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Abstract

Introduction Estrogens play a pivotal role in the initiation and
progression of breast cancer. The genes that mediate these
processes are not fully defined, but potentially include the
known mammary oncogene MYC. Characterization of estrogen-
target genes may help to elucidate further the mechanisms of
estrogen-induced mitogenesis and endocrine resistance.

Methods We used a transcript profiling approach to identify
targets of estrogen and c-Myc in breast cancer cells. One
previously uncharacterized gene, namely HBV pre-S2 trans-
regulated protein 3 (HSPC111), was acutely upregulated after
estrogen treatment or inducible expression of c-Myc, and was
selected for further functional analysis using over-expression
and knock-down strategies. HSPC111 expression was also
analyzed in relation to MYC expression and outcome in primary
breast carcinomas and published gene expression datasets.

Results Pretreatment of cells with c-Myc small interfering RNA
abrogated estrogen induction of HSPC7177, identifying
HSPC111 as a potential c-Myc target gene. This was confirmed
by the demonstration of two functional E-box motifs upstream of
the transcription start site. HSPC111 mRNA and protein were
over-expressed in breast cancer cell lines and primary breast
carcinomas, and this was positively correlated with MYC mRNA
levels. HSPC111 is present in a large, RNA-dependent
nucleolar complex, suggesting a possible role in ribosomal
biosynthesis. Neither over-expression or small interfering RNA
knock-down of HSPC111 affected cell proliferation rates or
sensitivity to estrogen/antiestrogen treatment. However, high
expression of HSPC111 mRNA was associated with adverse
patient outcome in published gene expression datasets.
Conclusion These data identify HSPC711 as an estrogen and
c-Myc target gene that is over-expressed in breast cancer and is
associated with an adverse patient outcome.

Introduction

Breast cancer is the major contributor to cancer incidence and
mortality in women in the Western world. Although the genetic
and environmental factors that lead to the initiation of breast
cancer remain unclear, it is known that exposure to estrogens
plays a crucial role in the development and progression of this
disease [1]. It has been proposed that the causative link
between estrogen and breast cancer is due to its potent
mitogenic and antiapoptotic effects [2]. However, it is not fully

understood how these effects are mediated at the molecular
level. Such insight may provide clues to the mechanisms of
estrogen-induced mitogenesis and cell survival, or resistance
to endocrine therapies, or identify potential novel therapeutic
targets for breast cancer, particularly in the settings of endo-
crine insensitivity and resistance. Thus, the identification and
characterization of estrogen target genes is a major research
priority.

bp = base pairs; CAD = carbamoyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase; ChlP = chromatin immunoprecipitation; Cl =
confidence interval; ER = estrogen receptor; GAPDH = glyceraldehyde 3-phosphate dehydrogenase; NKI = Nederlands Kanker Instituut; NPM =

nucleophosmin; PCR = polymerase chain reaction; si = small interfering.
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The majority of breast cancers (about 75%) are estrogen
receptor (ER)-positive, and estrogen is a potent mitogen for
human breast cancer cells in vitro. The proliferation of ER-pos-
itive MCF-7 breast cancer cells in culture is inhibited by anti-
estrogens, and this effect is reversed by estrogen. Estrogen
and antiestrogens regulate cell cycle entry and rates of pro-
gression during early G, phase [3-5], and this is effected by
modulation of G, cyclin gene expression and activation of cyc-
lin-dependent kinases 2 and 4 [6,7]. In addition, there is now
evidence of converging activation of downstream estrogen
signaling through crosstalk with growth factor-activated tyro-
sine kinase receptors [8]. Thus, there are compelling data sug-
gesting that estrogen can mediate its growth effects by
influencing the expression and function of genes critical to cell
proliferation, by both 'genomic' and 'nongenomic' (cytoplas-
mic signaling) mechanisms [9].

One of the earliest transcriptional responses to estrogen is
increased MYC expression [10]. Myc is a nuclear transcription
factor that exhibits high-affinity and site-specific DNA-binding
activity when complexed with its cellular partner Max, and it is
rate-limiting for cell cycle progression through G, phase [11],
mediated in part through its effects on activation of cyclin-
dependent kinases [12,13]. Inhibition of c-Myc expression
abrogates estrogen-stimulated breast cancer cell proliferation
[14], and blocks cell cycle progression leading to a G, arrest
[15]. Estrogen-regulated induction of MYC may play a critical
role in the initiation of breast tumorigenesis, because MYC
was the first mammary oncogene to be demonstrated by trans-
genesis [16]. These data strongly implicate c-Myc as an impor-
tant mediator of the mitogenic function of estrogen, with a
potential role in the initiation and progression of breast cancer.
This concept is supported by studies demonstrating that Myc
over-expression confers resistance to antiestrogens in vitro
[17,18], and that inducible expression of c-Myc can replace
estrogen in reinitiating cell cycle progression in antiestrogen-
arrested breast cancer cells [12].

Because c-Myc can mimic the effects of estrogen on cell cycle
progression in MCF-7 cells [12], we examined the transcrip-
tional response to estrogen and to inducible c-Myc to identify
novel targets of both estrogen and c-Myc in breast cancer
cells (Musgrove EA, Sergio CM, Butt AJ, Sutherland RL;
unpublished data). Here, we report an initial characterization of
one such gene, namely HBV pre-S2 trans-regulated protein 3
(HSPC111). These studies reveal that HSPC111 is a direct
transcriptional target of Myc, which is localized in the nucleo-
lus and is over-expressed in several common cancers. Further-
more, elevated expression of HSPC111 is associated with
reduced survival in breast cancer patients.

Materials and methods

Breast cancer cell lines and tissue samples

The human breast cancer cell line, MCF-7, was routinely main-
tained in RPMI-1640 medium supplemented with 10% fetal
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calf serum, 10 pg/ml insulin and 2.92 mg/ml glutamine under
standard conditions. The human breast cancer mRNA sam-
ples utilized in this study have previously been described [19].

Quantitative real-time PCR

Total RNA was isolated using the RNAeasy kit (Qiagen Pty
Ltd, Victoria, Australia) from cells pretreated with ICI 182780
(70-[9-(4,4,5,5,5-pentafluoropentylsulfinyl)  nonyl]  estra-
1,3,5,(10)-triene-3,17pB-diol), which was a kind gift from Dr
Alan Wakeling (Astra-Zeneca Pharmaceuticals, Alderly Park,
Cheshire, UK), and then treated with 17p-estradiol, zinc, or
vehicle. Quantitative real-time PCR was performed using the
ABI Prism 7900HT Sequence Detection System (Applied Bio-
systems, Foster City, CA, USA) using Tag-Man® probes for
HSPC111 (Applied Biosytems). Data analyses were per-
formed using the ACt method with RPLPO (Applied Biosys-
tems) as internal loading control. Fold changes in gene
expression were calculated relative to the O hours time point.
For correlation experiments, total RNA from a panel of breast
cancer cell lines was isolated and quantitative real-time PCR
was performed using Tag-Man® probes for MYC and
HSPC111. Correlation was performed using standard linear
regression analysis.

Immunoblot analysis

Cell lysates were collected as described previously [6]. Anti-
bodies used were HSPC111 (see below) or V5 (Invitrogen
Life Technologies Inc., Carlsbad, CA, USA). Glyceraldehyde
3-phosphate dehydrogenase (GAPDH; Ambion, Austin, TX) or
actin (Sigma, St Louis, MO, USA) was used as loading control.

Constructs

The sequence between -799 and +43 base pairs (bp) of the
HSPC111 promoter was amplified by nested PCR from MCF-
7-derived genomic DNA. The resulting 842 bp fragment was
cloned into pGL3-Basic reporter construct (Promega, Madi-
son, WI, USA).

Luciferase reporter assays

MCF-7 cells were transfected using Lipofectamine 2000 (Inv-
itrogen) with luciferase reporter construct, renilla luciferase
reporter construct, pPRLSV40 (Promega), and either the c-Myc
expression plasmid pCDNAS3.1-cMyc or pcDNA3.1. Trans-
fected cells were stimulated with increasing concentrations of
zinc (up to 80 umol/l) for 6 hours before harvesting. Luciferase
activity was assayed 24 hours after transfection using the
Dual-Luciferase Reporter Assay System (Promega) and nor-
malized to renilla luciferase activity. All values are relative to the
activity of the pGL3-Basic reporter.

Electrophoretic mobility shift assays (EMSAs)

The sequences of the oligonucleotides used to investigate the
three putative c-Myc binding sites in the HSCP111 promoter
were as follows: HSPCsite1(TOP): 5-CTAGGAGGCCCAT-
GTGTCGCTG-3' ; HSPCsite1(BOT): 5'-CTAG-



CAGCGACACATGGGCCTC-3' ; HSPCsite2(TOP): 5'-
CTAGGGCTCACACCTGTAATCC-3' ; HSPCsite2(BOT):
5'-CTAGGGATTACAGGTGTGAGCC-3' ;
HSPCsite3(TOP): 5-CTAGGCGGATCACCTGAGGTCA-3'
; HSPCsite3(BOT): 5-CTAGTGACCTCAGGTGATCCGC-
3' ; CAD(TOP): 5-CTAGGTTAGCCACGTGGACCGA-3' ;
and CAD(BOT): 5-CTAGTCGGTCCACGTGGCTAAC-3'.
The annealed oligonucleotides were radiolabeled with [o-
32P]dCTP using Klenow fragment. Electrophoretic mobility
shift assays were performed using nuclear extracts from MCF-
7 cells. Equal amounts of nuclear extracts were incubated with
the radiolabeled oligonucleotides following standard proto-
cols, resolved on a 5% acrylamide gel and visualized by auto-
radiography. Competition assays were performed using 100-
fold excess of competitor unradiolabeled oligonucleotides.
The following oligonucleotides were used as nonspecific com-
petitor oligonucleotides: 5'-CTAGTCTACTCCACTGCTGTC-
TATC-3' and 5'-CTAGGATAGACAGCAGTGGAGTAGA-3".

Chromatin immunoprecipitation assays

Chromatin immunoprecipitation (ChIP) assays were per-
formed on chromatin from MCF-7/MycWT cells using a ChIP
Assay Kit (Upstate Biotechnology, Millipore Corp. Billerica,
MA, USA), following the manufacturer's instructions. Com-
plexes were immunoprecipitated with c-Myc antibodies
(9E10, C-33; Santa Cruz Biotechnology, Santa Cruz, CA,
USA) or a nonspecific PICK-1 antibody (Santa Cruz Biotech-
nology). The oligonucleotides used to detect the putative c-
Myc binding sites in the HSPC111 promoter were as follows:
HSPC111-ChlIP P1: 5-GAGTTTATTAAGCAGGGGAGT-
GGAG-3' ; HSPC111-CHIP P2: 5'-CCGCAGAAATGATTC-
CAAAACC-3', for site 1; HSPC111-CHIP P3: 5'-
GTTGGTCAGGCTGGTCTTGAAC-3' ; HSPC111-ChlP P4:
5'-CGGACTTTGGAGTGGTGCTTAG-3', for site 3. For the
analysis using quantitative real-time PCR, the following oligo-
nucleotides were used: HSPC111-QPCR P1: 5'-TCCGCA-
GAAATGATTCCAAAA-3' ; and HSPC111-QPCR: P2 5'-
AAGGGTCACTTCCTCCCCAG-3'.

Stable transfection

Full-length HSPC111 cDNA was generated by reverse tran-
scription PCR from MCF-7 cells, and cloned into pDONR221
(Invitrogen). Constructs were recombined with the Gateway
destination vector pcDNA3.1/nV5-pDEST (amino-terminal V5
fusion; Invitrogen), and then transfected into MCF-7 using
Fugene-6 transfection reagent (Roche Applied Science, Indi-
anapolis, IN, USA). Clones (MCF/HSPC) were selected and
expanded in the presence of Geneticin (800 pg/ml; Invitro-
gen). Cells transfected with a pcDNAS3.1/nV5-pDEST-LacZ
vector were used as control (MCF/LacZ). MCF-7 cells induci-
bly expressing c-Myc wild-type (MCF/MycWT) or empty vec-
tor control cells were generated as previously described [12].
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HSPC111-specific antibody production

Amino-terminal HIS-tagged HSPC111 was expressed in
Escherichia coli BL21 (DE3) pLysS. Cultures were lyzed and
proteins elutions were pooled for polyclonal antibody produc-
tion in rabbits. Initial bleeds were purified using a protein A col-
umn and optimized for immunoblot analysis. Antibody
specificity was confirmed in MCF/HSPC-NV5 cells by com-
parison with V5-tagged protein detected by immunocyto-
chemisty and immunoblotting. The antibody detected both
endogenous and V5-tagged HSPC-111 protein.

Cell proliferation and S phase analysis
HSPC111-expressing cells and LacZ controls were plated at
1 x 105 (day 0) and subsequently harvested and counted up
to day 5. Exponentially growing MCF-7 cells expressing
HSPC111 or LacZ controls were treated with 1 umol/l 4-
hydroxytamoxifen (Sigma), 10 nmol/I IClI 182780 or vehicle
(ethanol) for 48 hours. Cells were harvested and S phase was
analyzed by propidium iodide staining and flow cytometry.

Small interfering RNA

Small interfering (si)RNAs (siMyc17: D-003282-17-0050;
siHSPC2: D-016096-02-0050; siHSPC4: D-016096-04-
0050; siCONTROL RISC-Free siRNA: D-001220-01-20; and
siRNA nontargeting control 2: D-001210-02-20) were pur-
chased from Dharmacon (Lafayette, CO, USA) and trans-
fected using Lipofectamine 2000 (Invitrogen). For estrogen
'rescue’ experiments, cells were pretreated with ICl 182780
(10 nmol/l) at 24 hours after transfection and 48 hours later
were treated with vehicle (ethanol) or 17 estradiol (100 nmol/

.

Immunofluorescence

Parental MCF-7 cells or those expressing V5-tagged
HSPC111 were stained with anti-HSPC111, anti-V5 (Invitro-
gen), anti-nucleophosmin or anti-fibrillarin (Santa Cruz Bio-
technology) antibodies and DAPI  (4,6-diamidino-2-
phenylindole), and were visualized using confocal microscopy.

Sucrose density gradient fractionation

Nuclear extracts from exponentially growing MCF-7 cells were
separated by sucrose density gradient fractionation as
described previously [20]. The gradients were analyzed
through a UV monitor for continuous measurement of the
absorbance at 254 nm and fractions collected. For immunob-
lot analysis, proteins from each fraction were precipitated with
cold trichloroacetic acid at a final concentration of 10%.

Survival analyses

Datasets from two breast cancer cohorts using two different
methodologies to analyze global gene expression were
accessed. The first (referred to as the Uppsala cohort) is a
group of 236 breast cancer patients [21] whose tumor RNA
was analyzed using Affymetrix Genechip® (Affymetrix Inc.,
Santa Clara, CA, USA) HGU133A and B microarrays (NCBI
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GEO accession GSE3494; files were GSE3494-
GPL96_series_matrix.txt.gz [HG U133A] and GSE3494-
GPL97_series_matrix.txt.gz [HGU133B]). The second (from
The Nederlands Kanker Instituut and designated the NKI
cohort [22]) contained 295 cases that were assessed using
Rosetta NKI spotted oligonucleotide arrays [23]. Datasets
from both published series had complete data for clinico-
pathological variables and ER, progesterone receptor and
HER2/neu status, as well as disease-specific survival. Univar-
iate and multivariate analyses were performed as previously
described [24] to assess the association of HSPC111 and
MYC expression with survival using Statview 5.0 Software
(Abacus Systems, Berkeley, CA, USA). P < 0.05 was consid-
ered statistically significant. The outcome variables were
assessed as time to event, which was defined as the differ-
ence between the time of diagnosis and the time of death from
breast cancer. Kaplan-Meier analysis was used for univariate
analysis and to plot survival curves. Cox proportional hazards
models were used to estimate hazard ratio (and its 95% con-
fidence interval [Cl]) associated with each risk factor and cov-
ariate and were also used for multivariate analyses.

Results

Identification of HSPC111 as an estrogen-regulated c-
Myc target

We have established an in vitro model to identify novel, estro-
gen-regulated targets of c-Myc in breast cancer cells [12].
RNA was collected from MCF-7 cells 6 hours after treatment
with estrogen or after induction of c-Myc, and differential gene
expression was determined using Affymetrix GeneChip Arrays
(HG-U133 Plus V2.0) and Bayesian linear modeling methods
in the /imma package [25]. Candidate genes were selected
from the list of probes that were significantly upregulated by
both estrogen and c-Myc. The previously uncharacterized
gene HSPC111 was among the most highly induced mRNAs
identified in this analysis. Figure 1a shows the intensity of two
probe sets for HSPC111 that were significantly upregulated
by both estrogen and c-Myc.

We confirmed the upregulation of HSPC111 by estrogen and
c-Myc over a time course of treatment with 17f-estradiol or
induction of c-Myc expression. MCF-7 cells were treated with
17B-estradiol or zinc (Myc or empty vector), and HSPC111
mRNA and protein expression was determined by quantitative
real-time PCR and immunoblot, respectively. HSPC111
mRNA was rapidly induced (within 3 hours) after estrogen
treatment or induced c-Myc expression compared with con-
trols (Figure 1b), and reached a maximal 2.5-fold to 3-fold
increase. Immunoblot analysis (Figure 1c) showed a similar
increase in expression of endogenous HSPC111 protein after
treatment with estrogen or induced c-Myc expression.
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Estrogen's effects on HSPC111 expression are
dependent upon Myc

Initial experiments indicated that estrogen induction of
HSPC111 mRNA was dependent on ongoing protein synthe-
sis, because it did not occur in the presence of cycloheximide
(Figure 2a). We then considered whether the effects of estro-
gen on HSPC111 expression are mediated via c-Myc. First,
we determined whether c-Myc stimulated transcription from
the HSCP111 promoter. A luciferase reporter construct con-
taining 800 bp upsteam of the HSPC111 transcriptional start
site was transfected into MCF-7 cells with increasing amounts
of a c-Myc expression vector (Figure 2a). Co-expression of c-
Myc resulted in a greater than sevenfold increase in luciferase
activity. Increased luciferase expression was also observed in
MCEF-7/Myc cells upon zinc treatment compared with empty
vector controls, particularly at higher concentrations of zinc
(Figure 2a).

To determine whether estrogen's upregulation of HSPC111 is
mediated via Myc, we examined the effects of estrogen on
HSPC111 expression in the presence of Myc siRNA. MCF-7
cells were transfected with Myc-specific (siMyc17), RISC-free
(RF), or nontargeting (NT) siRNA, and then arrested with ICI
182780 for 48 hours and stimulated with estradiol for 24
hours, when levels of MYC and HSPC 111 mRNA expression
were determined. The stimulation of MYC mRNA and protein
was attenuated in the presence of siMyc17 (Figure 2b and
data not shown). However, although HSPC111 expression
was elevated in controls, there was no significant estrogen-
mediated stimulation of HSPC777 mRNA in the siMyc17-
treated cells (Figure 2b), indicating that estrogen stimulation
of HSPC111 expression is dependent upon Myc expression
increasing above the level achieved in the presence of siMyc.

HSPC111 is a direct transcriptional target of c-Myc

The rapid upregulation of HSPC111 mRNA by c-Myc sug-
gested that it may be a direct transcriptional target of Myc.
Analysis of the human HSPC111 genomic sequence revealed
three sequences similar to the E-box consensus (CACATG)
upstream of the transcriptional start site (Figure 2c). To deter-
mine whether c-Myc was able to bind to any of these putative
E-boxes, a series of electrophoretic mobility shift assays were
performed using double-stranded, radiolabeled oligonucle-
otides that encompass each of these sites or a known Myc
consensus site from the carbamoyl phosphate synthetase-
aspartate transcarbamylase-dihydroorotase (CAD) promoter.
A band was identified in extracts incubated with radiolabeled
oligonucleotides corresponding to sites 1, 3 and CAD, but not
site 2 (Figure 2c). A competition assay with radiolabeled CAD
oligonucleotide confirmed this as a Myc-specific band. Site 1
and 3 oligonucleotides were able to compete for c-Myc bind-
ing to a greater extent than either site 2 or a nonspecific
oligonucleotide.
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Identification of HSPC111 as an estrogen-regulated target of c-Myc. Cells were pretreated with ICl 182780 for 48 hours. Parental MCF-7 cells
were then treated with either 17f-estradiol (diamonds) or vehicle (squares), and MCF-7/MycWT (triangles) and empty vector (squares) cells were
treated with zinc. (@) HSPC111 mRNA expression in two probe sets from HG-U133 Plus V2.0 microarray platforms, 6 hours after treatment with
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points as indicated and analyzed in triplicate by reverse transcription PCR with HSPC1 1 1-specific primers. Expression of HSPC111 is presented
normalized to RPLPO. (c) immunoblot analysis of endogenous HSPC111 expression in whole cell lysates at time points up to 24 hours. Glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) was used as a loading control. Representative blots and densitometric analyses from three independ-

ent experiments are shown.

To establish whether the endogenous HSPC 111 promoter is
bound by c-Myc, ChIP assays were performed. Myc expres-
sion was induced in MCF-7/MycWT cells by zinc 6 hours
before the ChIP assay being performed. Complexes were
immunoprecipitated with c-Myc-specific antibodies raised to

different epitopes or a nonspecific antibody, and then ampli-
fied by PCR using primers specific for site 1 or site 3. Both
sites were successfully amplified from the chromatin that was
immunoprecipitated with c-Myc antibodies but not with the
nonspecific antibody (Figure 2d), suggesting that sites 1 and
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3 in the HSPC111 promoter are bona fide c-Myc binding
sites. We further determined whether stimulation with estro-
gen results in the recruitment of c-Myc to the endogenous
HSPC111 promoter. Uninduced MCF-7/MycWT cells were
treated with either 17f-estradiol or vehicle for 3 and 6 hours
before performance of the ChIP assay with site 1 specific
primers. Stimulation of the cells with estrogen resulted in a
4.5-fold enhancement in the binding of c-Myc to the
HSPC111 promoter (Figure 2d).

HSPC111 localizes to the nucleolus

Next, we performed a series of experiments aimed at delineat-
ing a possible function for HSPC111. HSPC111 has been
identified as a nucleolar protein of undefined function [26,27].
We examined this more closely in parental MCF-7 cells and
those expressing V5-tagged HSPC111 by indirect immunoflu-
orescence using antibodies against endogenous HSPC111
protein and the V5 tag. Figure 3a demonstrates prominent
immunoreactivity of both endogenous and tagged HSPC111
in the nucleolus. Markers of different functional components of
the nucleolus were used to define further its subnucleolar
localization and hence provide insight into its possible func-
tion. The granular region of the nucleolus contains maturing
ribosomes and can be identified by immunostaining with
nucleophosmin (NPM)/B283, which is an abundant nucleolar
phosphoprotein involved in mediating pre-rRNA processing
[28]. Figure 3a shows no colocalization of HSPC111 and
NPM/B23 within the nucleolus, indicating that HSPC111 is
not present in the granular region and that HSPC111 and
NPM/B23 probably reside within distinct protein complexes.
Antibodies against fibrillarin were then used to label the dense
fibrillar components, the site of newly synthesized preribos-
omal RNA [29]. Dual staining for fibrillarin and HSPC111
expression again demonstrated that each protein resided in
distinct compartments of the nucleolus (Figure 3a), which sug-
gests that HSPC111 is not localized in the dense fibrillar
component.

HSPC111 is a component of a large ribonucleoprotein
particle

The nucleolus contains many large, multiprotein complexes
with a variety of roles, principally in ribosomal biosynthesis.
We next addressed whether HSPC111 might be contained
within a ribonucleoprotein complex. Nuclear extracts from
MCF-7 cells were subjected to sucrose density gradient frac-
tionation to separate various nucleoprotein complexes, and
then immunoblotted for HSPC111 expression. A significant
proportion of HSPC111 was found in fractions of the gradient
that also contained the 30S and 50S pre-preribosomal parti-
cles [29]. In contrast, fibrillarin was present in both the low
molecular weight fractions at the top of the gradient and at the
bottom of the gradient, near the 80S pre-preribosomal particle
(Figure 3b). Following treatment with RNaseA to disrupt ribo-
nucleoprotein particles, the sedimentation of both HSPC111
and fibrillarin predominantly shifted toward the top of the
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gradient (Figure 3b). The loss of pre-ribosomal peaks con-
firmed the disruption of ribonucleoprotein particles. Together
these data indicate that, like fibrillarin, HSPC111 resides in a
large multiprotein complex that requires RNA for its integrity.

Effects of modulation of HSPC111 expression on cell
cycle progression

Given the proliferative role of Myc in our model and the well
characterized link between RNA biosynthesis and cell
proliferation [30], we asked whether HSPC111 could recapit-
ulate this aspect of the Myc phenotype. This was examined
using two clones of MCF-7 cells constitutively expressing
HSPC111 (clones 1 and 4) and LacZ vector alone controls
(Figure 4a). Cell proliferation assays exhibited no significant
differences in cell number between HSPC111-expressing
cells and controls up to 5 days after seeding (Figure 4b). We
also examined the effect of HSPC111 expression on antiestro-
gen-induced cell cycle arrest. HSPC111-expressing cells
were treated with tamoxifen or ICl 182780 for 48 hours then
cell cycle progression was examined by flow cytometric
analysis of propidium iodide stained cells. Treatment of LacZ
control cells with antiestrogens resulted in an accumulation of
cells in G; phase and a decrease in the percentage of cells in
S phase. Constitutive expression of HSPC111 did not signifi-
cantly alter this response pattern (Figure 4b).

The effect of decreased HSPC111 expression on the prolifer-
ation of MCF-7 cells was examined using HSPC111-specific
siRNAs. Transfection of MCF-7 cells with two HSPC111-spe-
cific siRNAs (siHSPC2 and siHSPC4) resulted in a significant
decrease in HSPC111 mRNA and protein expression at 24
and 48 hours compared with controls (Figure 4c). However,
inhibition of endogenous HSPC111 expression had no signif-
icant effect on cell cycle progression in proliferating cells (Fig-
ure 4c). Thus, we concluded that HSPC111 did not have a
significant role in mediating Myc-induced proliferation.

HSPC111 and c-Myc are over-expressed and correlated
in human breast cancer cell lines and tissues

To further investigate HSPC111 as a Myc target gene in
human breast cancer, we examined the expression of
HSPC111 and Myc in a panel of breast cancer cell lines and
primary breast cancers. A significant positive correlation
between HSPC111 and Myc expression was observed at
both the mRNA and protein level in 16 breast cancer cell lines
(Figure 5a). We extended this study to examine the relation-
ship between HSPC111 and MYC mRNA expression in a
cohort of 105 primary breast carcinomas [19]. Comparative
analysis of HSPC1171 and MYC mRNA expression revealed a
weak positive correlation in this breast cancer cohort (2 =
0.19, indicating that MYC contributed only about 20% of the
variance in HSPC111 levels; Figure 5b). Furthermore,
HSPC111 mRNA expression was distributed similarly across
both ER-positive and ER-negative breast cancers (mean
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HSPC111 resides in high molecular weight protein complexes in the nucleolus. (a) Detection of endogenous and tagged HSPC111 by indirect
immunofluorescence. Upper panels: Immunostaining of MCF-7/HSPC-NV5 cells with purified antibodies against endogenous protein (HSPC111;
green) and the V5 tag (V5; red). Middle panels: Parental MCF-7 cells were stained with anti-HSPC111 (green) and anti-nucleophosmin (NPM; red)
antibodies. Lower panels: Parental MCF-7 cells stained with anti-HSPC111 (green) and anti-fibrillarin (red) antibodies. DNA was counterstained
with DAPI (4,6-diamidino-2-phenylindole; blue). Images are representative of at least two independent experiments. Bar = 10 um. (b) Nuclear
extracts of MCF-7 cells treated with or without RNase A were fractionated on sucrose density gradients. The trace from continuous monitoring of
absorbance at 254 nm is shown. Fractions were precipitated and immunoblotted for HSPC111 and fibrillarin.

relative expression 0.94 * 0.06 and 1.03 *+ 0.08 respectively;
Figure 5b).

We then utilized the cancer-profiling database Oncomine™
[31,32] and our own published studies [33,34] to further
explore the relative expression of HSPC1171 in normal versus
cancer tissues from a range of published gene expression
arrays. This confirmed that HSPC777 mRNA was significantly
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over-expressed in two other breast cancer cohorts [35,36]
and in other steroid-regulated cancers, such as prostate
[33,37] and ovarian carcinoma [34,38]. In addition, studies in
other cancer types such as testis [39], liver [40], colon [41],
and pancreas [42] revealed over-expression of HSPC111.
Interestingly, some but not all of these studies showed a
concurrent over-expression of MYC [37,39], suggesting that



Figure 4
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Effects of modulation of HSPC111 expression on cell proliferation. (a) Immunoblot analysis of whole cell lysates from MCF-7 clones stably express-
ing HSPC111 (HSPC#1 and HSPC#4) or LacZ controls at various passages after transfection. Blots were analyzed for expression of tagged
HSPC111 protein using V5 antibody or actin as a loading control. (b) Left panel: Growth curves of HSPC111 over-expressing clones and LacZ
controls. Right panel: Stable transfectants were treated with tamoxifen (TAM), ICI 182780 (ICl), or vehicle for 48 hours, and then S phase was
determined by flow cytometric analysis of propidium iodide-stained cells. (c) Upper panel: Endogenous HSPC111 mRNA and protein expression in
MCF-7 cells 24 and 48 hours after transfection with HSPC111-specific small interfering (si)RNA (siHSPC2 and siHSPC4) determined by quantita-
tive real-time PCR and immunoblot analysis with HSPC111 antibody, respectively. NS indicates mock transfection with no siRNA, RF indicates
RISC-free control siRNA, and NT indicates nontargeting control siRNA. Lower panel: S phase was determined 48 hours after transfection by flow

cytometric analysis of propidium iodide-stained cells.

HSPC111 is regulated both by Myc-dependent and -inde-
pendent pathways.

HSPC111 expression is associated with poor survival in
breast cancer patients

Datasets from two well characterized breast cancer cohorts
were examined to assess whether the documented HSPC111
over-expression in breast cancer was associated with disease

outcome. From the Uppsala cohort [21], two probesets that
assessed expression of HSPC111 on the Affymetrix HGU133
microarrays satisfied quality control criteria for analysis. For
both probesets, high expression of HSPC111 mRNA was
associated with poor survival when modeled as a continuous
variable using Cox proportional hazards analysis (probeset
203023_at: hazard ratio = 2.30, 95% CI 1.23 to 4.30; P =
0.0091; probeset 214011_s_at: hazard ratio = 3.13, 95% CI
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Correlation between HSPC111 and c-Myc expression in human breast

cancer cell lines and tumor samples. (a) Expression of HSPC111 and Myc

mRNA and protein was determined by quantitative real-time PCR and immunoblot, respectively, in a panel of 16 breast cancer cell lines with either
estrogen receptor (ER)-negative or ER-positive status. (b) Correlation between HSPC 111 and MYC mRNA expression in primary breast cancers,
and distribution of HSPC 111 mRNA expression levels amongst ER-negative and ER-positive cancers.

1.62 to0 6.06; P=0.0007). None of the four probesets assess-
ing MYC expression were associated with outcome when
modeled as continuous variables (P> 0.13).

To dichotomize data for both cohorts, a cutpoint was selected
to identify approximately the upper quartile of HSPC111
expressors in both studies. As shown in Figure 6a, Kaplan-
Meier analysis demonstrated that high expression of
HSPC111 was associated with poor survival for both
probesets (203023 _at: 45/236 [19.19%] with high expression;
P=0.0005;214011_s_at: 66/236 [28%]; P=0.0137). Sim-
ilarly, approximately the highest quartile was selected for MYC,
reflecting the expected proportion of cancers that would prob-
ably have amplification of the gene. The only probeset that
demonstrated an association between high MYC expression
and a poor survival was 224340_at (47/236 [19.9%], P =
0.0157). Multivariate modeling identified that HSPC111
expression was an independent prognostic factor with the final
resolved model shown in Table 1. HSPC1171 was independ-
ent of the influence of high MYC expression on survival (shown
as a bivariate model in Table 1).

In the dataset from The Nederlands Kanker Instituut cohort
(NKI [22]), one probe assessed expression of HSPC111.
High expression of HSPC111 mRNA was associated with
poor survival when modeled as a continuous variable using
Cox proportional hazard analysis (hazard ratio = 16.6, 95% CI
3.25 to 85.26; P = 0.0007). High MYC expression was also
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associated with poor survival (hazard ratio = 2.63, 95% CI
1.16 to 5.92; P=0.02). Adopting a similar strategy for dichot-
omization of gene expression variables in this cohort demon-
strated that, as with the Uppsala cohort, high HSPC111
expression (which occurred in 69/295 [23.4%)] cases) was
associated with poor survival (P = 0.0005), and high MYC
expression (in 75/295 [25.4%)] cases) was also associated
with poor survival (P=0.0007). Multivariate modeling demon-
strated that in this cohort, HSPC111 expression was not an
independent prognostic factor with the final resolved model
shown in Table 1. However, as with the Uppsala cohort,
HSPC111 was independent of the influence of high MYC
expression on survival, which is shown as a bivariate model in
Table 1.

Discussion

Although it is now well established that the mitogenic effects
of estrogen play a pivotal role in the initiation and progression
of breast cancer, how these effects are mediated at the molec-
ular level remains to be fully elucidated. The transcription fac-
tor c-Myc is a prominent player in the response of breast
cancer cells to estrogen, mimicking the effects of estrogen on
cell cycle progression [12] and conferring resistance to anti-
estrogens in vitro [14,15,43]. Thus, identification and charac-
terization of key downstream effectors of estrogen and Myc
action will not only provide a greater insight into estrogen
effects on mitogenesis and survival, but could also lead to an



Table 1
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Multivariate analysis of clinicopathological parameters and HSPC111 expression in two breast cancer cohorts

Variable

Hazard ratio (95% confidence interval) P

Uppsala cohort

Tumor size > 20 mm 3.20 (1.65 to 6.21) 0.0006
Lymph node positive 3.13 (1.79 to 5.46) < 0.0001
HER?2 high expression 1.82 (1.02 to 3.27) 0.0444
HSPC111 high expression 2.29 (1.30 to 4.03) 0.0043
HSPC111 high expression 2.51 (1.43 10 4.41) 0.0014
MYC high expression 1.89 (1.06 to 3.36) 0.0305
NKI cohort

Tumour size > 20 mm 1.90 (1.10 to 3.28) 0.0223
Tumour grade > 2 2.04 (1.22 to 3.44) 0.0070
ER positive 0.67 (0.38t0 1.18) 0.1636
PR positive 0.56 (0.32 to 1.00) 0.0490
HER2 high expression 1.46 (0.87 to 2.43) 0.1493
HSPC111 high expression 1.29 (0.79 to 2.12) 0.3074
HSPC111 high expression 1.89 (1.17 to 3.08) 0.0097
MYC high expression 1.83 (1.14 to 2.93) 0.0118

NKI, Nederlands Kanker Instituut.

enhanced understanding of the mechanisms governing endo-
crine resistance [8].

In a search for estrogen-target genes that are regulated sec-
ondarily to estrogen's induction of c-Myc, we identified a novel
gene of unknown function, namely HSPC17117, which was
among the most highly regulated estrogen and Myc target
genes in our model [12] (Musgrove EA, Sergio CM, Butt AJ,
Sutherland RL; unpublished data). HSPC 111 is rapidly (within
3 hours) upregulated in response to treatment with estrogen
(about threefold) and induction of Myc (about fourfold). How-
ever, the response to estrogen is abrogated in the presence of
Myc siRNA, providing strong evidence that estrogen stimu-
lates HSPC111 expression via its well documented upregula-
tion of Myc. This conclusion is further supported by our
demonstration of functional E-boxes in the HSPC111 pro-
moter, and Myc-responsive promoter activity, identifying
HSPC111 as a direct transcriptional target of Myc. Although
gene expression profiling has recently identified HSPC111 as
a target of estrogen [44] and Myc [45], this is the first report
demonstrating that estrogen's effects on HSPC111 are
dependent upon a direct transcriptional activation by Myc.

Although HSPC111 is a previously uncharacterized protein, it
is known to reside in the nucleolus [46]. In an attempt to elu-

cidate a cellular role for HSPC111, we further investigated its
subcellular localization. The nucleolus is the center of ribos-
omal biosynthesis and assembly [29]. HSPC111 did not colo-
calize with either NPM/B23 or fibrillarin, both of which are
known to play a role in ribosomal biosynthesis. However,
sucrose density fractionation demonstrated that HSPC111 is
part of a RNA-dependent complex sedimenting in the 40 to
80S region, which also contains preribosomal ribonucleopro-
tein particles [29]. In addition to driving cell division, Myc plays
a crucial role in controlling cell growth and protein synthesis
[47]. Thus, the acute transcriptional regulation of HSPC111
by Myc may represent part of a coordinated stimulation of
ribosome biogenesis [47], occurring concurrently with its
stimulation of cell proliferation. However, whether HSPC111
has a role in the ribosomal biosynthesis pathway is not clear
from these studies and requires further investigation.

Recent studies have emphasized an important link between
nucleolar function, in particular ribosomal biogenesis, and cell
cycle control, and several genes coordinately regulate both
processes. For example, disruption of the nucleolar PeBoW
complex, consisting of Pes1, Bop1 and WDR12, blocks both
rRNA processing and cell cycle progression [48,49]. Given
the proliferative role of Myc in our model and our data suggest-
ing HSPC111 interacts with RNA in the nucleolus, we ques-
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High HSPC111 expression is associated with poor survival in breast cancer cohorts. Kaplan-Meier survival curves of the relationship between
HSPC111 and MYC mRNA expression and survival in two independent publicly available breast cancer cohorts: (a) Uppsala cohort and (b) the

Nederlands Kanker Instituut (NKI) cohort.

tioned whether HSPC111 might play a role in Myc's effects on
cell cycle progression. However, modulation of HSPC111
expression had no effect on cell proliferation end-points. We
detected no effect of constitutive HSPC111 expression on
proliferation, and although it is possible that the level of over-
expression achieved was not sufficient for a detectable
increase in proliferation rate, HSPC111 expression was not
required for cell cycle progression, and neither was its down-
regulation required for antiestrogen inhibition of proliferation.
These data are supported by Schlosser and coworkers [45],
who identified HSPC111 as a Myc target gene in the human
B-cell line P493-6 under conditions in which Myc induces cell
growth but not cell proliferation [50]. Furthermore, they sug-
gested that, even if HSPC111 does play a role in rRNA syn-
thesis, there is either an element of functional redundancy in
its role or it is not rate-limiting for cell cycle progression.
Indeed, although adequate cell growth is essential for prolifer-
ation, it is not sufficient, requiring additional proliferative sig-
nals for cell cycle progression to proceed [61]. These data
emphasize the complexity of the Myc phenotype, even within
the relative restrictions of our model system, and support the
concept that the coordinated regulation of multiple effector
genes is required to recapitulate Myc functions [52].
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To address further a potential role of HSPC111 in cancer, we
initially identified a strong positive correlation between MYC
mRNA and both HSPC111 mRNA and protein in breast can-
cer cell lines, raising the possibility that HSPC111 expression
might be a useful surrogate marker of Myc over-expression in
breast cancer. However, the relationship at the mRNA level
was less robust in primary breast cancer (r2= 0.19 versus
0.60 for primary cancer versus cell lines). An extension of this
analysis to published datasets from a number of other cancers
identified that elevated expression of HSPC111 was a feature
of several cancers including those of the breast, prostate,
ovary, testis, liver, colon, and pancreas [31,41], but this was
not always associated with MYC over-expression. Thus,
HSPC111 over-expression appears to be a common feature
of many cancers but its relationship to aberrant Myc function,
which is only contributed in part by MYC mRNA levels,
remains to be elucidated. More importantly, HSPC111 over-
expression was a strong predictor of an adverse outcome in
two cohorts of breast cancer patients on univariate analysis
and remained significant in a multivariate model in the Uppsala
cohort. These effects were independent of MYC mRNA over-
expression, which is in support of our conclusions from other
cancers. Whether HSPC111 over-expression is functionally
associated with disease progression remains an open ques-
tion. The data presented here failed to support a role in cell



proliferation or endocrine sensitivity, but other aspects of the
biology of tumor progression require further investigation. It is
well established that aberrant cell growth (increased/dysregu-
lated ribosome biogenesis and protein synthesis) are common
features of cancer. Because our preliminary data point to
nucleolar localization of HSPC111 in association with ribonu-
cleoproteins, it may be either functionally associated with
these processes or a marker of aberrant cell growth regulation
in general. In any event, further investigation of the normal
physiological role of HSPC111 in nucleolar function and the
functional consequences of overexpression on cellular growth
control are warranted.

Conclusion

In summary, we have identified HSPC17117 as an estrogen-
responsive, Myc target gene in breast cancer cells. Although
the precise function of HSPC111 remains unclear from our
studies, its over-expression is common in a number of cancer
cell types, and its association with poor outcome in breast
cancer cohorts warrants its further analysis as an effector of
estrogen and Myc action in both normal and neoplastic
growth.
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