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Abstract

Introduction Basal-like breast cancers (BLBC) frequently
overexpress the epidermal growth factor receptor (EGFR) and
subsequently have high levels of signaling through the MAP
kinase pathway, which is thought to contribute to their
aggressive behavior. While we have previously reported the
expression of Y-box binding protein-1 (YB-1) in 73% of BLBC,
it is unclear whether it can be regulated by a component of the
MAP kinase signaling pathway. Phosphorylation of YB-1 at the
serine 102 residue is required for transcriptional activation of
growth-enhancing genes, such as EGFR. Using Motifscan we
identified p90 ribosomal S6 kinase (RSK) as a potential
candidate for activating YB-1.

Methods Inhibition of RSK1 and RSK2 was achieved using
siRNA and the small molecule SLO101. RSK1, RSK2, activated
RSK and kinase-dead RSK were expressed in HCC1937 cells.
Kinase assays were performed to illustrate direct
phosphorylation of YB-1 by RSK. The impact of inhibiting RSK
on YB-1 function was measured by luciferase assays and
chromatin immunoprecipitation.

Results Using an in vitro kinase assay, RSK1 and RSK2 were
shown to directly phosphorylate YB-1. Interestingly, they were

more effective activators of YB-1 than AKT or another novel YB-
1 kinase, PKCa. Phosphorylation of YB-1 (serine 102 residue)
is blocked by inhibition of the MAP kinase pathway or by
perturbing RSK1/RSK2 with siRNA or SLO101. In immortalized
breast epithelial cells where RSK is active yet AKT is not, YB-1
is phosphorylated. Supporting this observation, RSK2/- mouse
embryo fibroblasts lose the ability to phosphorylate YB-1 in
response to epidermal growth factor. This subsequently
interfered with the ability of YB-1 to regulate the expression of
EGFR. The RSK inhibitor SLO101 decreased the ability of YB-1
to bind the promoter, transactivate and ultimately reduce EGFR
expression. In concordance with these results the expression of
constitutively active RSK1 increased YB-1 phosphorylation, yet
the kinase-dead RSK did not.

Conclusions We therefore conclude that RSK1/RSK2 are
novel activators of YB-1, able to phosphorylate the serine 102
residue. This provides a newly described mechanism whereby
YB-1 is activated in breast cancer. This implicates the EGFR/
RSK/YB-1 pathway as an important component of BLBC,
providing an important opportunity for therapeutic intervention.

Introduction
Basal-like breast cancers (BLBC) are clinically challenging

cases that are not amenable to current targeted therapies due
to the absence of estrogen receptor or HER-2 expression.

BLBC: basal-like breast cancers; DMEM: Dulbecco's modified eagle medium; EGF: epidermal growth factor; EGFR: epidermal growth factor recep-
tor; ELB: egg lysis buffer; ERK: extracellular signal-regulated kinases; FBS: fetal bovine serum; MAP: mitogen-activated protein; MEF: mouse embryo
fibroblast; PKCa.: protein kinase C alpha; PMA: phorbal 12-myristate 13-acetate; RIPA: radio immunoprecipitation assay; RSK: p90 ribosomal S6
kinase; S102: serine 102 residue; siRNA: small interfering RNA; YB-1: Y-box binding factor-1.
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Treatment therefore depends on aggressive chemotherapy,
yet relapse rates and overall survival are poor. Identification of
potential therapeutic targets is an ongoing challenge.

Y-box binding protein-1 (YB-1) is an oncogenic transcription/
translation factor that is overexpressed in a number of cancer
types, including breast cancer [1,2], prostate cancer [3], bone
cancer [4], lung cancer [5,6], colon cancer [7], muscle cancer
[8] and, most recently, pediatric brain tumours [9]. In particu-
lar, we have shown YB-1 to be expressed in a high proportion
of BLBC [1], where it is associated with high rates of relapse
[10]. Overexpression of YB-1 in breast cancer cells results in
an increase in monolayer and enhanced anchorage independ-
ent growth [11]. Further, a study by Bergmann and colleagues
demonstrated that targeted expression of YB-1 in the mam-
mary gland of mice resulted in tumour formation with 100%
penetrance [12]. Conversely, we find that suppressing YB-1
using RNA interference inhibits tumour cell growth in vitro [1]
and in vivo [13]. The role of YB-1 in promoting growth of
breast cancer cells stems from its original identification as a
DNA binding protein, interacting with the regulatory elements
of epidermal growth factor receptor (EGFR), HER-2 [14] and
c-MYC [15].

In the succeeding 20 years since these findings, many more
growth-promoting genes have been identified as YB-1 targets,
including topoisomerase Il [7], DNA polymerase alpha and
proliferating cell nuclear antigen (PCNA) [16] to name just a
few examples. The question that arises is how YB-1 becomes
activated to induce the expression of these genes so central
to the development of cancer.

We previously demonstrated the importance of phosphoryla-
tion at the serine 102 residue (S102) to the functions of YB-1
[1,2]. This site lies in the highly conserved cold-shock domain
and is key for YB-1 nuclear localization and its ability to trans-
form cells [11]. Recent studies have provided evidence for the
vital role of phosphorylation this residue plays in the binding of
YB-1 to, and the regulation of, the EGFR promoter and subse-
quent protein production [1,2]. In short, we have shown MCF-
7 breast cancer cells overexpressing YB-1 have elevated lev-
els of EGFR mRNA and protein [2]. Subsequently we reported
that YB-1 bound the EGFR promoter in BLBC cells in a S102
phosphorylation-dependent manner [1]. Several studies have
also implicated the importance of S102 phosphorylation in
promoting translation [17,18]. Phosphorylation of S102 is
therefore important for activating the transcriptional and trans-
lational control imparted by YB-1.

We previously demonstrated that AKT binds directly to YB-1
and phosphorylates the S102 site [11], an observation subse-
quently confirmed in NIH3T3 cells [18]. A recent study by
Basaki and colleagues showed that serum stimulated YB-1
nuclear localization in ovarian cells and, further, this transloca-
tion was prevented by inhibiting AKT [19].
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The Phosphatidylinositol-3 kinase (PI3K) pathway may not be
the major contributor to growth in BLBC. EGFR is expressed
in at least 50% of BLBC [20] and was recently used as one of
five markers to identify aggressive BLBC [21]. We previously
found that, by inhibiting EGFR with Iressa, we could slow the
growth of BLBC cells [1]. Since this receptor signals through
the MAP kinase pathway, we questioned whether other
kinases are able to phosphorylate this key residue. We there-
fore took a bioinformatics approach to identify potential candi-
dates, and determined that p90 ribosomal S6 kinase (RSK)
may also phosphorylate YB-1 at S102 [22]. RSK1 to RSK4
are members of the AGC serine/threonine superfamily of
kinases [23] that lie downstream of the MAP kinase pathway.
RSKs are a direct substrate of ERK [24], but also require
phosphorylation by phosphoinositide-dependent protein
kinase-1 (PDK-1) [25] and subsequent autophosphorylation
steps [26].

The importance of RSK family members in diseases such as
cancer is just being appreciated. Of the four isoforms, RSK1
and RSK2 are the most well characterized, and overexpres-
sion has been associated with multiple cancer types such as
prostate cancer [27] and those of hematologic malignancies
[28]. Recent studies showed that RSK3 may actually be a
tumour suppressor in ovarian cancer [29], and RSK4 differed
from the other isoforms in that it was expressed at low levels
and was constitutively active [30]. In breast cancer, a small
study carried out by Smith and colleagues found that both
RSK1 and RSK2 expression levels were elevated in ~50% of
tumours compared with control cases (n =12 controls, n =48
cancers) [31]. We questioned whether RSK1 or RSK2 may
play a role in BLBC because they lie in the MAP kinase path-
way, which is commonly activated in this type of breast cancer
due to overexpression of EGFR. In light of studies showing
that RSK phosphorylates other transcription factors such as
creb, c-fos [32] and the estrogen receptor [33], we contended
that it may play an important role in regulating YB-1.

Materials and methods
Cell lines and reagents

The SUM149, HCC1937, MDA-MB-231 and MDA-MB-468
cells were used as models of BLBC; all are estrogen receptor
negative, progesterone receptor negative and HER-2 negative
[34]. SUM149 cells were purchased from Asterand (Ann
Arbor, MI, USA) and were cultured as previously described
[1]. MDA-MB-231 and MDA-MB-468 (both American Type
Culture Collection, Manassas, VA, USA) cells were grown in
DMEM (Gibco/Invitrogen, Burlington, ON, Canada) supple-
mented with 10% FBS and 100 units/ml penicillin/streptomy-
cin. HCC1937 cells (kind donation from WD Foulkes, McGill
University, QC, Canada) were cultured in RPMI-1640 media
supplemented with 5% FBS, 10 mM HEPES, 4.5 g/l glucose
(Sigma, Oakville, ON, Canada), 1 mM sodium pyruvate
(Sigma) and 100 units/ml penicillin/streptomycin.



HTR-YB#5 (HTRY) are human mammary epithelial cells
immortalized with HPV16, and express YB-1 if induced with
tetracycline [35]. These were maintained in the same media as
SUM149 cells supplemented with 10 ng/ml epidermal growth
factor (provided by author IMB). RSK1/RSK2 specific inhibitor
SL0101 (Toronto Research Chemicals Inc., North York, ON,
Canada) was dissolved in methanol [31,36,37], and
PD098059 (Cell Signaling Technologies, Danvers, MA, USA),
phorbal 12-myristate 13-acetate (PMA) (Sigma) and epider-
mal growth factor (EGF) were dissolved in dimethylsulfoxide
(DMSO).

Growth factor stimulation and drug treatments

SUM149 cells were seeded at a density of 4 x 105 cells in a
six-well plate. Cells were subsequently serum-starved for 24
hours prior to 6 hours treatment with vehicle, PD098059 (20
uM) or SLO101 (50 uM). Treated cells were stimulated with
the following growth factors for 15 minutes before harvesting;
5% FBS/Ham's/F12 (serum stimulation), EGF (25 ng/ml) and
PMA (50 ng/ml), lysed in egg lysis buffer (ELB) and subjected
to western blot analysis [2]. In all other experiments,
HCC1937, MDA-MB-231 and HTRY cells were treated with
100 uM SLO101 and the SUM149 cells with 50 puM for 6
hours. The experiment was performed three times.

Protein extraction and western blot analysis

Protein was extracted from log-growing cells in ELB [2], sup-
plemented with protease and phosphatase inhibitors, and
quantified using the Bradford assay (Biorad, Hercules, CA,
USA). Immunoblotting was performed as previously described
[2]. Specific proteins were detected using the following anti-
bodies: EGFR, 1:1,000 (Stressgen, San Diego, CA, USA);
ERK, 1:1,000 (p44/42 MAP kinase; Cell Signaling Technol-
ogy, Danvers, MA, USA); RSK1, 1:1,000 (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA); RSK2, 1:500 (Santa Cruz
Biotechnology); YB-1, 1:2,000 (Abcam, Cambridge, MA,
USA); P-ERK, 1:500 (Cell Signaling Technology); P-RSKS380,
1:1,000 (Cell Signaling Technology); P-YB-15102, 1:1,500
(Cell Signaling Technology, Danvers, MA, USA); Vinculin,
1:1,000 (Upstate, Temecula, CA, USA); and Pan-actin,
1:1,000 (Cell Signaling Technology). Densitometry was per-
formed where appropriate.

RSK/AKT kinase assay

A synthetic peptidomimetic of the YB-1 S102 region was
manufactured by Sigma with the sequence PRKYLRSVG-
COOH. Kinase assays for RSK1, RSK2, AKT1 and PKCa
were carried out on the peptide and activity was compared
with an optimized control target (100% activity) (SignalChem,
Richmond, BC, Canada). Control target sequences were as
follows: RSK, KRRRLASLR; AKT1, CKRPRAASFAE; PKC,
KRREILSRRPSYR.

The kinase assay reactions consisted of active protein kinase
(250 ng/assay), substrate (optimized, YB-1 peptide or assay
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buffer) (40 uM), radiolabeled 33P-ATP (50 uM in kinase assay
buffer; 25 mM MOPS, 12.5 mM B-glycerol phosphate, 256 mM
MgCl,, 5 mM ethylene glycol tetraacetic acid (EGTA), 2 mM
ethylenediamine tetraacetic acid, 0.25 mM dithiothreitol) to a
final volume of 25 pl. Assays were performed at 30°C for 60
minutes, and then the reaction mixture was dotted on phos-
phocellulose P81 paper and the radioactivity measured. Activ-
ity greater than 5% of the optimized positive control is
considered highly significant.

RSK1/YB-1 kinase assay from cell lysates

MCEF-7 cells stably expressing Flag-YB-1 were serum starved
for 16 hours prior to being lysed in radio immunoprecipitation
assay (RIPA) buffer. As described above, 500 pg lysate was
precleared with protein G agarose for 2 hours. YB-1 was then
immunoprecipitated from the cells by overnight incubation at
4°C with 5 pg anti-Flag M2 antibody (Sigma) followed by 2
hours of incubation with protein G agarose. Complexes were
then collected by centrifugation and washed firstly in Tris-buff-
ered saline/1% NP40 and then once in modified wash buffer
(100 mM Tris, pH 7.4, 50 mM NaCl, 1.5 mM MgCl,, 1 mM eth-
ylenediamine tetraacetic acid, 0.5% NP40). YB-1 was isolated
from protein G through incubation in 0.1 M glycine, pH 3.5, for
5 min at room temperature. Kinase assays were performed for
RSK1 as described above.

Co-immunoprecipitation

Log-growing SUM149 cells were lysed in RIPA buffer supple-
mented with protease inhibitors. Cell lysates were subjected
to a Bradford assay for quantification and 500 pg protein was
used in subsequent immunoprecipitations. For YB-1 pull-
down, lysates were precleared with 60 pl PrecipHen beads
(previously described [2]) for 2 hours at 4°C with rotation, and
the supernatants then incubated with IgY or chicken anti-YB-
1 antibodies (56 ug) overnight at 4°C with rotation. Immuno-
complexes were collected on PrecipHen beads after incuba-
tion at 4°C for 3 hours, by centrifugation. The beads were
washed once with PBS/1% NP40, twice with wash buffer
(100 mM Tris, pH 7.4, 100 mM NaCl, 1.5 mM MgCl,, 1 mM
ethylenediamine tetraacetic acid, 0.5% NP40) and the pro-
teins eluted by boiling in 5x loading dye for 5 minutes.

Similarly, for total RSK1/RSK2 immunoprecipitations, lysates
(500 pg) were precleared with 35 pl protein G agarose for 2
hours prior to incubation with either control IgG or RSK1 or
RSK2 antibodies (5 pg) (Santa Cruz Biotechnology) for 16
hours at 4°C with rotation. Inmunocomplexes were retrieved
through the addition of protein G agarose for 2 hours. Immu-
noprecipitated proteins were resolved on acrylamide gels and
immunoblotted as described above. Horseradish peroxidase
protein A was used as the secondary antibody to avoid detec-
tion of denatured immunoglobulins (1:2,000; Amersham Bio-
sciences, Piscataway, NJ, USA).
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RSK1 and RSK2 siRNA transfection

SUM149 cells (4 x 105/well) were transfected with 20 nM
siRNA (Qiagen, Mississauga, ON, Canada) using Hiperfect
(Qiagen). The fast-forward protocol was followed as
described by the manufacturer. RSK1 and RSK2 siRNA
sequences were as previously described [38].

Transient transfection

HCC1937 cells were seeded at a density of 4 x 105in a six-
well plate 24 hours prior to transfection. Cells were trans-
fected with 2 pg plasmid DNA using 10 pl Lipofectamine
2000/well as per instructions, and were lysed at 24 hours.
Plasmid constructs for RSK overexpression studies were
empty vectors (pRK7 and pKH3), pKH3-avRSK1, pKH3-
mRSK2, pRK7-Myr-avRSK1 and pKH3-avRSK1(K112/464R)
(kinase-dead) as previously described [39]. The experiment
was carried out three times.

RSK2/- mouse embryo fibroblasts

Wild-type and RSK2/- mouse embryo fibroblasts (MEFs) were
cultured as described previously [40], and were stimulated
with EGF (10 ng/ml) and cell lysates collected at 5, 15, 30, 60
and 120 minutes (kind donation from Dr YY Cho, University of
Minnesota, Austin, MN, USA). Two sets of samples were ana-
lyzed.

Luciferase assay

SUM149 cells were plated in six-well plates (4 x 105 cells/
well) and transfected with a luciferase construct containing
the first 1 kb of the EGFR promoter (pER1) (kind gift from
Alfred C. Johnson US National Cancer Institute, Bethesda,
MD, USA — previously described in [1,41]). Cells were trans-
fected with a total of 1.5 ug DNA using Lipofectamine 2000
(Invitrogen). To account for transfection efficiency, cells were
co-transfected with a renilla-expressing plasmid (pRL-TK,
10:1 luciferase:renilla; Promega). After 18 hours, cells were
treated with vehicle or SLO101 (50 pM) for 6 hours prior to
harvesting in 1 x passive lysis buffer (Promega). Luciferase
activity was measured and normalized to the renilla reading
from the same sample.

Chromatin immunoprecipitation

SUM149 cells (1 x 107 cells) were treated with vehicle,
PD098059 (20 uM) or SLO101 (50 uM) for 6 hours.
Crosslinks were established between protein and DNA follow-
ing 15 minutes of incubation with 1% formaldehyde. Cells
were washed and collected by centrifugation. Chromatin
immunoprecipitation with anti-P-YB-1 antibody (gift from Dr P
Mertens, University Hospital RWTH — Aachen, Aachen, Ger-
many) was carried out as described previously [1,2]. The
resulting DNA was amplified using the EGFR2a primers (pre-
viously described [1,2]).
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Results

YB-1 is phosphorylated by the MAP kinase pathway
While we have previously established that AKT can interact
and phosphorylate YB-15102 [11], it is unclear whether other
kinases are also able to perform this function. Serum-starved
SUM149 cells were stimulated with 5% FBS/growth media,
EGF or the tumour promoter PMA. All of these stimuli acti-
vated signaling through the MAP kinase/ERK pathway and led
to the induction of P-YB-15102 (Figure 1a). The activation of the
MAP kinase/RSK/YB-1 cascade was completely reversible by
pretreating the cells with the MEK inhibitor PD098059 (Figure
1b). SUM149 cells secrete amphiregulin, resulting in activa-
tion of EGFR even in serum-free conditions [42]. We therefore
also treated the cells with the EGFR inhibitor Iressa. As
expected, inhibiting EGFR signaling with Iressa decreased P-
YB-15192 (Figure 1c). By screening a panel of BLBC cell lines,
we noted that YB-1 was activated at varying levels but, inter-
estingly, the level of phosphorylation did not always correlate
with the expression of P-AKTS473, RSK was activated in all cell
lines including the MDA-MB-231 cells. These cells do not
express P-AKTS473; however, the level of P-YB-15102 js com-
parable with that of the SUM149 cells, which express acti-
vated AKT as well as P-RSKS380 (Figure 1d). Similarly, in the
immortalized normal breast cell line HTRY, P-RSKS380 js also
elevated along with P-YB-15102, These cells also do not
express activated AKT (Figure 1e). It therefore appears that
activation of the MAP kinase pathway can also lead to the
induction of P-YB-15102, This is of particular importance in
BLBC given the role of EGFR signaling in this particular type
of breast cancer.

RSK phosphorylates YB-1 at serine residue 102

To further explore the role of the MAP kinase pathway in the
phosphorylation of YB-15102 we next investigated the effect of
modulating RSK, which lies downstream of ERK, either phar-
macologically or genetically. Initially, using an in vitro kinase
assay, we show that RSK1 and RSK2 are able to directly
phosphorylate an YB-1 S102 peptide that mimics the region
surrounding the S102 site (Table 1). The activity of RSK1 and
RSK2 towards the YB-1 target peptide was 80% and 78%
compared with the activity of these kinases towards the opti-
mized positive control target, respectively (Table 1). Interest-
ingly, this was greater than the activity of AKT1 towards the
YB-1 target (7% of optimized control activity) (Table 1). The
activity of AKT1, however, was still considered significant in
this assay. Of note, the YB-1 target peptide was also phos-
phorylated by PKCa (Table 1). Weak RSK1 kinase activity
was also detected when using flag-tagged YB-1 immunopre-
cipitated from stably expressing MCF-7 cells as a substrate
(data not shown). In this case the salts required for the protein
isolation compromised the level of activity.

We also found that, following immunoprecipitation of endog-
enous YB-1 from log-growing cells, RSK1 is present in the
complex (Figure 2a, left). Similarly, by performing the reverse
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Y-box binding factor-1 is phosphorylated by the MAP kinase pathway. (a) Stimulation of SUM149 cells (SS) with serum, epidermal growth fac-
tor (EGF) and phorbal 12-myristate 13-acetate (PMA) (15 min) results in the phosphorylation of Y-box binding factor-1 (YB-1) at the serine 102 res-
idue (S102). There is no change in total YB-1 levels. Phosphorylation of ERK indicates activation of the MAP kinase pathway. Total ERK and vinculin
indicate equal loading. (b) Inhibition of MAP kinase signaling with PD098059 results in the loss of growth-factor induced P-YB-15102 (n = 3). (c)
Treating SUM149 cells with Iressa (2 uM) results in a decrease in P-YB-15102, (d) SUM149, MDA-MB-231, HCC1937 and MDA-MB-468 breast
cancer cell lines were compared for expression level of P-RSKS380, P-AKTS473 P-ERKThr202/Tyr204 gnd P-YB-15102, The MDA-MB-231 cells express
high levels of P-YB-1 in the absence of P-AKTS473; however, they do express P-RSKS380, (e) Immortalized human mammary epithelial cells (HTRY)

express P-RSKS380, P-ERKThr202/Tyr204 gnd P-YB-15102, but not P-AKT. DMSO, dimethylsulfoxide.

experiment, immunoprecipitation of RSK1, YB-1 was detected
(Figure 2a, right). We were unable to determine an interaction
of RSK2 with YB-1 due to a lack of suitable antibody for this
application. Since RSK2 could not be detected following YB-
1 immunoprecipitation, we believe the interaction between the
two proteins maybe weaker. This prompted us to investigate
the consequence of inhibiting RSK1 or RSK2 on YB-1 phos-
phorylation. Following suppression of RSK1 expression with
siRNA for 72 hours, the level of P-YB-15102 was greatly
reduced in SUM149 cells (Figure 2b). The loss of RSK2 also
resulted in a decrease in YB-1 phosphorylation, although to a
lesser degree than that by RSK1. Simultaneous knockdown of
RSK1 and RSK2 produced an effect on the level of P-YB-
18102 greater than either gene knockdown alone (Figure 2b).
The levels of total YB-1 and actin remained unchanged (Figure
2b). In a complementary study, introducing exogenous RSK1,

RSK2 or a constitutively active RSK1 (myr-RSK) for 24 hours
induced P-YB-15102in HCC1937 cells (Figure 2c) compared
with cells transfected with the empty vectors pKH3 and pRK?7
(myr-RSK empty vector). The kinase-dead RSK1 mutant, how-
ever, was unable to phosphorylate YB-1 at S102 (Figure 2c).
Taking an alternative genetic approach, we turned to using
MEFs that have a homozygous deletion for RSK2 [40]. Loss of
RSK2 prevented the induction of P-YB-15102 following EGF
stimulation in a time-dependent manner, as compared with the
wild-type MEFs (Figure 2d). ERK and RSK were still phospho-
rylated in response to EGF in the RSK27/- MEFs (data not
shown). Interestingly, the YB-1 downstream target gene
EGFR could be induced in the wild-type cells after 120 min-
utes; however, this was not the case in the RSK27 cells (rela-
tive intensity of EGFR expression compared with wild-type
cells at each time point given under blot) (Figure 2d).
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Table 1

Activity of RSK1, AKT1 and PKCo against the Y-box binding
factor-1(YB-1) serine 102 residue peptide compared with the
optimized positive control substrate

Kinase Activity against YB-1 peptide compared with control (%)
RSK1 80+ 1.04

RSK2 78+ 0.78

AKT1 7+0.7

PKCo 19%1.14

The p90 ribosomal S6 kinases RSK1 and RSK2 phosphorylated a
peptide that mimics the serine 102 residue region of YB-1 with 80%
and 78% efficiency compared with the positive control substrate,
respectively. Both AKT1 and PKCa were also able to phosphorylate
the YB-1 peptide — 7% and 19%, respectively, compared with the
positive control. Activity for control substrates for each kinase is
normalized to 100%. A change > 5% is considered highly significant
in this assay.

We then used the RSK1/RSK2 specific inhibitor SLO101 [31]
to confirm these findings. SL0O101 was used at concentrations
in line with previous studies in MCF-7 cells [31]. Following
treatment of SUM149 cells with SLO101 (50 uM) for between
6 and 16 hours, we observed a reduction in P-YB-15102 gt all
time points whilst the YB-1 level remained constant (Figure
3a). This finding was confirmed in the HCC1937, MDA-MB-
231 and HTRY cells treated for 6 hours with SLO101 (100
uM) (Figure 3b,c). Likewise, pretreating SUM149 cells with
SLO101 prevented the stimulation of P-YB-15102 by serum,
EGF or PMA after 6 hours compared with cells treated with
the vehicle (methanol) control (Figure 3d). P-RSKS380is phos-
phorylated by the C-terminal kinase, and SLO101 inhibits the
N-terminal kinase activity. One therefore cannot measure the
effect of SLO101 by studying P-RSKS380,

Inhibition of RSK functionally inactivates YB-1

We have previously established the importance of phosphor-
ylation of YB-15102 for its transcriptional activity in breast can-
cer [2], and in particular the regulation of EGFR in BLBC.
Firstly, we performed a reporter assay using a 1 kb EGFR-luci-
ferase construct that contains an YB-1 binding site at -968
base pairs [1]. Knocking down YB-1 with siRNA or inhibiting
signaling with PD098059 decreased the EGFR promoter
activity by ~80% (P < 0.001) (Figure 4a), while inhibition fur-
ther downstream with the RSK inhibitor SLO101 decreased
EGFR reporter activity by 30% (P = 0.02) (Figure 4a). Con-
sistent with this observation, PD098059 and SLO101 pre-
vented P-YB-1(S102) from binding to the EGFR promoter
based on chromatin immunoprecipitation (Figure 4b).

Inhibition of RSK2 by siRNA in SUM149 cells (Figure 4c) led
to a decrease in EGFR expression. This downregulation was
mirrored in HTRY and MDA-MB-231 cells following treatment
with SLO101 (Figure 4d); densitometric analysis for MDA-MB-
231 gave a 35% decrease. We thereby conclude that there is
a feed-forward signaling pathway in BLBC where EGF binds
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to the EGFR, which in turn leads to activation of the MAP
kinase/RSK pathway resulting in phosphorylation of YB-1 at
S102. Activated AKT and PKCa also have the ability to acti-
vate YB-1. Following this, P-YB-15192 binds to and transacti-
vates the EGFR gene, further fueling the growth potential of
BLBC (Figure 4e).

Discussion

We reveal for the first time that phosphorylation of YB-1 at the
S102 location is not only carried out by the PI3K cascade but
that signaling through the MAP kinase pathway can also acti-
vate this transcription factor. This is particularly relevant in
BLBC, where EGFR is overexpressed in over one-half of the
cases. More specifically it is the serine/threonine kinases
RSK1 and RSK2 that are able to phosphorylate YB-1 at the
key S102 residue in BLBC cells. Not only do we identify RSK1
and RSK2 as proteins that can directly interact and phospho-
rylate YB-1, but they have a much greater efficiency towards
the target than AKT1 does. In fact, we also identified PKCa. as
having greater kinase activity towards YB-1 than AKT1, a find-
ing that warrants future investigation. Phosphorylated RSK is
also expressed in cell lines where we find abundant P-YB-
18102 and a lack of active AKT; in particular the MDA-MB-231
cells and the immortalized human mammary epithelial cells,
where we were unable to detect any P-AKTS473, The RSK1/
RSK2-specific inhibitor SLO101 [31,43], as well as RSK1-tar-
geted or RSK2-targeted siRNA, were able to reduce the phos-
phorylation of YB-1 at S102 even following induction by the
classic tumour promoter PMA. Furthermore, we observed a
reduced level of P-YB-15102in RSK2- MEFs. Finally, inhibition
of RSK prevented P-YB-15102 binding to the EGFR promoter
and ultimately reduced the protein expression of this receptor
tyrosine kinase.

Our data are consistent with a recent study by Hoadley and
colleagues reporting that EGFR and genes encoding compo-
nents of the MAP kinase pathway were associated with the
basal-like subtype, while AKT1 was not [44]. Interestingly, we
found in our four BLBC cell lines that ERK2 expression was
predominantly expressed over ERK1. This is in concordance
with the analysis observed by Hoadley and colleagues, which
shows expression of ERK2 was increased in the BLBC clus-
ter, but this was not the case for ERK1 [44]. It is thus conceiv-
able that ERK2 may activate RSK and therefore YB-1 in basal-
like tumours. In this context it is also of interest that we in fact
find YB-18102 to be a better substrate for RSK1 and RSK2
than AKT1. ERK2 may also directly phosphorylate YB-1 and
therefore promotes its ability to transactivate target genes. In
support of this idea, ERK2 promotes the transactivation of vas-
cular endothelial growth factor by YB-1 [45]. This occurs
when ERK2 phosphorylates the N-terminal region of YB-1; the
region of the protein required for gene transactivation [16].
More recently, we identified a putative ERK phosphorylation
site at serine 36 in this same region of the protein using Motif
Scanner [22]; however, this has not been validated experimen-
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p90 ribosomal S6 kinase phosphorylates Y-box binding factor-1 at the serine 102 residue. (a) p90 ribosomal S6 kinase RSK1 is detected by
immunoblotting following immunoprecipitation (IP) with Y-box binding factor-1 (YB-1) in SUM149 cells. Inmunoprecipitation with IgY antibody was
used to account for nonspecific binding (left). YB-1 is detected by pulling down and immunoblotting for RSK1. Immunoprecipitations performed with
IgG antibody were used to account for nonspecific binding. Secondary detection was performed with horseradish peroxidase protein A (right). WB,
western blot. (b) Transfection of SUM149 cells with RSK1, with RSK2 or with RSK1 and RSK2 siRNA for 72 hours reduces P-YB-15102 while total
YB-1 remains unchanged. Actin acts as a loading control (n = 3). (¢) HCC1937 cells transfected with RSK1 or activated RSK (Myr-RSK1) express
elevated levels of P-YB-15102 compared with the control vector pKH3 (pRK7 for myr-RSK). A kinase-dead form of RSK (RSK1 KD) failed to induce
P-YB-18102 and was comparable with the control (n = 3). (d) RSK27- mouse embryo fibroblasts (MEFs) stimulated with epidermal growth factor
(EGF) for a designated amount of time contain less P-YB-15102 than the wild-type mice. Epidermal growth factor receptor (EGFR) is also reduced,
unlike RSK1 that was expressed at a comparable level in both sets of MEFs. The RSK2 immunoblot confirms the genotype of the mice, and actin
was used a loading control. The relative expression levels of EGFR in the RSK27- MEFs compared with wild-type MEFs are shown under the EGFR
blot (n = 2). Citrl, control.

tally. While speculative at this point, if ERK does phosphor-
ylate the transactivating domain of YB-1 this could explain why
inhibiting ERK activity with PD098059 was better than
SLO101 at suppressing EGFR reporter activity. In theory,
inhibiting ERK2 would directly decrease phosphorylation of
YB-1 at S36 at the N-terminal and indirectly block RSK from
phosphorylating S102. These studies indicate that the MAP
kinase pathway would have broad effects on YB-1.

While the emphasis of this study has been on BLBC, EGFR is
equally important in promoting growth signals in other types of
breast cancer. For example, EGFR forms heterodimers with

Her-2 to engage signaling through either the MAPK or AKT
pathways, which perhaps also involves RSK as well as AKT.
This obviously could be important in stimulating the growth of
breast cancer cells harboring amplified Her-2. Beyond breast
cancer, we suspect that the relationship between RSK and
YB-1 could be important in other malignancies. A study by
Cho and colleagues demonstrated that RSK2 was a trans-
forming gene, since stable expression in skin cells increased
the colony number in anchorage-independent conditions [40].
Conversely, knockdown of RSK2 reduced colony formation
even in the presence of constitutively active oncogenic Ras
[40]. Other studies implicate RSK2 in transmitting the prosur-
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modulates the ability of Y-box binding factor-1 (YB-1) to act as a transcription factor for epidermal growth factor receptor (EGFR). (a) EGFR pro-
moter activity in SUM149 cells was reduced by 80% following knockdown of YB-1 or treatment with PD098059 (***P < 0.001) and by 30% (*P=
0.02) following treatment with SL0101 (50 uM). (b) Binding of P-YB-15192to the EGFR promoter is reduced in the SUM149 cells following treat-
ment with PD098059 (lane 4 compared with lane 3 (vehicle)) or SL0O101 (50 uM) (lane 11 compared with lane 10 (vehicle)). IgG immunoprecipita-
tion acts as a negative control. Input samples show amplification of the region in the cross-linked cells prior to immunoprecipitation (n = 2). DMSO,
dimethylsulfoxide. (c) Transfection with RSK2 siRNA for 72 hours led to a decrease in EGFR expression in SUM149 cells. (d) Treatment of immor-
talized breast mammary epithelial cells (HTRY) (10 hours) or MDA-MB-231 cancer cells (12 hours) with SLO101 results in loss of P-YB-18102and a
concomitant reduction in EGFR. (e€) Model demonstrating the positive feedback loop generated on the activation of YB-1 by EGFR. Ligand binding
to the receptor activates signaling pathways such as MAP kinase, resulting in the phosphorylation of RSK. Once the kinase is fully activated, it phos-
phorylates YB-1 at S102 — subsequently allowing YB-1 to play a role in promoting translation and to enter the nucleus as a transcription factor. AKT
and PKCa can also activate YB-1 following growth factor stimulation. On binding to inverse CAAT boxes, YB-1 promotes the transcription of genes
such as EGFR - resulting in increased surface expression of the receptor. Ctrl, control.
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vival and proliferative signals from oncogenic mutant receptor
tyrosine kinase FGFR3 in multiple myeloma, resulting in cell
transformation [28,46]. Interestingly, YB-1 has been impli-
cated in the survival and progression of multiple myeloma cells
— the expression correlating with rapid proliferation and poor
differentiation [47]. We therefore postulate a model where
RSK is activated through aberrant tyrosine kinase signaling,
resulting in the subsequent phosphorylation of YB-1. In this
way the cell will be influenced by any number of a diverse col-
lection of genes that YB-1 has been shown to regulate, such
as EGFR [1,14], Her-2 [14], topoisomerase Il [5,7] and the
multidrug resistance gene [48,49]. This regulation in fact may
result in a positive feedback loop in the case of genes such as
EGFR.

Beyond regulating transcription, YB-1 also promotes transla-
tion, alternative splicing, RNA transport and DNA repair
[17,18,50-52]. Whether phosphorylation of YB-1 at S102 is
important for these events is not known. Interestingly, RSK
itself promotes translation through several mechanisms
[23,39,53,54]; therefore, the role of these two proteins acting
together in this process needs to be further investigated.

Conclusion

We conclude that RSK1 and RSK2 are able to phosphorylate
YB-15102) providing a newly described mechanism whereby
this transcription factor is activated in breast cancer. In fact,
RSK activates YB-1 more effectively than AKT and may there-
fore be the major facilitator of YB-1 function in BLBC. Interest
in developing small molecules against RSK has increased over
the past 2 years, and we believe this could be an important
opportunity for therapeutic intervention. As RSK has never
before been associated with BLBC, we therefore introduce a
new mechanistic understanding and potentially a therapeutic
strategy for treating this aggressive disease.
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