradiol-independent response pathway, which may
allow the 5 to 15% of ER-negative tumours to become respon-
sive to endocrine-driven therapies. The clinical implication of
these findings requires a larger prospective cohort, especially
to evaluate the value of FOXA1 in the therapeutic response
setting. Nevertheless, the current study already represents an
important step forward in the overview the ER-negative type of
tumours, with putative future benefit for staging and treatment
of these patients.

Conclusions
Current challenges in oncology include prediction of tumour
behaviour and selection of effective therapy for individual treat-
ment based on molecular targets. In breast cancer, ERα
expression alone has been used to guide systemic therapy
and to estimate patient prognosis. Not all ER-positive carcino-
mas, however, show comparable prognosis or react similarly
to anti-hormonal therapy, and some ER-negative tumours curi-
ously respond to therapy. This clinical evidence demonstrates
that breast carcinomas are extremely heterogeneous, empha-
sizing the need for improving the molecular classification
within tumours to better predict their clinical behaviour and the
patient's response to current therapies.

The identification of transcription factors that control the ERα
pathway provide an opportunity to identify specific subsets of
patients that will have a good prognosis, as well as who will
benefit from endocrine treatment. In the present work, we
studied FOXA1 and GATA-3 expression in order to evaluate
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whether the proteins would predict the recurrence behaviour
of breast cancer patients. We verified that patients harbouring
FOXA1-positive and ER-negative tumours show a better dis-
ease-free survival, demonstrating the clinical importance of
these two biomarkers in breast cancer molecular classification
and prognosis. The analyses showed that FOXA1 and ERα
should be used together in order to subclassify breast carci-
nomas and to predict the outcome of breast cancer patients.
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