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Abstract

The application of high-throughput genomic technologies has
revealed that individual breast tumors display a variety of molecular
features that require more personalized approaches to treatment.
Several recent studies have demonstrated that a cross-species
analytic approach provides a powerful means to filter through
genetic complexity by identifying evolutionarily conserved genetic
networks that are fundamental to the oncogenic process. Mouse-
human tumor comparisons will provide insights into cellular origins
of tumor subtypes, define interactive oncogenetic networks,
identify potential novel therapeutic targets, and further validate as
well as guide the selection of genetically engineered mouse
models for preclinical testing.

Introduction

Within the past decade, high-throughput genomic tech-
nologies have revolutionized the study of breast cancer.
Molecularly distinct tumor subtypes of human breast cancer
have been identified and appear to arise from distinct pro-
genitor lineages. These subtypes display gene expression
signatures that are predictive for disease progression, prog-
nosis, and response to therapy. Since survival rates for breast
cancer have improved relatively little over the past two
decades, this high-definition molecular characterization of
tumor subtypes has the potential to offer new avenues for
discovery of novel therapeutic targets to treat breast cancer.
However, genetic complexity in diverse human populations,
differences between experimental platforms, experimental
designs, and improper statistical analyses [1] have contri-
buted to the tremendous challenges of identifying the func-
tionally most significant gene signatures and genetic net-
works that are critical to the oncogenic process.

One approach to improving the discovery of important
genetic networks involved in cancer development and
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progression has been to use relevant genetically engineered
mouse (GEM) models of mammary cancer in mouse-human
comparisons to identify evolutionarily conserved genetic
alterations shared in tumorigenesis in the two species.
Recent work from several groups has applied this analytic
approach to a number of cancer types, including breast
cancer. This review will focus on how cross-species compari-
sons of gene expression, genome copy number changes, and
bioinformatic analyses have improved our understanding of
how particular mammary cancer models represent specific
subtypes of human breast cancer. These analyses have led to
an increased understanding of the cellular origins of the
subtypes of breast cancer, distinctions between molecular
networks in different tumor subtypes, stem cell biology,
genes involved in metastatic progression, and improved
selection of GEM models for preclinical testing of preventive
and therapeutic strategies.

Identification of evolutionarily conserved
genetic alterations in breast cancer subtypes
through mouse-human gene expression
comparisons

At least five molecularly distinct subtypes of breast cancer
have been identified through the use of high-throughput
genomic technologies [2,3]. While tumor subtypes still
segregate primarily by expression of estrogen receptor (ER),
p53, and ErbB2, the ‘intrinsic’ genetic signatures as defined
by microarray studies are more informative classifiers of tumor
subtypes. Importantly, predictors generated from this
genomic information provide a better means of identifying
patients who may not require adjuvant therapies or those
patients who may not benefit from particular types of
therapies, such as patients with ER* tumors that do not
respond to selective ER modulators [3,4]. Additionally, mining

ECM = extracellular matrix; EGFR = epidermal growth factor receptor; ER = estrogen receptor; GEM = genetically engineered mouse; PR = prog-

esterone receptor.
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genomic information will identify unique gene/pathway inter-
actions that could be particularly useful for the development
of novel, combination, and individualized therapies. However,
screening and testing potentially important molecular targets in
human patients remain problematic due to patient accrual, long
time frames to complete trials, expense, and variability within
patient populations. In this regard, GEM models show great
promise in preclinical drug development, target validation, and
chemoprevention. Through the use of molecular analyses
employing global genomic technologies, mouse models that
represent particular subtypes of human breast cancer are
being identified for more rationally designed preclinical testing.

The identification of distinct expression signatures embedded
in mouse mammary tumor models has helped to decipher
how initiating genetic changes or carcinogens correlate with
particular subtypes of human breast cancer. GEM models of
mammary cancer are especially useful in this endeavor
because tumors arise from defined genetic changes with
relevance to human cancer, including the overexpression of
Myc, ErbB2, Ras, and Wnt, and loss of suppressor gene
functions for p53, Rb, BRCA1, and pTEN [5,6]. Identifying
GEM mammary tumors that have expression patterns similar
to human breast tumor subtypes is an important approach to
finding the evolutionarily conserved mechanisms of tumor
development. Additionally, it is likely that such cross-species
comparisons will provide important insights into cancer
progenitor lineages from which mammary tumors arise with
distinct biologic properties (that is, basal versus luminal and
ER* versus ER~ tumors). Indeed, studies comparing gene
expression signatures of GEM mammary tumor models to
human breast tumors have already begun to identify GEM
models that genetically recapitulate important molecular
features of particular subtypes of human breast cancer [7,8].

Gene expression changes

Hu and colleagues [9] used SAGE (serial analysis of gene
expression) technology to compare gene expression levels in
tumors derived from the mouse p53 null mammary transplant
model and human breast tumors and found that approxi-
mately 72 transcripts were dysregulated in both. Down-
regulation of specific cytokines (LIF, IL6, CXCL1, and CCL2)
was identified in mouse and human tumor samples as well as
similar changes in the expression of genes involved in
apoptosis, proliferation, and differentiation. These data
highlight some of the genetic similarities between mouse and
human breast cancer and support the use of GEM models as
an appropriate resource for better understanding human
breast cancer.

Extensive amounts of high-throughput gene expression array
data have been generated for human breast tumors and
similar data have been emerging for GEM mammary cancer
models. Comparing array data between species has been
extremely challenging for numerous technical and biologic
reasons. For instance, cellular compositions of human and
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GEM tumors may vary with human breast tumors often
containing substantially more stromal components than the
mouse tumors. Additionally, comparing data across different
array platforms where gene and probe compositions are not
identical raises important statistical challenges that are
beyond the scope of this review but that are considered
further elsewhere [10].

However, studies by Herschkowitz and colleagues [8] and
our laboratory [7] have revealed that gene expression signa-
tures associated with individual GEM models of mammary
cancer express genetic profiles that are similar to particular
subtypes of human of breast cancer (Table 1). Herschkowitz
and colleagues [8] used gene expression profiling to
compare 13 different mouse models of mammary cancer with
human breast tumor data sets. Analyses of gene expression
stratified GEM and DMBA-induced mammary cancer models
into five groups: normal mammary gland, tumors with
mesenchymal characteristics, basal/myoepithelial, luminal,
and tumors with mixed characteristics.

Several GEM models display luminal features with expression
of Gata3, luminal keratins K8/18, and the luminal tumor-
defining gene XBP,, including tumors arising from MMTV-
Neu, MMTV-PyMT, WAP-Myc, and WAP-Int3 models [8].
However, unlike a substantial portion of human luminal
tumors, these models are ER~. This suggests that, in these
mouse models, GATA3 (a gene that is coexpressed with ER
in human tumors) may better identify the luminal subtype than
ER expression alone. This also indicates that GATAS3
expression is not sufficient to activate ER expression [11-13].
However, several GEM models develop ER* tumors,
including the p53fr/fe WAP-Cre conditional knockout [14], the
p53~/~ transplant [15], MMTV-Wnt1 [16], and the MMTV-tTA-
TAg-ERo conditional ER expression [17]. Our laboratory has
demonstrated that the ER* tumors from the p53f/fe Wap-Cre
conditional knockout model segregate with luminal type A
human tumors (A.M. Michalowski, T. Qiu, C. Kavanaugh, E.
Lee, D. Medina, X. Xu, C. Deng, J. Powell, J. Shih and J.
Green, unpublished data), whereas the status of the other
tumor models remains to be determined. These results raise
the important issue that the method of generating a GEM
model (knockout versus promoter-driven transgenic) is critical
for determining which cancer progenitor cells may be targeted
for transformation leading to basal or luminal phenotypes.

Another major subtype of breast cancer has been defined by
the expression of basal cell characteristics, including tumors
referred to as triple-negative (ER-, progesterone receptor-
negative [PR-], and ErbB2-), which generally have a poor
prognosis [18]. Several mouse models of mammary cancer
display basal-type characteristics and cluster with human
basal-type tumors, including Brca1+/-, p53+/-, irradiated [19],
Brcaico’co, TgMMTV-Cre, p53+~ [20], and some DMBA-
induced tumors [7,8,21]. In particular, of the mouse models
studied, the expression signature of the C3(1)Tag GEM



Table 1
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Shared genetic and genomic features between mouse models of mammary cancer and human breast tumor subtypes

Mouse genomic

Mouse model Shared features Reference changes Reference
Luminal
p53f/fe, WAP-Cre ER+ A.M. Michalowska,
unpublished data
MMTV-Neu ER-, K8/K18*, and XBP1+ [7]
MMTV-PyMT ER-, K8/K18+*, XBP1+, and GATA3* [7]
WAP-Myc ER-, K8/K18+*, XBP1+, and GATA3* [7]
WAP-Int3 ER-, K8/K18*, and GATA3* [7]
Basal-like
C3(1)Tag ER-, Her2-, kRAS2 amplification, K5+, [6,7] Chromosome 6 [21]
proliferation signature, and poor outcome
Brcal+/-, p53*/- IR K5+ [7]
WAP-Tag Proliferation signature [71
WAP-T, 5, Proliferation signature [7]
Brcatco/co, MMTV-Cre, p53*/~ K5+ [7] Chromosomes 4, 11, [29]
14,15, and X
DMBA-induced adenocarcinoma K5+ [7]
Her2/Neu
Conditional expression of endogenous  ErbB2 amplification [32] Chromosomes 4 [32,33]
Neu and promoter driven-activated Neu and 11
Normal breast
MMTV-Wnt1 K5+ [7]
Claudin-low
Tumors with spindle cell morphology, Low expression: claudins 3, 4, and 7, [7]

including Brca1co/co, MMTV-Cre,
p53*/-, DMBA-induced spindle, and
p53 null transplant

occlucdin, and e-cadherin

ER, estrogen receptor.

model appears to most closely correlate to the human basal-
like subtype [8]. Because T antigen binds to and inactivates
tumor suppressor proteins Rb and p53, SV40-T/t-antigen
expression induces an aggressive and genetically relevant
oncogenic phenotype. In addition, Ki-ras amplification and
overexpression seem to spontaneously occur during tumor
progression in the C3(1)/Tag tumors and accelerate the
tumor phenotype [22]. Importantly, both human basal-like
and C3(1)Tag tumors have amplifications of human chromo-
some 12p12 (mouse chromosome 6), a region that contains
Ki-ras [8,22,23].

Comparing gene expression array data across species is
likely to reveal additional potentially important gene signa-
tures involved in tumorigenesis. For instance, tumor samples
from the MMTV-Wnt1 mouse model express genes repre-
sented in both basal and luminal subtypes [8,24,25] and

cross-species analyses by Herschkowitz and colleagues [8]
classified MMTV-Wnt1 mammary tumors as ‘normal
mammary gland’. Interestingly, other studies suggest that
MMTV-Wnt1 tumors also express markers associated with
progenitor cell lineages [24,25], making it a potentially useful
model for isolating tumor progenitor cells.

Cross-species analyses also identified a new ‘claudin-low’
tumor subtype [8]. Claudin-low tumors are characterized by
reduced expression of genes involved in tight junctions and
cell-cell adhesion. Mouse models comprising this category
include those with spindle-like morphology, including some
DMBA-induced tumors, Brcalco/co, Tg MMTV-Cre, p53+/~
tumors, and tumors from p53 null transplant model. Whether
reanalysis of human breast tumor data sets uncovers the
claudin-low gene signature and differentiates responses to
particular treatments will be of great interest.
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Despite the ability of hierarchical clustering to indicate
important specific similarities between GEM models and
human subtypes of breast cancer, significant differences in
gene expression exist, even between mouse and human
tumors considered to represent the same subtype of
mammary cancer. These distinctions must be considered
when applying models to the study of human breast cancer.
Nonetheless, identifying the similarities in gene expression
and genetic pathways through a cross-species approach
highlights important conserved molecular changes involved in
oncogenesis.

DNA copy number changes

The use of gene expression profiling to identify genetic
differences between normal and tumorigenic tissue is just
one way to uncover how global genetic changes influence
cancer development and progression. Another way to further
delineate oncogenes and molecular pathways associated
with tumorigenesis is through analysis of DNA copy number
aberrations, using array comparative genomic hybridization.

In human breast tumors, analyses comparing genome copy
number aberrations with gene expression signatures have
revealed distinct genomic patterns that correlate with tumor
subtype [26-28]. Bergamaschi and colleagues [26] reported
that high frequency of gains/losses throughout the genome is
characteristic of basal-like tumors whereas high-level DNA
amplifications are distinctive for luminal B subtype tumors.
ErbB2-associated tumors have characteristic amplification of
the ErbB2 locus in chromosome 17, and genomic profiles of
luminal A tumors are associated with amplifications in
chromosomes 1 and 16 [26]. A study by Adelaide and
colleagues [27] compared genomic alterations of basal-like
and luminal breast tumors and identified genomic changes
unique to the tumor subtypes. Genomic gains of chromo-
somes 10p and 12p13 are specific to basal-like tumors,
whereas gain of 11g13-14 is associated with luminal tumors
[27]. High-level amplification was also reported as a feature
of luminal tumors, especially in chromosome region 8p11-12
[27]. Moreover, Chin and colleagues [28] reported that
patients with amplification of three regions containing known
breast oncogenes 11q13(CCDN1), 17q12(ErbB2), and
20q13(ZNF217) have a poor prognosis and patients with loss
of 16g24-gtel have a good prognosis. These studies suggest
that a large number of genomic aberrations, as seen in basal-
like and luminal B tumors, correlate with poor prognosis.

GEM models of mammary cancer have not been extensively
studied for DNA copy number changes and their relationship
to subtypes of breast cancer. However, DNA copy number
changes have been assessed in a few GEM models of
mammary cancer and have revealed evolutionarily conserved
syntenic chromosomal changes [29-31].

Weaver and colleagues [31] reported that chromosomal
instability, in a pattern common to BRCA-associated breast
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tumors, is also present in a BRCA-deficient mouse model for
mammary cancer. Chromosomal gains/losses were found in
genomic regions for c-Myc, Rb1, and genes distal to ErbB2,
suggesting the influence of these oncogenes on BRCA-
associated tumor development. Weaver and colleagues [29]
also reported that MMTV-myc mammary tumors have
genomic changes that are relevant to human mammary
tumors, including loss of whole chromosome 4, which
contains a region syntenic to human 1p31-36 and is often
lost in human breast tumors. Thus, distinctions in DNA copy
number changes may be important in relating GEM models to
subtypes of human breast cancer.

Interestingly, GEM models with p53 loss do not demonstrate
the same degree of genomic instability as observed in human
breast tumors [29,32,33]. For example, tumor latency is
reduced when the WAP-T,,, mouse model (a mammary-
specific transgenic model in which a fragment of SV40
T-antigen protein binds to and inactivates pRb) is crossed to
p53 heterozygous mice. However, analyses of genomic
changes in tumors from the WAP-T,,,, p53*/~ show loss of
wildtype p53 allele at chromosome 11 but with minimal
increases in other DNA aberrations. Thus, DNA copy number
changes may reflect the mechanism of oncogenesis
employed in the design of the GEM model. For example,
Andrechek and colleagues [34] reported that the GEM
mammary tumor model induced by endogenous promoter-
driven ErbB2 expression induces mammary tumors with DNA
amplification similar to human ErbB2-amplified breast tumors
[30]. Such genomic changes are not found in MMTV-ErbB2
mice, suggesting that the ErbB2 model, developed using the
endogenous ErbB2 promoter, is more representative of
human ErbB2-amplified breast tumors in this regard [30,35].
This difference may be associated with the fact that high
expression of oncogenes, as seen using the MMTV promoter,
may require fewer genomic alterations for tumorigenesis than
present in models based upon endogenous promoter-driven
gene expression or loss of suppressor gene functions,
especially those involved in genome stability such as p53 and
BRCAT1. Overall, it appears that DNA copy number changes
are less prevalent in the oncogene-driven GEM models
compared with models in which genetic alterations lead to
genomic instability [36]. This distinction in rate of tumor
progression and accumulation of genetic mutations between
GEM models and human breast tumors is important and
should be considered when choosing GEM models to repre-
sent subtypes of human breast cancer.

Applying mouse-human gene expression
analyses to identify genetic markers of
metastatic potential and poor prognosis

Breast cancer metastasis is the major risk factor for poor
prognosis and accounts for more than 90% of patient
mortality. However, little is understood about why some
patients develop metastatic disease whereas other patients
do not. The study of molecular mechanisms involved in the



metastatic process is limited by the difficulty in obtaining
multiple tissue samples from the same patient over the
course of disease, particularly once metastases have deve-
loped. GEM models, though, offer important advantages in
studying the metastatic process, including large sample
number and the ability to study tumor progression by
collecting samples at distinct tumor stages. While existing
models of mammary cancer metastases are limited in GEM
systems, several models have been extremely informative and
have shed important insights into genetic factors that are
involved in human metastases.

Genetic signatures of metastasis

Gene expression profiles have led to the discovery of
predictors that improve the identification of patients at high
risk of developing metastatic disease. Importantly, such
predictors can be gleaned from gene expression measured in
primary breast tumors, indicating that metastatic propensity is
predetermined in large part by genetic changes pre-existing
in the primary tumor [37-41].

Ma and colleagues [42], using laser capture microscopy to
separate cells from pathologically distinct stages of tumor
progression, determined that tumor cells have very similar
gene expression profiles within a patient sample set. Thus,
tumor cells isolated from atypical ductal hyperplasia, ductal
carcinoma in situ, and invasive ductal carcinoma appear
clonal and do not exhibit large changes in gene expression
during tumor progression [42]. Similar findings were also
demonstrated in the C3(1)/Tag model of mammary cancer
[43] and in the PyMT mammary intraepithelial neoplasia-
outgrowth (MIN-O) transplant model [44]. In both mouse
models, analysis of early lesions versus invasive carcinoma
revealed relatively few genetic changes with mammary tumor
progression [43,44]. Indeed, the dynamics of gene expres-
sion changes during tumor progression appear similar in
GEM models and human cancer.

The fact that relatively few expression changes are observed
between preinvasive and invasive cancer suggests that
nongenetic factors, perhaps influenced by the micro-
environment [45,46], are instrumental for tumor progression,
metastases, and the regulation of the dormant-to-proliferative
switch of disseminated tumor cells in disease recurrence
[47]. In fact, many genes identified in signatures related to
human breast cancer metastases are associated with proteins
found in the extracellular matrix (ECM) [38,39,48-50],
suggesting that the ECM may strongly influence metastatic
cell survival and growth. Several ECM genes, including
Col1a2, Col1al, Fbn1, MMP-2, Sparc, lamininob, and
tenascin-C, have similarly been identified in expression
signatures related to metastases in mouse mammary cancer
models [51-54]. Moreover, it has been reported that gene
expression profiling using 278 ECM-related genes can
predict clinical outcome and recurrence in patients with
invasive breast tumors [55], suggesting that the composition
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of ECM in the primary tumor is a highly relevant factor of
metastasis.

Tumor progression is also affected by paracrine signaling
from neighboring fibroblasts and myoepithelial cells. Allinen
and colleagues [46] identified gene expression changes
within the various cell types comprising normal, ductal carci-
noma in situ, and invasive breast cancer. Interestingly, tumor
myofibroblasts and tumor myoepithelial cells overexpress
CXCL14 and CXCL12 chemokines. Receptors for these
chemokines are found on epithelial cells, allowing for cross-
talk between cell types to promote tumor proliferation and
invasion. Such findings suggest that tumor progression is
associated with both intrinsic changes within the tumor cells
as well as through stimuli from cells within the local
environment. It will be interesting to compare the results of
similar studies performed using various GEM models to
further uncover how cross-talk between epithelial cells and
surrounding stromal cells is altered by particular genetic
mutations induced in the epithelial tumor cells.

Gene expression signatures in primary breast tumors also
appear to contain information regarding organ specificity of
metastatic dissemination. Work from the laboratory of
Massague and colleagues [48,56] has identified gene
expression signatures in subpopulations of primary human
breast tumor cells that predict the organ site for distant
metastasis when implanted into immunocompromised mice.
Whether these genetic signatures are universal predictors of
future metastases for all primary breast tumors will be of great
interest.

Genetic modifiers of metastasis

One major finding revealed through GEM studies has been
the demonstration that the host genetic background can
greatly alter the incidence of metastases. When MMTV-PyMT
mice were crossed into different background strains, a great
range of metastatic propensities were observed between the
F1 hybrids [51]. Importantly, 16 out of 17 genes identified in
a human predictor of epithelial metastases were similarly
dysregulated in tumors from the mice with the high metastatic
propensity [38,51]. This suggests that similar molecular
mechanisms may be involved in human and mouse metastatic
disease and that genetic modifiers may be critical deter-
minants for whether metastases will occur in human patients
[61,52,564,57]. These observations raise the important
concept that, depending upon the complement of modifier
genes, particular patients may be predisposed or resistant to
metastatic disease.

GEM models may also serve to further understand the roles
of prometastatic genes in tumor dissemination and growth.
For example, MMTV-myc mice predictably develop mammary
tumors with a low incidence of lung metastases [58,59]. We
have recently shown that, when these mice are crossed with
MMTV-VEGF mice, a significant increase in lung metastases
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is observed [53]. Comparisons of gene expression profiles
from primary tumors of MMTV-myc versus compound MMTV-
myc, MMTV-VEGF mice demonstrated that VEGF induced a
significant number of genes, many of which were implicated
in metastases from human breast cancer studies, including
tenascin-C, MMP-2, collagen-6-A1, mannosidase-o-1A, and
HLA-DPA1 [49,583]. Interestingly, many of the dysregulated
genes are functionally involved in components of the ECM.
Thus, comparisons of expression data between mouse and
human tumors are helping to identify new genes potentially
involved in the metastatic process and validating others that
have been found through different experimental approaches.

Stem cells and cancer

The role of cancer stem cells in tumor growth and metastasis
has become an area of great interest in the field with important
implications for tumor treatment and resistance [60]. GEM
models can be used to enrich for tumor progenitor cells and
study molecular distinctions between progenitor and whole
tumor cell populations. Analyses of several GEM mammary
cancer models suggested that tumors from certain models may
be enriched for cells with stem cell characteristics compared
with other models. Li and colleagues [24,25] demonstrated
that MMTV-Wnt1 tumors express markers associated with
progenitor cell lineages, including keratin-6, Sca-1, CD44, and
CD24, making it a potentially useful model for isolating tumor
stem cells. Recent work from Zhang and colleagues [61] has
determined that a gene expression signature for a tumor-
initiating cell population from a p53 mammary tumor knockout
model is enriched for genes involved in DNA damage response
and repair as well as for genes involved in epigenetic regulation
previously shown to be critical for stem cell self-renewal. This
model suggests that identification of biomarkers for cancer
stem cells may help to identify the population of cells that resist
chemotherapy and are metastatic with important implications
for understanding and overcoming resistance to chemo-
therapies for human tumors.

Interestingly, based upon the hypothesis that cancer stem
cells are enriched in metastatic tumors [62], Glinsky and
colleagues [63] identified a metastasis signature, through
comparison of primary and metastatic prostate tumors
isolated from transgenic mice that express SV40 T/t antigen,
and a stem cell signature, through evaluation of human
peripheral nervous system cells on a BMI-1+ and BMI-1~
genetic background [64,65]. Integration of the two signatures
revealed an 11-gene predictor that correlates with poor
prognosis in several human cancer data sets, including
breast cancer patients.

Use of cross-species analyses for
identification of novel therapeutic targets and
selection of genetically engineered mouse
models for preclinical testing

Standard practices for the diagnosis and characterization of
breast cancer rely on anatomical, histological, and immuno-
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histochemical features of the tumor. In particular, determining
expression of ER, PR, and Her2 remains critical in tumor
classification and choosing optimal therapies. Too often,
however, existing treatments fail. Therefore, additional molecular
characterizations of breast tumors are required to further
dissect critical molecular pathways that determine the biology
and therapeutic response of tumors. The newer generation of
GEM models more accurately recapitulate genetic changes
in human breast cancer and therefore should be valuable in
drug target validation and preclinical testing. Additionally, as
conserved cancer genetic networks are identified through
cross-species analyses of gene expression, potential new
targets for therapy may be uncovered. Ideally, using these
GEM models to identify chemopreventive agents that may
reduce cancer risk or disease progression will be another
tremendous application of sophisticated models for trans-
lational research [66]. Such approaches, however, require
significant validation to demonstrate that GEM models have
predictive value for treating human breast cancer.

Genetically engineered mouse models for
drug target validation

GEM models with specific genetic alterations have been
used to test therapies that target specific genes or related
pathways. For instance, drugs that inhibit ErbB2 function or
vaccines targeting the overexpression of ErbB2 have been
tested in GEM models that overexpress ErbB2 [67,68].
Other biologic processes, such as angiogenesis, have been
successfully targeted in GEM models [69,70]. More recently,
the conditional expression of oncogenes in transgenic
animals has been used to determine whether the expression
of particular oncogenes must be sustained to maintain tumor
viability or whether cancer cells develop other compensatory
mechanisms for tumor survival [71-76]. If a tumor requires the
continued expression of the oncogene, the gene or pathway
would be a high-priority therapeutic target.

Several papers report that turning off the oncogene that
initiated cancer in transgenic mice (Neu, Myc, and Wnt-1)
following the emergence of primary or metastatic tumors
results in the rapid regression of tumors at both sites
[71,74,75]. This may indicate that these oncogene-driven
models do not develop significant genome instability and
secondary genetic alterations. However, mammary and meta-
static tumors often recur in these mice independently of the
expression of the initiating oncogene, suggesting that some
cells have gained additional genetic alterations. These
findings suggest that regulation of initiating mutations may
not be sufficient to control tumorigenesis. This is likely due to
accumulation of additional alterations involving other
signaling pathways, including those controlled by p583,
K-ras2, and H-Ras1 [74,76], suggesting that cancer
therapies may require the targeting of multiple genes or
pathways. Cross-species comparisons of genomic changes
in mammary cancer may further enhance the discovery of
such additional cancer targets. Many GEM models, however,



exhibit a relatively long latency for tumor development and
incur a considerable expense, making them unsuitable for
rapid high-throughput testing of therapies. The application of
an adapted method for tumor transplantation may be used to
take advantage of the precise genetic alterations designed
into the GEM models, but in a highly reproducible and
relatively rapid fashion [77].

New drug target identification using gene
networks

Comparisons between high-throughput genomic analyses of
inducible GEM models of mammary cancer and human breast
tumors will provide further molecular validation of specific
models as representative of certain subtypes of human breast
cancer [5,7,8]. These analyses will then identify molecular
targets dysregulated in GEM models that can be tested for
therapeutic effects and potentially translated to human trials.

For instance, a more thorough comparison of genetic
signatures within several SV40 Tag GEM models of cancer
revealed a conserved SV40-T/t-antigen tumor signature [7].
This 120-gene signature appears to be relatively specific to
molecular dysregulation induced by SV40-T/t antigen and is
less represented in mammary tumors induced by other
oncogenic mechanisms, although other models with basal-
like characteristics — Brcalco/co, MMTV-Cre, p53+/-, and
p531f MMTV-Cre — overlap in significant aspects of this
signature [7]. Many of the genes represented in the T/t-
antigen signature are functionally involved with cell cycle
regulation, proliferation, cell replication, DNA maintenance
and repair, and apoptosis. When analyzed for reported
functional relationships between the genes, 85 of 120 named
genes within the Tag signature formed highly integrated
networks with nodes centered on p53, Rb, and myc, with
additional subnetworks related to BRCA1 and apoptosis
genes. Importantly, cross-species analysis of the SV40 gene
signature with gene expression data from human breast
tumors demonstrated that the T/t-antigen signature identified
patients with basal-type tumors and poor prognosis.

Since the T/t-antigen signature identified about twice as
many genes related to the functional categories discussed
above as reported in studies limited to human expression
analyses [7], genomic information from mouse models can
clearly augment our molecular understanding of cancer
networks. This will likely be especially important in expanding
the discovery of potential therapeutic targets, particularly for
treatment of basal-like triple-negative breast tumors.
Identifying individual or combination therapies that can inhibit
this subtype of breast cancer using the C3(1)/Tag or other
models with basal-type characteristics — BRCA1~/~, p53*/-,
or p53~~ models — would provide an extremely important
advance in treating this aggressive form of the disease.

Hoadley and colleagues [78] recently observed that
epidermal growth factor receptor (EGFR) is overexpressed in
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basal-type breast tumors. Studies of whether EGFR
inhibitors, perhaps in combination with other drugs, might be
efficacious against basal-type breast tumors could be studied
in appropriate GEM models representing this subtype of
breast cancer. Similarly, the p53f/ MMTV-Cre model for ER*
mammary tumors, which appears to represent the luminal
type A subtype of breast cancer (A.M. Michalowski,
unpublished data), may be useful for testing novel therapies
for this subtype of breast cancer. Additional distinctions for
other GEM models will emerge as such comparative cross-
species studies are expanded.

Chemoprevention

More focus will be given to GEM models for chemo-
prevention research, especially since they have demonstrated
their utility in testing preventative agents with translational
potential for several tumors [79-83]. GEM models of
mammary cancer that have defined courses of tumor
progression are excellent choices for prevention studies. For
example, treatment with rexinoids, which are vitamin A
analogs, prior to lesion development inhibits development of
malignant and premalignant mammary lesions in MMTV-
ErbB2 mice [81,82]. Moreover, genes associated with
rexinoid treatment, including Id-1, IGFBP-6, and SCD-1, have
been identified by gene expression array analyses [84]. Such
data will be integral in identifying the genetic factors that may
be critical in preventing tumor progression and applicable to
human chemoprevention.

Conclusion

Through cross-species genomic studies, GEM models of
mammary cancer offer promising new approaches to study
mechanisms of oncogenesis, including the cellular origins of
tumors that appear to represent different lineages, the roles
of tumor progenitor cells, and genomic changes involved in
metastases and resistance to chemotherapies. Genomic data
from the mouse can serve as an important filter for human
data to help identify important changes at the level of DNA
copy number, gene transcription, and higher-order integrated
genetic networks including microRNAs. These approaches
have only recently been applied to analyses of breast cancer
[85]. As progress is made in this area, novel targets for
therapy or combination therapies will be uncovered and
appropriate GEM models will be used for preclinical testing
to greatly accelerate translational research for breast cancer.

Competing interests
The authors declare that they have no competing interests.

References

1. Dupuy A, Simon RM: Critical review of published microarray
studies for cancer outcome and guidelines on statistical
analysis and reporting. J Nat/ Cancer Inst 2007, 99:147-157.

2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees
CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Perga-
menschikov A, Williams C, Zhu SX, Lenning PE, Berresen-Dale
AL, Brown PO, Botstein D: Molecular portraits of human breast
tumours. Nature 2000, 406:747-752.

Page 7 of 10

(page number not for citation purposes)



Breast Cancer Research Vol 10 No 5 Bennett and Green

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H,
Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H,
Matese JC, Brown PO, Botstein D, Eystein Lenning P, Berresen-
Dale AL: Gene expression patterns of breast carcinomas dis-
tinguish tumor subclasses with clinical implications. Proc Nat/
Acad Sci U S A 2001, 98:10869-10874.

van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil
DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M,
Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T,
Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A
gene-expression signature as a predictor of survival in breast
cancer. N Engl J Med 2002, 347:1999-2009.

Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson
R, Furth P, Hunter K, Kucherlapati R, Simon R, Liu ET, Green JE:
Initiating oncogenic event determines gene-expression pat-
terns of human breast cancer models. Proc Natl Acad Sci U S
A 2002, 99:6967-6972.

Vargo-Gogola T, Rosen JM: Modelling breast cancer: one size
does not fit all. Nat Rev Cancer 2007, 7:659-672.

Deeb KK, Michalowska AM, Yoon CY, Krummey SM, Hoenerhoff
MJ, Kavanaugh C, Li MC, Demayo FJ, Linnoila I, Deng CX, Lee EY,
Medina D, Shih JH, Green JE: Identification of an integrated
SV40 T/t-antigen cancer signature in aggressive human
breast, prostate, and lung carcinomas with poor prognosis.
Cancer Res 2007, 67:8065-8080.

Herschkowitz JI, Simin K, Weigman VJ, Mikaelian |, Usary J, Hu Z,
Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Back-
lund MG, Yin Y, Khramtsov Al, Bastein R, Quackenbush J, Glazer
RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP,
Olopade Ol, Bernard PS, Churchill GA, Van Dyke T, Perou CM:
Identification of conserved gene expression features between
murine mammary carcinoma models and human breast
tumors. Genome Biol 2007, 8:R76.

Hu Y, Sun H, Drake J, Kittrell F, Abba MC, Deng L, Gaddis S,
Sahin A, Baggerly K, Medina D, Aldaz CM: From mice to
humans: identification of commonly deregulated genes in
mammary cancer via comparative SAGE studies. Cancer Res
2004, 64:7748-7755.

Hoenerhoff MJ, Michalowski AM, Qiu TH, Green JE: Bioinformat-
ics approaches to the analysis of the transcriptome of animal
models of cancer. In Bioinformatics in Cancer and Cancer
Therapy. Chapter 4. Totowa NJ: Humana Press; 2009.

. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown

M: Positive cross-regulatory loop ties GATA-3 to estrogen
receptor alpha expression in breast cancer. Cancer Res 2007,
67:6477-6483.

Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackle-
ton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees
J, Lindeman GJ, Visvader JE: Gata-3 is an essential regulator of
mammary-gland morphogenesis and luminal-cell differentia-
tion. Nat Cell Biol 2007, 9:201-209.

Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z: GATA-3
maintains the differentiation of the luminal cell fate in the
mammary gland. Ce/l 2006, 127:1041-1055.

Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A, Kang
KW, Frank SA, Lee WH, Lee EY: Somatic mutation of p53
leads to estrogen receptor alpha-positive and -negative
mouse mammary tumors with high frequency of metastasis.
Cancer Res 2004, 64:3525-3532.

Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES,
Bonilla PJ, Butel JS, Medina D: A mammary-specific model
demonstrates the role of the p53 tumor suppressor gene in
tumor development. Oncogene 2000, 19:1052-1058.

Zhang X, Podsypanina K, Huang S, Mohsin SK, Chamness GC,
Hatsell S, Cowin P, Schiff R, Li Y: Estrogen receptor positivity in
mammary tumors of Wnt-1 transgenic mice is influenced by col-
laborating oncogenic mutations. Oncogene 2005, 24:4220-4231.
Tilli MT, Frech MS, Steed ME, Hruska KS, Johnson MD, Flaws JA,
Furth PA: Introduction of estrogen receptor-alpha into the
tTA/TAg conditional mouse model precipitates the develop-
ment of estrogen-responsive mammary adenocarcinoma. Am
J Pathol 2003, 163:1713-1719.

Cleator S, Heller W, Coombes RC: Triple-negative breast
cancer: therapeutic options. Lancet Oncol 2007, 8:235-244.
Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V,
Koller BH: Mammary tumor formation in p53- and BRCA1-defi-
cient mice. Cell Growth Differ 1999, 10:1-10.

Page 8 of 10

(page number not for citation purposes)

20.

21.

22.

283.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hen-
nighausen L, Wynshaw-Boris A, Deng CX: Conditional mutation
of Brcal in mammary epithelial cells results in blunted ductal
morphogenesis and tumour formation. Nat Genet 1999, 22:
37-43.

Yin Y, Bai R, Russell RG, Beildeck ME, Xie Z, Kopelovich L,
Glazer RI: Characterization of medroxyprogesterone and
DMBA-induced multiineage mammary tumors by gene
expression profiling. Mo/ Carcinog 2005, 44:42-50.

Liu ML, Shibata MA, Von Lintig FC, Wang W, Cassenaer S, Boss
GR, Green JE: Haploid loss of Ki-ras delays mammary tumor
progression in C3 (1)/SV40 Tag transgenic mice. Oncogene
2001, 20:2044-2049.

Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR,
Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, Wang W, Liu
ZY, Calvo A, Couldrey C: The C3(1)/SV40 T-antigen transgenic
mouse model of mammary cancer: ductal epithelial cell tar-
geting with multistage progression to carcinoma. Oncogene
2000, 19:1020-1027.

Huang S, Chen Y, Podsypanina K, Li Y: Comparison of expres-
sion profiles of metastatic versus primary mammary tumors
in MMTV-Wnt-1 and MMTV-Neu transgenic mice. Neoplasia
2008, 10:118-124.

Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X,
Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM,
Varmus HE: Evidence that transgenes encoding components
of the Wnt signaling pathway preferentially induce mammary
cancers from progenitor cells. Proc Natl Acad Sci U S A 20083,
100:15853-15858.

Bergamaschi A, Kim YH, Wang P, Sorlie T, Hernandez-Boussard
T, Lonning PE, Tibshirani R, Borresen-Dale AL, Pollack JR: Dis-
tinct patterns of DNA copy number alteration are associated
with different clinicopathological features and gene-expres-
sion subtypes of breast cancer. Genes Chromosomes Cancer
20086, 45:1033-1040.

Adelaide J, Finetti P, Bekhouche |, Repellini L, Geneix J, Sir-
coulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D,
Schoenmakers E, Viens P, Jacquemier J, Birbaum D, Bertucci F,
Chaffanet M: Integrated profiling of basal and luminal breast
cancers. Cancer Res 2007, 67:11565-11575.

Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo
WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H,
Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D,
Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray
JW: Genomic and transcriptional aberrations linked to breast
cancer pathophysiologies. Cancer Cell 2006, 10:529-541.
Weaver ZA, McCormack SJ, Liyanage M, du Manoir S, Coleman
A, Schrock E, Dickson RB, Ried T: A recurring pattern of chro-
mosomal aberrations in mammary gland tumors of MMTV-
cmyc transgenic mice. Genes Chromosomes Cancer 1999, 25:
251-260.

Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T:
Centrosome abnormalities, recurring deletions of chromo-
some 4, and genomic amplification of HER2/neu define
mouse mammary gland adenocarcinomas induced by mutant
HER2/neu. Oncogene 2002, 21:890-898.

Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG,
Deng CX, Ried T: Mammary tumors in mice conditionally
mutant for Brca1 exhibit gross genomic instability and centro-
some amplification yet display a recurring distribution of
genomic imbalances that is similar to human breast cancer.
Oncogene 2002, 21:5097-5107.

McCormack SJ, Weaver Z, Deming S, Natarajan G, Torri J,
Johnson MD, Liyanage M, Ried T, Dickson RB: Myc/p53 interac-
tions in transgenic mouse mammary development, tumorige-
nesis and chromosomal instability. Oncogene 1998, 16:
2755-2766.

Simin K, Wu H, Lu L, Pinkel D, Albertson D, Cardiff RD, Van Dyke
T: pRb inactivation in mammary cells reveals common mecha-
nisms for tumor initiation and progression in divergent
epithelia. PLoS Biol 2004, 2:E22.

Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD,
Muller WJ: Amplification of the neu/erbB-2 oncogene in a
mouse model of mammary tumorigenesis. Proc Nat/ Acad Sci
U S A 2000, 97:3444-3449.

Hodgson JG, Malek T, Bornstein S, Hariono S, Ginzinger DG,
Muller WJ, Gray JW: Copy number aberrations in mouse



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

breast tumors reveal loci and genes important in tumorigenic
receptor tyrosine kinase signaling. Cancer Res 2005, 65:9695-
9704.

Barkan D, Montagna C, Reid T, Green JE: Mammay gland
cancer. In Mouse Models of Human Cancer. Edited by Holland
EC. Hoboken: John Wiley & Sons, Inc.; 2004:103-131.

van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M,
Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber
GlJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend
SH: Gene expression profiling predicts clinical outcome of
breast cancer. Nature 2002, 415:530-536.

Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular sig-
nature of metastasis in primary solid tumors. Nat Genet 2003,
33:49-54.

Weigelt B, Hu Z, He X, Livasy C, Carey LA, Ewend MG, Glas AM,
Perou CM, van't Veer LJ: Molecular portraits and 70-gene prog-
nosis signature are preserved throughout the metastatic
process of breast cancer. Cancer Res 2005, 65:9155-9158.
Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR,
Riggins G, Polyak K: A SAGE (serial analysis of gene expres-
sion) view of breast tumor progression. Cancer Res 2001, 61:
5697-5702.

Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman
R, Brennan C, Polyak K: Combined cDNA array comparative
genomic hybridization and serial analysis of gene expression
analysis of breast tumor progression. Cancer Res 2006, 66:
4065-4078.

Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P,
Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H,
Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG,
Sgroi DC: Gene expression profiles of human breast cancer
progression. Proc Natl Acad Sci U S A 20083, 100:5974-5979.
Ye Y, Qiu TH, Kavanaugh C, Green JE: Molecular mechanisms
of breast cancer progression: lessons from mouse mammary
cancer models and gene expression profiling. Breast Dis
2004, 19:69-82.

Namba R, Maglione JE, Davis RR, Baron CA, Liu S, Carmack CE,
Young LJ, Borowsky AD, Cardiff RD, Gregg JP: Heterogeneity of
mammary lesions represent molecular differences. BMC
Cancer 2006, 6:275.

Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D,
Richardson A, Violette S, Nikolskaya T, Nikolsky Y, Bauerlein EL,
Hahn WC, Gelman RS, Allred C, Bissell MJ, Schnitt S, Polyak K:
Regulation of in situ to invasive breast carcinoma transition.
Cancer Cell 2008, 13:394-406.

Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J,
Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S,
Sellers WR, Polyak K: Molecular characterization of the tumor
microenvironment in breast cancer. Cancer Cell 2004, 6:17-
32.

Schedin P, Elias A: Multistep tumorigenesis and the microenvi-
ronment. Breast Cancer Res 2004, 6:93-101.

Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A,
Olshen AB, Gerald WL, Massague J: Genes that mediate breast
cancer metastasis to lung. Nature 2005, 436:518-524.

Minn AJ, Kang Y, Serganova |, Gupta GP, Giri DD, Doubrovin M,
Ponomarev V, Gerald WL, Blasberg R, Massague J: Distinct
organ-specific metastatic potential of individual breast cancer
cells and primary tumors. J Clin Invest 2005, 115:44-55.
Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL,
Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL:
Genomic analysis of a spontaneous model of breast cancer
metastasis to bone reveals a role for the extracellular matrix.
Mol Cancer Res 2005, 3:1-13.

Qiu TH, Chandramouli GV, Hunter KW, Alkharouf NW, Green JE,
Liu ET: Global expression profiling identifies signatures of
tumor virulence in MMTV-PyMT-transgenic mice: correlation
to human disease. Cancer Res 2004, 64:5973-5981.

Yang H, Yu LR, Yi M, Lucas DA, Lukes L, Lancaster M, Chan KC,
Issaq HJ, Stephens RM, Conrads TP, Veenstra TD, Hunter KW:
Parallel analysis of transcript and translation profiles: identifi-
cation of metastasis-related signal pathways differentially
regulated by drug and genetic modifications. J Proteome Res
2006, 5:1555-1567.

Calvo A, Catena R, Noble MS, Carbott D, Gil-Bazo |, Gonzalez-
Moreno O, Huh J-I, Sharp R, Qiu T-H, Anver MR, Merlino G,
Dickson RB, Johnson MD, Green JE: Identification of VEGF-reg-

Available online http://breast-cancer-research.com/content/10/5/213

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

ulated genes associated with increased lung metastatic
potential: functional involvement of tenascin-C in tumor
growth and lung metastatis. Oncogene 2008, May 26. [Epub
ahead of print].

Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW,
Hunter KW: The Diasporin Pathway: a tumor progression-
related transcriptional network that predicts breast cancer
survival. Clin Exp Metastasis 2008, 25:357-369.

Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi
R, Russnes HG, Nesland JM, Tammi R, Auvinen P, Kosma VM,
Ménard S, Berresen-Dale AL: Extracellular matrix signature
identifies breast cancer subgroups with different clinical
outcome. J Pathol 2008, 214:357-367.

Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-
Cardo C, Guise TA, Massague J: A multigenic program mediat-
ing breast cancer metastasis to bone. Cancer Cell 2003, 3:
537-549.

Lancaster M, Rouse J, Hunter KW: Modifiers of mammary
tumor progression and metastasis on mouse chromosomes
7,9, and 17. Mamm Genome 2005, 16:120-126.

Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Barrington
RE, Windle JJ: Differential regulation of cell cycle characteris-
tics and apoptosis in MMTV-myc and MMTV-ras mouse
mammary tumors. Cancer Res 1997, 57:600-603.
Amundadottir LT, Johnson MD, Merlino G, Smith GH, Dickson
RB: Synergistic interaction of transforming growth factor
alpha and c-myc in mouse mammary and salivary gland
tumorigenesis. Cell Growth Differ 1995, 6:737-748.

Sleeman JP, Cremers N: New concepts in breast cancer metas-
tasis: tumor initiating cells and the microenvironment. Clin
Exp Metastasis 2007, 24:707-715.

Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards
D, Medina D, Tsimelzon A, Hilsenbeck S, Green JE, Michalowska
AM, Rosen JM: Identification of tumor-initiating cells in a p53
null mouse model of breast cancer. Cancer Res 2008, 68:
4674-4682.

Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis:
cancer stem cells in metastasis. Cel/l Res 2007, 17:3-14.
Glinsky GV, Berezovska O, Glinskii AB: Microarray analysis
identifies a death-from-cancer signature predicting therapy
failure in patients with multiple types of cancer. J Clin Invest
2005, 115:1503-1521.

Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison
SJ: Bmi-1 dependence distinguishes neural stem cell self-
renewal from progenitor proliferation. Nature 2003, 425:962-
967.

Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P,
Wicha MS: Hedgehog signaling and Bmi-1 regulate self-
renewal of normal and malignant human mammary stem
cells. Cancer Res 2006, 66:6063-6071.

Abate-Shen C, Brown PH, Colburn NH, Gerner EW, Green JE,
Lipkin M, Nelson WG, Threadgill D: The untapped potential of
genetically-engineered mouse models in chemoprevention
research: opportunities and challenges. Cancer Prev Res
2008, 1:161-166.

Pegram MD, Konecny G, Slamon DJ: The molecular and cellular
biology of HER2/neu gene amplification/overexpression and
the clinical development of herceptin (trastuzumab) therapy
for breast cancer. Cancer Treat Res 2000, 103:57-75.

Calogero RA, Musiani P, Forni G, Cavallo F: Towards a long-
lasting immune prevention of HER2 mammary carcinomas:
directions from transgenic mice. Cell Cycle 2004, 3:704-706.
Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D: Effects
of angiogenesis inhibitors on multistage carcinogenesis in
mice. Science 1999, 284:808-812.

O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses
M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: a novel
angiogenesis inhibitor that mediates the suppression of
metastases by a Lewis lung carcinoma. Cell 1994, 79:315-
328.

Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan
KD, Innocent N, Cardiff RD, Schnall MD, Chodosh LA: Condi-
tional activation of Neu in the mammary epithelium of trans-
genic mice results in reversible pulmonary metastasis. Cancer
Cell 2002, 2:451-461.

Jones RA, Campbell Cl, Gunther EJ, Chodosh LA, Petrik JJ,
Khokha R, Moorehead RA: Transgenic overexpression of IGF-

Page 9 of 10

(page number not for citation purposes)



Breast Cancer Research Vol 10 No 5 Bennett and Green

73.

74.

75.

76.

717.

78.

79.

80.

81.

82.

83.

84.

85.

IR disrupts mammary ductal morphogenesis and induces
tumor formation. Oncogene 2007, 26:1636-1644.

Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer
RB, Chodosh LA: A novel doxycycline-inducible system for the
transgenic analysis of mammary gland biology. FASEB J
2002, 16:283-292.

Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan
KD, Cardiff RD, Chodosh LA: Impact of p53 loss on reversal
and recurrence of conditional Wnt-induced tumorigenesis.
Genes Dev 2003, 17:488-501.

Boxer RB, Jang JW, Sintasath L, Chodosh LA: Lack of sustained
regression of c-MYC-induced mammary adenocarcinomas
following brief or prolonged MYC inactivation. Cancer Cell
2004, 6:577-586.

Jang JW, Boxer RB, Chodosh LA: Isoform-specific ras activa-
tion and oncogene dependence during MYC- and Wnt-
induced mammary tumorigenesis. Mo/ Cell Biol 2006, 26:
8109-8121.

Varticovski L, Hollingshead MG, Robles Al, Wu X, Cherry J,
Munroe DJ, Lukes L, Anver MR, Carter JP, Borgel SD, Stotler H,
Bonomi CA, Nunez NP, Hursting SD, Qiao W, Deng CX, Green
JE, Hunter KW, Merlino G, Steeg PS, Wakefield LM, Barrett JC:
Accelerated preclinical testing using transplanted tumors
from genetically engineered mouse breast cancer models.
Clin Cancer Res 2007, 13:2168-2177.

Hoadley KA, Weigman VJ, Fan C, Sawyer LR, He X, Troester MA,
Sartor Cl, Rieger-House T, Bernard PS, Carey LA, Perou CM:
EGFR associated expression profiles vary with breast tumor
subtype. BMC Genomics 2007, 8:258.

Shibata MA, Kavanaugh C, Shibata E, Abe H, Nguyen P, Otsuki Y,
Trepel JB, Green JE: Comparative effects of lovastatin on
mammary and prostate oncogenesis in transgenic mouse
models. Carcinogenesis 2003, 24:453-459.

Shibata MA, Akao Y, Shibata E, Nozawa Y, Ito T, Mishima S, Mori-
moto J, Otsuki Y: Vaticanol C, a novel resveratrol tetramer,
reduces lymph node and lung metastases of mouse
mammary carcinoma carrying p53 mutation. Cancer
Chemother Pharmacol 2007, 60:681-691.

Li Y, Zhang Y, Hill J, Shen Q, Kim HT, Xu X, Hilsenbeck SG, Bis-
sonnette RP, Lamph WW, Brown PH: The Rexinoid LG100268
prevents the development of preinvasive and invasive estro-
gen receptor negative tumors in MMTV-erbB2 mice. Clin
Cancer Res 2007, 13:6224-6231.

Li Y, Zhang Y, Hill J, Kim HT, Shen Q, Bissonnette RP, Lamph
WW, Brown PH: The rexinoid, bexarotene, prevents the devel-
opment of premalignant lesions in MMTV-erbB2 mice. Br J
Cancer 2008, 98:1380-1388.

Banach-Petrosky W, Ouyang X, Gao H, Nader K, Ji Y, Suh N,
DiPaola RS, Abate-Shen C: Vitamin D inhibits the formation of
prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice.
Clin Cancer Res 2006, 12:5895-5901.

Kim HT, Kong G, Denardo D, Li Y, Uray |, Pal S, Mohsin S, Hilsen-
beck SG, Bissonnette R, Lamph WW, Johnson K, Brown PH:
Identification of biomarkers modulated by the rexinoid
LGD1069 (bexarotene) in human breast cells using oligonu-
cleotide arrays. Cancer Res 2006, 66:12009-12018.

Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning
MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis 10,
Tavaré S, Caldas C, Miska EA: MicroRNA expression profiling
of human breast cancer identifies new markers of tumor
subtype. Genome Biol 2007, 8:R214.

Page 10 of 10

(page number not for citation purposes)



	Abstract
	Introduction
	Identification of evolutionarily conserved genetic alterations in breast cancer subtypes through mouse-human gene expression com
	Gene expression changes
	DNA copy number changes
	Applying mouse-human gene expression analyses to identify genetic markers of metastatic potential and poor prognosis
	Genetic signatures of metastasis
	Genetic modifiers of metastasis
	Stem cells and cancer
	Use of cross-species analyses for identification of novel therapeutic targets and selection of genetically engineered mouse mode
	Genetically engineered mouse models for drug target validation
	New drug target identification using gene networks
	Chemoprevention
	Conclusion
	Competing interests
	References

