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Abstract

Introduction c-Jun activation domain-binding protein-1 (Jab1) is
a multifunctional signaling protein that previously has been
shown to be a master regulator of a poor prognostic gene
signature in invasive breast cancer and to mediate the action of
S100A7. Since epidermal growth factor receptor (EGFR), like
S100A7, is often expressed in estrogen receptor-alpha-
negative (ERa) breast cancer, we set out to investigate the role
of Jab1 in mediating EGFR signaling, another facet of the ERa
phenotype.

Methods MDA-MB-231 and MDA-MB-468 ERa/EGFR* cell
lines were assessed for localization of Jab1 and levels of
downstream genes by immunofluorescence and nuclear protein
extract assay following treatment with epidermal growth factor
(EGF) and extracellular signal-regulated kinase (ERK) pathway
inhibitor. A cohort of 424 human breast tumors was also
assessed by immunohistochemistry.

Results EGF treatment of cell lines resulted in increased Jab1
nuclear expression. This effect was inhibited by the ERK
pathway inhibitor, PD98059. EGF treatment was also
associated with colocalization of pERK (phosphorylated ERK)
and Jab1 as well as regulation of the Jab1 downstream target
gene, p27. When Jab1 activity was knocked down, p27 levels
were restored to pre-EGF treatment level. Analysis of EGFR and
Jab1 expression in a cohort of invasive breast tumors by tissue
microarray and immunohistochemistry confirmed a relationship
between EGFR and increased nuclear Jab1 within the ERa-
subset (n = 154, P = 0.019). The same association was also
confirmed for S100A7 and Jab1 (P = 0.036), and high Jab1
nuclear expression was most frequent in tumors that were
positive for both EGFR and S100A7 (P = 0.004).

Conclusion Jab1 is a target of EGFR signaling in ERa cell lines
and breast tumors and therefore may be a common central
factor and potential therapeutic target for important cell
signaling pathways in ERa breast cancer.

Introduction

Recent therapeutic advances have improved survival for many
patients with breast cancer. These advances have been most
impressive for targeted therapies, such as those targeting the
estrogen receptor (ER) and the human epidermal growth fac-
tor receptor (EGFR) 2 (Her2). These advances have specifi-
cally benefited the subsets of patients with tumors that exhibit
ERa* or Her2+ phenotypes, respectively. Other subsets of
tumors such as the so-called 'triple-negative' breast tumors,

ERa/progesterone receptor-negative (PR’)/Her2, remain dif-
ficult to treat. The ERa phenotype, which includes the triple-
negative phenotype, has dominated clinical and biological
consideration of breast cancer for many years and has been
reproducibly shown in microarray studies to be distinct from
ERa+ breast cancer [1,2]. Identification of key signaling mole-
cules and pathways relevant to ERa breast cancer is therefore
an important step toward the goal of improving breast cancer
therapy [3-5].

AP-1 = activation protein-1; DCIS = ductal carcinoma in situ; EDTA = ethylene diamine tetraacetic acid; EGF = epidermal growth factor; EGFR =
epidermal growth factor receptor; EGTA = ethylene glycol tetraacetic acid; ER = estrogen receptor; ERK = extracellular signal-regulated kinase;
GAPDH = glyceraldehyde 3-phosphate dehydrogenase; HEPES = 4-(2-hydroxyethyl)- 1 -piperazineethanesulfonic acid; Her2 = epidermal growth fac-
tor receptor 2; IHC = immunohistochemistry; Jab1 = c-Jun activation domain-binding protein-1; JNK = c-jun N-terminal kinase; LBA = ligand-binding
assay; MAP = mitogen-activated protein; NF-xB = nuclear factor-kappa B; PBS = phosphate-buffered saline; PBST = phosphate-buffered saline +
0.05% Tween-20; pERK = phosphorylated extracellular signal-regulated kinase; PR = progesterone receptor; siRNA = short interfering RNA; TMA
= tissue microarray.
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We and others have previously identified genes that are highly
associated with the ERa phenotype, including EGFR and
S100A7 [6-11]. Epidermal growth factors (EGFs) are impor-
tant in the biology of both normal and malignant breast tissue,
exerting their effects through their tyrosine kinase growth fac-
tor receptors. EGFR expression is strongly associated with the
ERa phenotype [12-14] such that there is a strong inverse
relationship between EGFR and the steroid receptor, ERa
[11,15]. S100A7 (psoriasin) is a small calcium-binding protein
belonging to the S100 gene family [16,17]. It is highly
expressed in some ductal carcinoma in situ (DCIS) [18-20]
and invasive breast [18] carcinomas. Within both of these
stages, S100A7 expression is strongly related to the ERo
phenotype [6,8].

c-Jun activation domain-binding protein-1 (Jab1) is a multi-
functional signaling protein and is a target of S100A7 that can
mediate many of its biological effects, including induction of
nuclear factor-kappa B (NF-xB) and promotion of cell survival
[21,22]. Additional evidence that Jab1 is a key gene in breast
cancer progression comes from the recent finding that it is a
downstream target for Her2 [23]. Furthermore, Jab1 has been
found to interact with c-myc to act as a master regulator of the
'wound response' gene signature in breast cells [24,25]. The
wound response signature represents a conserved cluster of
gene responses to changes in serum, exclusive of known pro-
liferation response genes. It can be generated in epithelial and
fibroblast cells and is associated with poor outcome in inva-
sive breast cancer. Jab1 also interacts with many components
of known cell signaling pathways in the context of both phos-
phorylation and proteasomal activities, typically resulting in
translocation of Jab1 to the nucleus and modification of activity
in downstream pathways. These interactions result in
increased activation protein-1 (AP-1) [26] and NF-xB [22]
activity and degradation of the cell cycle inhibitor p27 (Kip1)
[27] and the transforming growth factor-B signaling compo-
nent Smad4 [28].

Taken together, these findings implicate Jab1 as an important
factor in several signaling pathways in breast cancer. Since
the ST00A7 gene is strongly associated with the ERa pheno-
type and our studies have implicated Jab1 as a mediator of
S100A7 action [7,22], we set out to examine the possibility
that Jab1 may be an important component of the mechanism
of action of other key ERa-associated genes, focusing here
specifically on EGFR.

Materials and methods

Cell lines, antibodies, and reagents

Human breast carcinoma cell lines MDA-MB-468 and MDA-
MB-231 (both ERa and EGFR* and derived from invasive
breast carcinomas) were cultured in Dulbecco's modified
Eagle's medium supplemented with 10% fetal bovine serum
under standard conditions as previously described [8]. The
antibodies used for immunoblotting and immunoprecipitation
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were Jab1 (1:3,000) (Sigma-Aldrich, Oakville, ON, Canada);
p27 (1:200) (BD Biosciences, Mississauga, ON, Canada);
Lamin A/C (1:1,000), pEGFR (phosphorylated EGFR)
(1:1,000), extracellular signal-regulated kinase (ERK)
(1:1,000), phosphorylated ERK (pERK) (1:1,000), AKT
(1:2,000), and pAKT (1:1,000) (Cell Signaling Technology,
Inc., Danvers, MA, USA); EGFR (1:1,000) (VWR International,
Mississauga, ON, Canada); and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (1:4,000; Advanced ImmunoChem-
ical Inc., Long Beach, CA, USA). The antibody to S100A7 was
a rabbit polyclonal generated and described previously [6,21].
Goat anti-mouse and goat anti-rabbit IgG secondary antibod-
ies were purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA). All EGF treatments were for 4 hours
and, with the exception of the EGF dose experiments, were 50
ng/mL (Millipore Corporation, Billerica, MA, USA). Treatments
with ERK inhibitor PD98059 were at 20 uM for 4 hours (Cell
Signaling Technology, Inc.).

Immunofluorescence, nuclear extraction, and
immunoblotting

Following treatment with selected reagent (EGF or
PD98059), cells were fixed with 3.7% formaldehyde, permea-
bilized with 0.1% Triton X-100, and blocked with 0.2% bovine
serum albumin. Cells then were stained for Jab1 (1:50) using
the primary antibodies described above and Alexa Fluor 488-
conjugated goat anti-rabbit IgG secondary antibody (1:100)
(Invitrogen Corporation, Carlsbad, CA, USA). For double-
immunostaining of Jab1 and pERK or p27, cells first were
stained for Jab1 as described above and then were stained for
pERK (1:100) or p27 (1:100) using the primary antibodies
described above and Alexa Fluor 594-conjugated chicken
anti-mouse IgG secondary antibody (1:100) (Invitrogen Cor-
poration). Inmunofluorescence images were captured using a
Leica DM 6000B immunofluorescence microscope (Leica,
Wetzlar, Germany), and image analysis was performed using
Openlab 4.0.4 software (Improvision Ltd., Coventry, UK).

Nuclear extracts were prepared by rinsing culture dishes with
phosphate-buffered saline (PBS) and then resuspending cells
in a nuclear extracting lysis buffer (10 mM HEPES [4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid] [pH 7.9], 10
mM KCI, 0.1 mM EDTA [ethylene diamine tetraacetic acid],
and 0.1 mM EGTA [ethylene glycol tetraacetic acid]) and incu-
bating for 20 minutes on ice. Cells were further fractionated by
adding 25 L of Nonidet P-40 (10%), vortexing for 10 sec-
onds, and centrifuging at 15,000 g for 10 minutes at 4°C. The
pellet (nuclei) was then resuspended in 50 mM HEPES (pH
7.3), 150 mM NaCl, 2.5 mM EGTA, 10% glycerol, 0.1%
Tween-20, 1 mM NaF, 1 mM DTT (dithiothreitol), 0.1 mM
NazVO,, and one tablet of EDTA-free protease inhibitor
(Roche Diagnostics, Basel, Switzerland) per 10 mL, incubated
20 minutes on ice, and then boiled prior to loading.



Protein samples were separated by SDS-PAGE (4% to 12%
acrylamide) and transferred to 0.2 um nitrocellulose (Bio-Rad
Laboratories, Inc., Hercules, CA, USA). After blocking in 5%
skim milk powder in PBST (PBS + 0.05% Tween-20) for 30
minutes, blots were rinsed in PBST and then incubated with
the primary antibody overnight in PBST at 4°C. Blots were
washed in PBST for 10 minutes, three times, and then were
incubated with the appropriate secondary antibody for 1 hour,
followed by washing in PBST for 10 minutes, three times.
Blots were developed by chemiluminescence (enhanced
chemiluminescence; made in house) and were exposed to X-
OMAT Kodak film (Eastman Kodak Company, Rochester, NY,
USA). For all assays, at least three separate experiments were
performed.

Knockdown of Jab1

Jab1 expression was inhibited by transfecting cells with a pool
of four different Jab1-specific short interfering RNA (siRNA)
duplexes (Dharmacon, Inc., Chicago, IL, USA). Scrambled
siRNA was used as a non-targeting control (Dharmacon, Inc.).
siRNA transfection was carried out using DharmaFECT 1
transfection reagent/vehicle (Dharmacon, Inc.) according to
manufacturer recommendations. siRNA was transfected at a
concentration of 100 nM, after which cells were cultured for
48 hours prior to lysis and protein harvest. Densitometry of
Western blots was conducted using Adobe Photoshop
(Adobe Systems Incorporated, San Jose, CA, USA). Densit-
ometry results for p27 were normalized to GAPDH within each
treatment. Statistical analysis of p27 densitometry was per-
formed with JMP software (version 7.0) (SAS Institute Inc.,
Cary, NC, USA) using t tests.

Tissue microarray breast cancer cohort

After the institutional research ethics board gave ethical
approval, a tissue microarray (TMA) was obtained from the
Manitoba Breast Tumor Bank (Winnipeg, MB, Canada) to
investigate the relationship between Jab1 and EGFR and
S100A7 in breast tumors in vivo. The TMA was constructed
from duplicate 0.6-mm tissue cores that were removed from
the central portion of a representative paraffin block from each
tumor and arrayed within one of seven paraffin blocks, using a
tissue arrayer (Beecher Instruments, Inc., Sun Prairie, WI,
USA). The TMA included interpretable cores from 424 inva-
sive breast carcinomas. Case selection was designed to mir-
ror the distribution of major prognostic clinical-pathological
features (size, grade, and lymph node and ER status) that the
entire tumor bank collection accrued over the period 1992 to
2002 and was also based on the following criteria: (a) a mini-
mum patient follow-up of 60 months and tumors that had (b)
an invasive component of greater than 20% of the tissue sec-
tion and (c) less than or equal to 10% of the normal epithelial
content. ER status was defined by ligand-binding assay (LBA)
criteria of less than 3 fmol/mg protein. The criteria for interpre-
tation of the variables were as follows: (a) PRt status was
defined as greater than or equal to 15 fmol/mg protein by LBA,
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(b) tumor grading was according to the Nottingham system,
and (c) tumor size was classified as either small (< 20 mm) or
large (>20 mm). Patients received a range of treatments,
including local radiotherapy (n = 163) and systemic hormonal
and/or chemotherapy (n = 375). Patient outcome was defined
as the time from initial surgery to the date of death attributable
to breast cancer only.

Immunohistochemistry and statistical analysis
Immunohistochemistry (IHC) staining for Jab1, EGFR, and
S100A7 was performed using an automated tissue immunos-
tainer (Ventana Medical Systems, Inc., Tucson, AZ, USA) and
using bulk reagents supplied by the manufacturer (IHC proto-
col previously described [6,21]). Primary antibody incubation
for Jab1 and S100A7 was 32 minutes. Tumor cell staining was
scored for each protein in semi-serial sections by a single
observer (PHW) but in independent sessions for each protein
to ensure blinded independent scoring. For Jab1 and
S100A7, only nuclear expression was scored as cytoplasmic
signals were generally weak and difficult to quantify. IHC stain-
ing was scored using a semi-quantitative IHC score (IHC
score = [percentage of positive neoplastic epithelial cells] x
[staining intensity ranked from O to 3]) that ranged from O to
300. In univariate analysis, cut-points for Jab1 and S100A7
were those used in previous studies [6,29] to distinguish low
from high expression (Jab1 IHC scores of greater than 50, cor-
responding to nuclear expression in greater than 50% of tumor
cells, and S100A7 IHC scores of greater than 0) or EGFRIHC
scores of greater than 100, corresponding to 2+ or 3+ inten-
sity as used for the clinical assessment of Her2 [30]. Statisti-
cal analysis was performed with JMP software (version 7.0)
(SAS Institute Inc.) and GraphPad Prism (version 4.2) (Graph-
Pad Software, Inc., San Diego, CA, USA) using Spearman
correlation, chi-square, Mann-Whitney ¢ test, or log-rank test
as appropriate.

Results
Treatment with EGF influences localization of Jab1

Jab1 has been shown previously to exist in both the nucleus
and cytoplasm of different cell types. However, it has been
shown that interactions between Jab1 and many of its down-
stream targets are associated with translocation of Jab1 to the
nucleus. These include interaction with AP-1 [31], NF-xB [32],
and p27 [32]. To determine whether Jab1 translocation is
affected by EGFR signaling, we first used immunofluores-
cence microscopy to look for changes in cellular localization of
Jab1 following treatment with EGF. We observed that EGF
treatment was followed by increased translocation of Jab1 to
the nucleus in both MDA-MB-231 and MDA-MB-468 breast
cancer cell lines (Figure 1b). This effect is particularly evident
in the merged images. Quantitative analysis of Jab1 nuclear
expression confirmed that Jab1 levels were approximately two-
fold higher following EGF treatment compared with untreated
cells (Figure 1c). This difference was statistically significant in
both cell lines tested (P<0.01). These results were confirmed
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Figure 1
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by immunoblots of extracts prepared from EGF-treated MDA-
MB-231 cells, which showed increased nuclear Jab1 and a
corresponding decrease in cytoplasmic Jab1 following EGF
treatment (Figure 1d), as well as EGF dose-response experi-
ments that showed increased nuclear Jab1 with increased
EGF treatment concentration (Figure 1e). Similar observations
were made in MDA-MB-468 cells (data not shown).

Effect of EGF on Jab1 translocation is mediated through
the ERK pathway

The effects of EGF are known to be mediated through the
EGFR and by mitogen-activated protein (MAP) kinases [33].
We therefore examined whether the effect of EGF on Jab1
translocation is dependent on selective activation of the MAP
kinases: p38, c-jun N-terminal kinase (JNK), and ERK. Experi-
ments in our breast cancer cell lines showed that EGF treat-
ment significantly increased phosphorylation of ERK as
measured by immunofluorescence (Figure 2a). Minimal effects
of EGF treatment were observed on phosphorylation of p38
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and JNK (data not shown). We next looked at the localization
of Jab1 and phosphorylated ERK (pERK). Double-immunos-
taining for these proteins showed that, following EGF treat-
ment, there was an increase in both Jab1 and pERK and that
these proteins were colocalized in the nucleus (Figure 2a, bot-
tom row). ERK inhibitor, PD98059, was used in conjunction
with EGF stimulation and was shown to effectively block
increased nuclear Jab1 expression in MDA-MB-231 cells by
both immunofluorescence (Figure 2b) and immunoblotting
(Figure 2c). Similar observations were made in MDA-MB-468
cells (data not shown). These results indicate that EGF-
induced Jab1 translocation can be mediated through the ERK
signaling pathway.

EGFR signaling regulates genes downstream of Jab1

To investigate whether EGFR signaling has a functional effect
on Jab1 activity, we performed immunoblotting and double-
immunostaining for the Jab1 downstream target, p27. In both
MDA-MB-231 and MDA-MB-468 cell lines, Western blot
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assay showed that EGF treatment and phosphorylation of
EGFR resulted in a significant decrease in p27 expression
(Figure 3a). Additional observed changes following EGF treat-
ment included increased pAKT (Figure 3a). The inverse corre-
lation between nuclear Jab1 and p27 expression was also
observed in double-immunostaining for these proteins (Figure
3b). To confirm that Jab1 was necessary for the effect of EGF
on p27, we performed Jab1 knockdown using an siRNA
approach in MDA-MB-231 cells in conjunction with EGF treat-
ment. In addition to re-confirming that cells treated with EGF
have reduced p27 (P < 0.05), we found that Jab1 knockdown
restored p27 to EGF-untreated levels compared with cells
treated with EGF and control siRNA (P < 0.0001) (Figure

4a,b). In cells treated with Jab1 siRNA, EGF had no effect on
p27 levels (P = 0.68). Taken together, these results indicate
not only that EGFR signaling affects Jab1 translocation but
that it may regulate targets downstream of Jab1 and that the
effect of EGF on p27 levels is mediated by Jab1.

Jab1 expression correlates with EGFR in breast tumors

To further explore the relationship between EGFR and Jab1
expression in vivo, we examined the expression of these genes
in a series of 424 invasive breast tumors using TMAs. The
characteristics of the cohort are outlined in Table 1. The rela-
tionship between nuclear expression of Jab1 and the level of
EGFR was assessed, together with the level of S100A7,
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because of the previously established strong relationship
between S100A7 expression and Jab1. In analysis of the
entire tumor cohort, high levels of Jab1, EGFR, and S100A7
were seen in 154/424 (36%), 42/424 (10%), 144/424 (34%)
cases, respectively (Figure 5). Jab1 was not associated with
prognostic factors or biomarkers, including grade, axillary
nodal status, tumor size, ER, PR, EGFR, or S100A7, or with
overall patient survival when examined in the entire cohort. In
subgroup analysis of the ERa+ subgroup, no significant asso-
ciations were observed. However, in subgroup analysis of the
ERa subgroup (n = 154), Jab1 levels were associated with
axillary node-positive status (P = 0.019, t test) and higher lev-
els of Jab1 nuclear expression were associated with both
EGFR (P = 0.019, t test) and S100A7 (P = 0.036, t test)
(Table 2). Notably, higher Jab1 levels were more strongly asso-
ciated with combined EGFR+*/S100A7+ versus EGFRY/
S100A7- status within this subgroup (P = 0.004, t test).
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Outcome analysis of the ERa subgroup showed no significant
association between survival and Jab1+, EGFR*, or S100A7+
status when each marker was analyzed independently. Com-
parison of the subset of ERa tumors that were positive for all
three markers, EGFR/S100A7/Jab1, showed that this
phenotype was associated with worse outcome compared
with EGFR/S100A7/Jab1- tumors (n = 10 versus 13; P =
0.07).

Discussion

ERar, and in particular the 'triple-negative' subset of breast
cancer lacking detectable ERa, PR, and Her2, has emerged
as a challenge for systemic therapy now that successful tar-
geted therapies have become available for the treatment of
other phenotypic subgroups. Nevertheless, one prominent
feature of the ERa- subgroup is expression of the EGFR
[34,35], raising the possibility that this receptor may offer a tar-
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get for treatment of this subgroup. However, anti-EGFR
therapies, alone or in combination with chemotherapy, have
benefited only a small cohort of patients in the face of both de
novo and acquired resistance to these therapies [36]. To cir-
cumvent this resistance, it will be important to understand
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more of the signaling pathways downstream of EGFR in ERa
tumors [37]. Recent findings suggest that the Jab1 protein
may be the central mediator in several of the biological circuits
that promote tumor progression in breast cancer cells [37].
We have therefore set out to explore whether Jab1 is also
involved in EGFR signaling. We have shown that EGFR acti-
vation in ERa breast cell lines is associated with Jab1 nuclear
localization and that these changes relate to activation of both
AKT and ERK pathways and modulation of Jab1 downstream
genes. Furthermore, higher Jab1 nuclear expression was asso-
ciated with EGFR* status in a cohort of ERo breast tumors,
and this relationship was most significant in tumors that
expressed both EGFR and S100A7 markers.

Jab1 is a multifunctional protein that has been shown to inter-
act with several components of cell signaling pathways within
in vitro yeast systems and human cell lines. These interactions
usually are associated with translocation of Jab1 from the cyto-
plasm to the nucleus and result in either enhanced activity of
transcription factors, including c-Jun [26,38], AP-1 [26,38],
HIF-1a [39], steroid receptors, and cofactors [40], or the pro-
motion of degradation of interacting proteins, including p27
[27,32], Smad4 [28], MIF1 [41], and p53 [42]. Although the
physiological relevance of some of these interactions is mostly
unknown (specifically, within the context of breast epithelial
cells [43]), they are evidently complex. For example, in docu-
menting that EGF can affect Jab1 localization in breast cells,
we have confirmed previous findings that EGF affects a repre-
sentative Jab1 downstream gene, p27, and that these effects
correlate with alterations of PI3K (phosphatidylinositol-3-
kinase)/AKT [44,45]. However, we also show here that
changes in the ERK pathway may contribute to the effects of
Jab1 in some breast cell lines. Interestingly, others recently
have shown that Her2 (EGFR2) signaling can regulate Jab1
through the AKT/B-catenin pathway [23] and, in a subsequent
study, that Her2 modulates p27 through Jab1 [23]. In contrast
to our data and other interaction effects, these studies con-
cluded that Her2-mediated Jab1 regulation occurs at the tran-
scriptional level. Others have shown Her2 activation to be
associated with relocalization to the cytoplasm rather than
nuclear accumulation of Jab1 [46] and that activation of the
Her2-ras-MAP kinase pathway can alter Jab1 and stimulate
downregulation of p27 [47]. One potential explanation for
these apparent incongruities relates to the different cell lines
used in these studies [23].

Jab1 recently has been identified as a master regulator of a
spectrum of genes (the 'wound response signature') that may
promote tumor progression in breast cancer [24,25]. Jab1 also
acts as an essential modulator of c-myc transcriptional activity,
regulating c-myc protein ubiquitination and stability. Thus, Jab1
and c-myc together influence the expression of a subset of c-
myc-regulated genes that comprise the 'wound response'. Jab1
and c-myc expression and upregulation of the wound response
signature do not appear to be limited to specific phenotypic
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Figure 5
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Jab1 nuclear expression correlates with increased EGFR and S100A?7 in breast tumors. EGFR, S100A7, and Jab1 were detected by immunohisto-
chemistry in breast tumors represented within a tissue microarray. Representative staining is shown for all three markers and in three separate
tumors. Tumor #188 (top row) shows high nuclear Jab1 expression associated with high EGFR and S100A7 expression. Tumor #226 (middle row)
shows intermediate nuclear and cytoplasmic Jab1 expression associated with moderate EGFR and absence of S100A7 expression. Tumor #230
(bottom row) shows low nuclear but high cytoplasmic Jab1 expression associated with the absence of EGFR or S100A7 expression. EGFR, epider-
mal growth factor receptor; Jab1, c-Jun activation domain-binding protein-1.

Table 1

Clinicopathological features of the tumor cohort

Parameter Number Percentage
Grade2
Low 69 16%
Intermediate 237 56%
High 90 21%
Unknown 28 7%
Size
<2 cm 115 27%
>2cm 304 71%
Unknown 5 2%

Nodal status

Negative 163 38%

Positive 249 59%

Unknown 12 3%
Estrogen receptor?

Negative 154 36%

Positive 270 64%
Progesterone receptore

Negative 189 45%

Positive 235 55%

aBased on Nottingham system. PEstrogen receptor-negative, <3 fmol/mg protein. °Progesterone receptor-negative, <15 fmol/mg protein.
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Correlation between Jab1 expression and clinicopathological features of the estrogen receptor-alpha-negative? subset

Jab1
Parameter Number Mean (Standard deviation) P value
Gradeb
Low 12 91 (79) NS
Intermediate 70 61 (51)
High 72 49 (43)
Size
<2cm 32 71 (63) NS
>2.cm 118 55 (50)
Nodal status
Negative 55 43 (46) 0.019
Positive 87 64 (55)
Progesterone receptore
Negative 120 59 (51) NS
Positive 34 53 (57)
EGFR
Negative 123 53 (50) 0.019
Positive 31 78 (57)
S100A7
Negative 59 48 (47) 0.036
Positive 95 64 (55)

aEstrogen receptor-negative, <3 fmol/mg protein. PBased on Nottingham system. cProgesterone receptor-negative, <15 fmol/mg protein. EGFR,

epidermal growth factor receptor; NS, not significant.

subgroups of breast tumors [48]. However, deregulation of c-
myc is known to occur in ERa breast cell lines and to be asso-
ciated with PR breast cancer and resistance to endocrine
therapy [49,560]. We have previously identified Jab1 as a medi-
ator of several intracellular and biological effects of S100A7,
which itself may promote breast tumor progression [21,22].
Pathways downstream of S100A7 are also of interest
because of this gene's strong association with the ERa phe-
notype in DCIS and, when expression persists, in invasive
breast cancer [7,8,18,19].

These observations raise the question of whether Jab1 is a
common factor in mediating cell signaling pathways that are
important in ERo breast cancer. Our data presented here sug-
gest that Jab1 may be regulated by the EGFR and S100A7
pathways in ERa breast cells. Notably, we [6] and (very
recently) others [51] have shown that there may be crosstalk
between S100A7 and EGFR and that S100A7 can regulate
EGFR signaling. Jab1 expression in breast cancer has been
explored previously by us [52] and others [23,29,53]. High
nuclear Jab1 was associated with reduced p27 expression in
all of these studies, in both DCIS [52] and invasive disease

[29,53]. But no consistent association with any prognostic
features, including ERa status, has emerged. However, there
is some indication that increased Jab1 might be related to
poor outcome [29]. Nevertheless, these studies were based
on small [23] and/or highly selected case series (in terms of
stage [62] and nodal status [29,53]). The present study has
now extended these findings by assessing nuclear Jab1
expression in relation to prognostic features and markers in a
large cohort of invasive breast tumors representative of the
case distribution in a large tumor bank. We have confirmed
that Jab1 is not strongly correlated with any prognostic fea-
tures examined, except in subset analysis in which there was
a positive association with nodal metastasis in the ERo sub-
set. Despite the observation of a possible association
between Jab1 and worse outcome in the ERa subset, this was
not statistically significant, and the same was true for EGFR
and S100A7. This difference from previous findings [6,29,54]
may relate to the use of a TMA for the present study. While this
format is optimal for examining coexpression of biomarkers
within small defined tumor regions, it may not be optimal for
outcome analyses of genes that are heterogeneously
expressed within tumors. However, the aggregate results from

Page 9 of 11

(page number not for citation purposes)



Breast Cancer Research Vol 10 No 3 Wang et al.

this and other studies support the conclusion that nuclear
Jab1 is only weakly related, if at all, to standard prognostic fea-
tures and outcome as an independent factor.

This lack of clear association with complex phenotypic traits
represented by prognostic factors such as tumor grade or with
patient outcome is intriguing given the range of potentially
important signaling pathways and proteins that Jab1 influ-
ences. On the other hand, it is perhaps not surprising given
that these multiple factors may influence the equilibrium
between nuclear and cytoplasmic Jab1 and its activity. It has
also been shown that p53 and c-Jun can compete for Jab1
[47]. These and other interacting proteins might influence its
collaborative role with c-myc as a regulator of the wound
response. Jab1 can also exist in several different protein com-
plexes within both cellular compartments in breast cells, fur-
ther complicating analysis and deductions based only on
protein localization [25]. It will be interesting to examine Jab1
in relation to c-myc and Jab1 protein complex status in future
outcome analyses.

Conclusion

Jab1 lies at the intersection of several signaling pathways that
are believed to be important in breast cancer cells and may be
a decisive influence on the outcome of specific pathway alter-
ations and their cumulative effects on progression. Our results
implicating Jab1 in the EGFR pathway, in addition to its role in
the S100A7 pathway, suggest that Jab1 may be particularly
important in the ERa breast cancer cell and provide insight
into the application of new therapeutic strategies (for example,
proteasome inhibitors) directed to this important and difficult-
to-treat subset of breast cancer.
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