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Abstract

Introduction Estrogen and androgen signalling pathways exert
opposing influences on the proliferation of mammary epithelial
and hormone-dependent breast cancer cells. We previously
reported that plasma concentrations of 1,1-dichloro-2,2-bis(p-
chlorophenyl)ethylene (p,p-DDE), the main metabolite of the
insecticide DDT (1,1,1-trichloro-2,2-bis [p-chlorophenyl]ethane)
and a potent androgen antagonist, were associated with tumor
aggressiveness in women diagnosed with breast cancer. We
sought to examine the biological plausibility of this association
by testing the effect of p,p'-DDE on the proliferation of CAMA-1
cells, a human breast cancer cell line that expresses the
estrogen receptor alpha (ERa) and the androgen receptor (AR),
in the presence of physiological concentrations of estrogens
and androgens in the cell culture medium.

Methods The proliferation of CAMA-1 cells was determined in
96-well plates following a 9-day treatment with p,p'-DDE alone
(0.1 to 10 uM) or in combination with 17pB-estradiol (E,) (100
pM) and dihydrotestosterone (DHT) (100, 500, or 1,000 pM).
We also assessed p,p-DDE-induced modifications in cell cycle
entry and the expression of the sex-steroid-dependent genes
ESR1, AR, CCND1, and TFF1 (pS2) (mRNA and/or protein).

Results We found that treatment with p,p'-DDE induced a dose-
response increase in the proliferation of CAMA-1 cells when
cultivated in the presence of physiological concentrations of
estrogens and androgens, but not in the absence of sex steroids
in the cell culture medium. A similar effect of p,p-DDE was
noted on the proliferation of MCF7-AR1 cells, an estrogen-
responsive cell line that was genetically engineered to
overexpress the AR. DHT added together with E, to the cell
culture medium decreased the recruitment of CAMA-1 cells in
the S phase and the expression of ESR7 and CCND1 by
comparison with cells treated with E, alone. These androgen-
mediated effects were blocked with similar efficacy by p,p'-DDE
and the potent antiandrogen hydroxyflutamide.

Conclusion Our results suggest that p,p'-DDE could increase
breast cancer progression by opposing the androgen signalling
pathway that inhibits growth in hormone-responsive breast
cancer cells. The potential role of environmental antiandrogens
in breast carcinogenesis deserves further investigation.

Introduction

Breast cancer is the most common cancer in women, with
more than 1,000,000 new cases occurring in the year 2000
worldwide [1]. Risk factors for the disease include high plasma
estrogen levels [2], high levels of expression of estrogen
receptors (ERs) in mammary tissue [3,4], and high breast den-

sity as revealed by mammography screening [5]. The adminis-
tration of antiestrogens constitutes the most useful treatment
for hormone-dependent breast cancer [6] and was shown to
be effective in preventing breast cancer in clinical trials [7].

In view of the pivotal role of estrogens in the pathogenesis of
breast cancer, exposure to xenobiotics that possess

ANOVA = analysis of variance; AR = androgen receptor; bp = base pairs; DCC-FBS = dextran-coated charcoal-treated fetal bovine serum; DHT =
dihydrotestosterone; DMEM = Dulbecco's modified Eagle's medium; E, = 17p-estradiol; ER = estrogen receptor; FBS = fetal bovine serum; OHF =
hydroxyflutamide; PBS = phosphate-buffered saline; PCR = polymerase chain reaction; p,p"-DDE = 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene;

RPMI = Roswell Park Memorial Institute; Tm = annealing temperature.
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estrogenic properties, referred to as xenoestrogens, has been
suggested to explain the increase in the incidence of breast
cancer noted over the last four decades in industrialized coun-
tries. In vitro studies revealed that the loss of normal cell cycle
control in hormone-dependent breast cancer cells can result
from treatment with xenoestrogens as indicated by increased
cell proliferation and modulation of estrogen-sensitive molecu-
lar parameters [8,9]. However, the sum of evidence from sev-
eral epidemiological studies that investigated the relationship
between breast cancer and exposure to persistent organo-
chlorines, some of them with known estrogenic properties,
does not support a link between any of these compounds and
breast cancer risk [10,11].

Environmental compounds that bind the androgen receptor
(AR) constitute another class of endocrine disruptors that
have received growing interest over the last decade [12,13].
Androgens control the proliferation of mammary epithelial cells
in nonhuman primates [14,15] as well as that of several breast
cancer cell lines [16,17]. Androgens were shown to be effec-
tive in complementing the treatment of hormone-dependent
breast cancer [18]. Furthermore, androgenic compounds can
induce a remission after failure of antiestrogenic therapy
(reviewed in [19]). One, therefore, may anticipate that expo-
sure to antiandrogens could increase breast cancer risk or
favor its progression.

1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p-DDE), the
main DDT (1,1,1-trichloro-2,2-bis [p-chlorophenyllethane)
metabolite, is a highly persistent molecule that accumulates in
body fat with age [20] and is a potent androgen antagonist
[12]. In the course of a case-control study on organochlorine
and breast cancer, we previously reported that, among cases,
plasma p,p-DDE concentrations were associated with the
aggressiveness of breast cancer [21]. We speculated that this
relationship could be explained by the antiandrogenic action of
the compound on breast cancer cells that would favor their
proliferation and in turn breast cancer progression. To test this
hypothesis, we used CAMA-1 breast cancer cells cultivated in
the presence of physiologically relevant concentrations of sex
hormones as an in vitro model of breast cancer progression.
Both ER alpha (ERa) and AR are expressed in CAMA-1 cells;
estrogens stimulate their proliferation, whereas androgens
oppose the estrogen-induced proliferative effect [22]. Here,
we show that p,p"-DDE can markedly increase the proliferation
of CAMA-1 cells in conditions in which estrogens and andro-
gens are competing for the control of cell cycle gene
expression.

Materials and methods

Reagents

17B-estradiol (E,) was purchased from Sigma-Aldrich (St.
Louis, MO, USA) and dihydrotestosterone (DHT) from Ster-
aloids, Inc. (Newport, RI, USA), whereas hydroxyflutamide
(OHF) was kindly donated by Schering-Plough Corporation
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(Kenilworth, NJ, USA). These compounds were dissolved in
ethanol. p,p'-DDE was purchased from Cerilliant Corporation
(Round Rock, TX, USA) and was dissolved in dimethylsulfox-
ide. Final concentrations of vehicles in the cell culture medium
were 0.1% (vol/vol). Aprotinin, leupeptin, phenylmethylsulfonyl
fluoride, and sodium orthovanadate were purchased from
Sigma-Aldrich.

Cell proliferation assays

CAMA-1 and MCF-7 cells were purchased from the American
Type Culture Collection (Manassas, VA, USA). MCF7-AR1
cells were kindly provided by Ana M Soto (Tufts University,
Medford, MA, USA). CAMA-1 cells were maintained in phenol
red-free Roswell Park Memorial Institute (RPMI) medium sup-
plemented with 10% (vol/vol) fetal bovine serum (FBS) from
Wisent Inc. (St.-Bruno, QC, Canada), 1.0 mM pyruvate, 2.0
mM L-glutamine, 0.1 pg/mL streptomycin, and 0.1 U/mL pen-
icillin in a humidified atmosphere of 5% CO, at 37°C. Two
thousand cells per well were seeded in 200 pL phenol red-free
RPMI-10% FBS in 96-well plates (6 wells per treatment) and
were incubated during 24 hours at 37°C. The complete
medium was then substituted for FBS-free medium for a 24-
hour period. On day 1 of the experiment, the FBS-free medium
was replaced by a medium containing 10% dextran-coated
charcoal-treated FBS (DCC-FBS) from Wisent Inc., the hor-
mones, and test chemicals (or vehicles). Cells were grown
over a 9-day period with a medium replacement every 3 days.
The medium was then removed and nucleic acids were
stained using the CyQuant® kit purchased from Molecular
Probes Inc. (now part of Invitrogen Corporation, Carlsbad, CA,
USA) as described by the manufacturer. Cell proliferation for
the control treatment was arbitrarily set at 1, and results were
expressed as fold induction over the control.

MCF-7 and MCF7-AR1 cells were maintained in phenol red-
free Dulbecco's modified Eagle's medium (DMEM) supple-
mented with 10% (vol/vol) FBS, 1.0 mM pyruvate, 2.0 mM L-
glutamine, 0.1 pg/mL streptomycin, 0.1 U/mL penicillin, and 1
pg/mL insulin in a humidified atmosphere of 5% CO, at 37°C.
One thousand cells per well were seeded in 200 pL of phenol
red-free DMEM-10% FBS in 96-well plates (6 wells per treat-
ment) and were incubated during 24 hours at 37°C. The com-
plete medium was removed and cells were washed with
phosphate-buffered saline (PBS). Then a medium containing
10% DCC-FBS, the hormones, and test chemicals (or vehi-
cles) were added. Cells were grown over a 6-day period with-
out medium replacement, and proliferation was assessed as
described above for CAMA-1 cells.

Cell cycle analysis

Fifty thousand cells per well were seeded in 1 mL phenol red-
free RPMI-10% FBS in 24-well plates and incubated during
24 hours at 37°C. The medium was replaced by FBS-free
medium during 48 hours to promote GO/G1 synchronization
[23]. FBS-free medium was then replaced by a medium



containing 10% DCC-FBS, hormones, and test chemicals (or
vehicles) for a 24-hour incubation period at 37°C. Cells were
harvested following trypsinization, fixed in 70% ethanol for 30
minutes at -30°C, and stained with propidium iodide (50 pg/
mL) in PBS containing 40 U/mL RNase A for 1 hour at 37°C.
The DNA content in each cell was determined by flow cytom-
etry analysis using the Wallac 1420 Multilabel Counter from
PerkinElmer Life and Analytical Sciences, Inc. (Waltham, MA,
USA).

Gene expression levels

Two million cells were seeded into 10-cm dishes in 10 mL of
phenol red-free RPMI-10% FBS and were incubated during
24 hours at 37°C. The complete medium was then substituted
for FBS-free medium for a 24-hour period. The FBS-free
medium was subsequently replaced by a medium containing
10% DCC-FBS, the hormones, and test chemicals (or vehi-
cles), and cells were grown over a 24-hour period. Duplicate
cell cultures were used for each treatment: one dish was used
for RNA and the other for total cell extracts. RNA was isolated
with TRIzol® from Gibco (now part of Invitrogen Corporation)
as described by the manufacturer and diluted in 40 pL of die-
thyl pyrocarbonate-treated H,O. mRNAs were reverse-tran-
scribed by Super Script II™ using Oligo(dt) primer from
Invitrogen Corporation as described by the manufacturer in a
final volume of 50 pL. An amount of 500 ng of total RNA was
included as template for each reaction. The amount of cDNA
used for polymerase chain reaction (PCR) was adjusted for
each target gene. To assess ESRT mRNA (forward primer: 5'-
AATTCAGATAATCGACGCCAG-3'; reverse: 5-GTGTT-
TCAACATTCTCCCTC-CTC-3'; annealing temperature (Tm)
= 58°C; 344 base pairs [bp]) [24], a 10-uL aliquot of cDNA
was used compared with 1 ulL for S-actin (forward primer: 5'-
CGTGACATTAAGGAGAAGCTGTGC-3';  reverse: 5'-
CTCAGGAGGAGCAATGATCTTGAT-3'; Tm = 58°C; 375
bp) [25], while 10 and 5 L of amplified product were loaded
on an 8% polyacrylamide gel for ESR1 and f-actin, respec-
tively. To evaluate mRNAs for CCND1 (forward primer: 5'-
CGGAGGAGAACAAACAGATC-3"; reverse: 5-GGGTGT-
GCAAGCCAGGTCCA-3'; Tm = 55°C; 350 bp) [26] and AR
(forward primer: 5'-GTCAAAAGCGAAATGGGCCCC-3';
reverse: 5-CTTCTGGGTTGTCTCCTCAGT-3'; Tm = 60°C;
420 bp) [27], we used 5-uL aliquots of cDNA for both genes
and a 2-ul aliquot for S-actin while 10 puL of amplified prod-
ucts was loaded on the gel. To evaluate mRNAs for TFF1 (for-
ward primer: 5-TTTGGAGCAGAGAGGAGGCAATGG-3';
reverse: 5-TGGTATTAGGATAGAAGCACCAGGG-3"; Tm =
58°C; 240 bp) [28], we used 2-uL aliquots of cDNA and a 2-
plL aliquot for S-actin while 10 pL of amplified products was
loaded on the gel. Taq DNA polymerase and deoxynucleotides
(Roche Diagnostics, Basel, Switzerland) were used as
described by the manufacturer in a 50-uL final volume. The
PCR settings were adjusted to complete each reaction within
the linear portion of amplification. PCR conditions were one 5-
minute cycle at 95°C, 25 (f-actin) or 30 cycles (target
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mRNAs) each comprising a 30-second step at 95°C, followed
by a 30-second step at primer-specific Tm and a 45-second
step at 72°C, and one last cycle of 7 minutes at 72°C. Nega-
tive controls were included for each reaction. PCR products
were stained with ethidium bromide and captured with a 16-
bit camera. Densitometry was determined by Quantity One 1-
D Software Analysis from Bio-Rad Laboratories, Inc. (Her-
cules, CA, USA) and normalized with S-actin.

Immunoblotting

Floating cells were recovered with the medium and pooled
with the adherent cells that were harvested by scraping in 2
mL of ice-cold PBS, centrifuged, and resuspended in 600 pL
of lysis buffer containing 50 mM Hepes, pH 7.5; 1 mM EGTA
(ethylene glycol tetraacetic acid), pH 8; 1560 mM NaCl; 1.5
mM MgCl,; 10 mM sodium pyrophosphate; 200 uM sodium
orthovanadate; 100 mM NaF; 1% Triton X-100; 10% glycerol;
and a protease inhibitor cocktail from EMD Biosciences, Inc.
(San Diego, CA, USA). Insoluble material was removed by
centrifugation (10 minutes at 13,000 g). Thirty micrograms of
the cellular extract was resolved on PROTEAN® || (Bio-Rad
Laboratories, Inc.) 10% SDS-polyacrylamide gels. The pro-
teins were electroblotted onto 0.45-uM polyvinyl difluoride
membranes purchased from Millipore Corporation (Billerica,
MA, USA). Membranes were blocked at room temperature for
1 hour in PBS containing 5% (wt/vol) dried milk and incubated
2 hours at 37°C with the specific antibody diluted in PBS con-
taining 1% (wt/vol) dried milk. Antibodies against ERa, AR,
and cyclin D1 were purchased from Santa Cruz Biotechnol-
ogy, Inc. (Santa Cruz, CA, USA), and anti-actin was from
Cedarlane Laboratories Limited (Burlington, ON, Canada).
Membranes were washed in PBS containing 0.1% (vol/vol)
Tween 20 followed by a 1-hour incubation with specific immu-
noglobulin G horseradish peroxidase-conjugated antibodies
from Jackson ImmunoResearch Laboratories, Inc. (West
Grove, PA, USA) and then incubated in Immun Star HRP Sub-
strate (Bio-Rad Laboratories, Inc.) as described by the manu-
facturer. Signals were analyzed as described above for
reverse transcription-polymerase chain reaction and were nor-
malized for actin within the same membrane according to the
method of Liao and colleagues [29].

Statistical analyses

Concentration-response relationships were tested using linear
regression analysis. Group means were compared using an
analysis of variance (ANOVA) with specific contrasts or an
ANOVA followed by the Bonferroni post hoc test. One-tail
tests were performed for cell proliferation experiments
because of a priori hypotheses regarding treatment effects
(that is, inhibition for androgens and induction for antiandro-
gens). All other tests were two-sided. All statistical analyses
were performed using the SPSS for Windows software (ver-
sion 11.5.0; SPSS Inc., Chicago, IL, USA).
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Expression of the estrogen receptor alpha (ERa) and the androgen
receptor (AR) in CAMA-1, MCF-7, and MCF7-AR1 breast cancer cell
lines at the protein level. Cell extracts were prepared during exponential
proliferation in maintenance medium containing 10% fetal bovine
serum. Immunoblots were performed as described in Materials and
methods. (a) A representative immunoblot. (b) Relative expression of
sex steroid receptors quantified to actin content. Each bar represents
the mean = standard error of the mean of four independent experi-
ments. Double asterisk indicates P < 0.01 versus wild-type MCF-7
cells as determined by an analysis of variance followed by a Bonferroni
post hoc test.

Results

Level of expression of ERo. and AR in cell lines

Figure 1 displays the relative levels of ERa and AR in CAMA-
1, MCF7-AR1, and wild-type MCF-7 cells. CAMA-1 and
MCF7-AR1 cells expressed, respectively, 6.5-fold (P < 0.01)
and 7.5-fold (P<0.01) more AR proteins compared with wild-
type MCF-7 cells, whereas ERa expression levels were not dif-
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ferent among the cell lines. Because of their high levels of
expression of ERa and AR, CAMA-1 and MCF7-AR1 cells
were used to investigate the capacity of p,p-DDE to disrupt
the estrogen-androgen balance and increase cell proliferation.

Cell proliferation

Before testing the effect of the environmental antiandrogen
p,p-DDE on cell growth, we first assessed the proliferative
response of CAMA-1 cells in the presence of estrogens and
androgens in the cell culture medium over a 9-day period. Fig-
ure 2a shows the concentration-response relationship for E,-
induced proliferation of CAMA-1 cells. We used a 100-pM
concentration of E,, which generates near maximal prolifera-
tion, in combination with increasing concentrations of DHT
and observed an inverse dose-response relationship between
androgen concentrations (log-transformed) and cell prolifera-
tion (regression coefficient [B] = -0.887; P < 0.001) (Figure
2b). Combined treatment with 100, 500, or 1,000 pM DHT
reduced the E,-induced proliferative response by 27% (P <
0.05), 54% (P < 0.001), and 60% (P < 0.001), respectively.

To investigate the potential of p,p'-DDE to increase the prolif-
eration of CAMA-1 cells cultivated in the presence of endog-
enous estrogens and androgens, increasing concentrations of
p,p'-DDE were added to the cell culture medium together with
E, and DHT. p,p-DDE induced concentration-related
increases in CAMA-1 cell proliferation in the presence of 100
pM E, and DHT added at a concentration of 100 pM (B =
0.674, P<0.001; Figure 3a), 500 pM (B = 0.629, P<0.001;
Figure 3b), or 1,000 pM (B = 0.663, P < 0.001; Figure 3c).
Concentrations of p,p'-DDE as low as 2 uM caused a statisti-
cally significant increase in cell proliferation compared with the
E,+DHT treatment (P < 0.01; Figure 3a,b); the 5-uM concen-
tration completely abolished the inhibitory effect of DHT on
cell proliferation. In the absence of sex steroid hormones, p,p"
DDE added to the cell culture medium induced only a slight
proliferative response (1.3-fold induction at 10 uM, P < 0.01;
Figure 3d).

The capacity of p,p-DDE to increase breast cancer cell prolif-
eration in the presence of sex steroids was also tested in
MCF7-AR1 cells. Szelei and colleagues [30], who genetically
engineered these cells that overexpress the AR, previously
reported that DHT added together to E, decreased the prolif-
eration of MCF7-AR1 cells compared with treatment with E,
alone. We observed that p,p'-DDE induced a concentration-
related increase in MCF7-AR1 proliferation in the presence of
10 pM E, and 100 pM DHT (8 = 0.513, P=0.01; Figure 4a).
A 2-uM concentration of p,p-DDE caused a 2-fold increase in
cell proliferation compared with the E,+DHT treatment (P <
0.05). In the absence of sex steroid hormones, p,p'-DDE
added to the cell culture medium also induced a significant
proliferative response (2.9- and 3.6-fold induction at 5 and 10
uM, respectively, P < 0.001; Figure 4b).
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tion-dependent manner (a) while increasing concentrations of DHT
inhibit the proliferative response triggered by 100 pM E, (b). Cell prolif-
eration was assessed after 9 days of treatment. Each bar represents
the mean * standard error of the mean of three (a) and four (b) inde-
pendent experiments. Single asterisk indicates P < 0.05, double aster-
isk P<0.01, and triple asterisk P < 0.001 versus E, treatment by an
analysis of variance followed by a one-tail Bonferroni post hoc test.

Recruitment of CAMA-1 cells in S phase

To better characterize the proliferative response induced by
p,p"-DDE on CAMA-1 cells, we measured cell transition from
the GO/G1 to the S phase after a 24-hour treatment with p,p"
DDE in the presence of sex steroid hormones and compared
the results to those obtained with the potent antiandrogen
OHF. Adding 1 nM DHT in combination with 1 nM E, reduced

p,p-DDE increases the proliferation of CAMA-1 cells in the presence of
17B-estradiol (E,) and dihydrotestosterone (DHT). E, was added at a
concentration of 100 pM, and DHT was added at concentrations of
100 pM (a), 500 pM (b), or 1,000 pM (c). p,p-DDE alone has little
impact on CAMA-1 proliferation (d). Cell proliferation was assessed
after 9 days of treatment. Each bar represents the mean * standard
error of the mean of four independent experiments. Double asterisk
indicates P < 0.01 versus E,+DHT treatment and 1t indicates P <
0.01 versus 0.1 uM p,p"-DDE as determined by an analysis of variance
followed by a one-tail Bonferroni post hoc test. p,p'-DDE, 1,1-dichloro-
2,2-bis(p-chlorophenyl)ethylene.

by more than 50% (P < 0.05) the percentage of cells in the S
phase observed in the presence of 1 nM E, alone (Figure 5a).
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dichloro-2,2-bis(p-chlorophenyl)ethylene.

The addition of either 10 uM p,p'-DDE or 1 uM OHF to the cell
culture medium completely abolished the androgen-mediated
decrease in the percentage of CAMA-1 cells entering the cell
cycle (P < 0.05 versus E,+DHT treatment). Treatment-
induced changes in the percentage of cells in GO/G1 were of
similar magnitude to those observed for the S phase but in the
opposite direction (Figure 5b). The proportion of cells in the
G2/M phase was slightly increased by the 1-nM E, treatment
(P<0.05), but adding DHT and antiandrogens in combination
with E, did not modify the E,-induced response (Figure 5c).

Modification of sex-steroid-dependent gene expression
by p,p'-DDE

To further elucidate the mechanism underlying the induction of
CAMA-1 cell proliferation by p,p'-DDE, we studied the effect
of a 24-hour treatment with p,p'-DDE on the expression of sex-
hormone-sensitive genes at the mRNA level, in the presence
of E, and DHT, and compared the results with those obtained
by treating the cells with OHF in combination with the endog-
enous hormones. The mean cyclin D1 mRNA level was
increased by 50% (P < 0.01) in E,-treated cells compared
with that of the control cells (Figure 6a), whereas 1 nM DHT
significantly reduced this estrogenic effect (P < 0.01 versus
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E, alone). Treatment with either 10 uM p,p-DDE or 1 uM OHF
partly abolished the inhibition of cyclin D1 mRNA expression
induced by DHT, resulting in mean expression levels that are
not significantly different from that induced by E, alone.
Although E, alone did not modulate ERo. mRNA expression,
the E,+DHT treatment appeared to decrease the mean
expression level compared with that induced by E, alone (Fig-
ure 6b), whereas p,p'-DDE or OHF partly offset this downreg-
ulation. However, differences between treatments did not
reach statistical significance. AR mRNA mean expression level
was decreased by 27% following DHT treatment compared
with E, treatment (P < 0.01; Figure 6c), whereas treatment
with either 10 uM p,p"-DDE or 1 uM OHF completely antago-
nized this inhibition (P < 0.01 versus E,+DHT). pS2 mRNA
mean expression level was increased by 50% (P < 0.01) fol-
lowing E, treatment compared with the control (Figure 6d).
The E,+DHT treatment induced a slightly lower expression of
pS2 mRNA compared with that caused by E, alone, but the
difference was not statistically significant. p,p-DDE added
together with E, and DHT induced a greater pS2 mRNA
expression than did the E,+DHT treatment (P < 0.05).

We also evaluated the modulation of cyclin D1, ERa, and AR
protein expression levels by p,p'-DDE treatment in CAMA-1
cells in the presence of endogenous sex steroids. Cyclin D1
level was increased by 80% (P < 0.01) in cells treated with 1
nM E, compared with the vehicle-treated cells (Figure 7a),
whereas adding 1 nM DHT in combination with E, blocked this
increase (P < 0.01 versus E, alone). The addition of either 10
uM p,p'-DDE or 1 uM OHF to the cell culture medium together
with E, and DHT completely abolished this DHT-mediated
inhibition of cyclin D1 expression (P < 0.01 versus E,+DHT).
Whereas E, alone was without effect, the combined E,+DHT
treatment markedly decreased ERa protein level (more than
500%) as compared with that observed following E, treatment
or control (P < 0.05; Figure 7b). p,p-DDE or OHF treatment
again abolished this androgen-mediated inhibition (P < 0.01
versus E,+DHT). A different response pattern was observed
for AR protein expression (Figure 7c). E, treatment decreased
by 28% (P < 0.05) the mean AR protein expression level com-
pared with control, whereas AR protein level was significantly
increased following the combined E,+DHT treatment com-
pared with the value noted following E, treatment alone (P <
0.01). The androgen-mediated increase in AR protein level
was antagonized by adding OHF in the incubation medium (P
< 0.05 versus E,+DHT) but not p,p-DDE (Figure 7c).

Discussion

We tested the capacity of p,p-DDE to stimulate the prolifera-
tion of CAMA-1 cells, a human breast adenocarcinoma cell
line that expresses both the ERa and the AR. We showed that
p,p"-DDE strongly induces the proliferation of CAMA-1 cells in
a concentration-dependent manner but only when cells are
grown in the presence of physiological concentrations of
endogenous sex steroid hormones. When concentrations of
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Figure 6
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p,p-DDE modulates the expression of sex-steroid-dependent genes in
CAMA-1 cells at the mRNA level. mRNA levels were determined by a
semiquantitative polymerase chain reaction after a 24-hour treatment
with hormones and antiandrogens (or vehicles) as described in Materi-
als and methods. mRNAs for CCND1 (a), ESR1 (b), AR (¢), and TFF1
(d) were quantified relative to S-actin mRNA. A representative gel elec-
trophoresis is shown below each panel. Each bar represents the mean
+ standard error of the mean of six independent experiments. Double
asterisk indicates P < 0.01 versus control, 11 indicates P < 0.01 versus
E, treatment, and # and #* indicate, respectively, P < 0.05 and P <
0.01 versus E,+DHT treatment as determined by an analysis of vari-
ance with specific contrasts. AR, androgen receptor; DHT, dihydrotes-
tosterone; E,, 17B-estradiol; ERa, estrogen receptor alpha; OHF,
hydroxyflutamide; p,p'-DDE, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethyl-
ene.
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p,p-DDE modulates the expression of sex-steroid-dependent genes in
CAMA-1 cells at the protein level. Inmunoblots were performed after
24 hours of treatment with hormones and antiandrogens (or vehicles)
as described in Materials and methods. Cyclin D1 (a), ERa (b), and AR

(c) protein levels were quantified relative to actin content. Each bar rep-

resents the mean * standard error of the mean of six independent
experiments. A representative immunoblot is shown below each panel.
Single asterisk indicates P < 0.05 and double asterisk P < 0.01 versus
control; T and tt indicate, respectively, P < 0.05 and P < 0.01 versus
E, treatment; and # and ## indicate, respectively, P < 0.05 and P <
0.01 versus E,+DHT treatment as determined by an analysis of vari-
ance with specific contrasts. AR, androgen receptor; DHT, dihydrotes-
tosterone; E,, 17B-estradiol; ERa, estrogen receptor alpha; OHF,
hydroxyflutamide; p,p'-DDE, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethyl-
ene.
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E, and DHT are such that the androgen signalling pathway
partly counteracts the influence of the estrogen signalling
pathway on cell proliferation, p,p'-DDE blocks the AR, result-
ing in CCND1 overexpression, the recruitment of cells in the
S phase, and in turn increased cell proliferation.

The capacity of the androgen DHT to inhibit the proliferation of
CAMA-1 breast cancer cells was previously reported by
Lapointe and Labrie [22]. Similarly to our results, these authors
reported a dose-dependent inhibition of cell proliferation and
maximal inhibition of E,-stimulated proliferation at the 1-nM
DHT concentration. Other groups have reported that andro-
gens can inhibit the proliferation of several hormone-depend-
ent breast cancer cell lines, including MCF-7, T47D, and ZR-
75-1 cells [16,17]. We tested these and other wild-type
breast cancer cell lines, but in our hands only CAMA-1 cells
responded strongly and reproducibly to androgens. We there-
fore elected to use CAMA-1 cells grown in the presence of
estrogens and androgens as an in vitro model for investigating
the role of environmental antiandrogens in breast cancer
progression.

p,p"-DDE also induced the proliferation of MCF7-AR1 cells in
the presence of E, and DHT in the cell culture medium. These
stably transfected cells that overexpress the AR are derived
from MCF-7 cells [30], an estrogen-sensitive breast cancer
cell line that has been widely used in proliferation assays for
testing the estrogenic potential of chemicals (E-Screen bio-
assay). In contrast to results with CAMA-1 cells, p,p'-DDE also
increased the proliferation of MCF7-AR1 cells in the absence
of sex hormones (Figure 4b). This direct proliferative effect,
which is likely due to the estrogenic potential of p,p'-DDE, was
similar to that obtained by other groups with native MCF-7
cells [31-33]. Therefore, activation of the estrogenic pathway
could be responsible in part for the induction of proliferation
observed when MCF7-AR1 cells were cotreated with p,p*-
DDE, E,, and DHT (Figure 4a). Interestingly, in the presence of
E, and DHT, the proliferation of MCF7-AR1 cells was induced
by lower concentrations of p,p'-DDE than those required in the
absence of sex steroids. This could be explained by the
greater affinity of p,p-DDE for AR than for ERa [12], resulting
in the predominance of the AR signalling pathway at low con-
centrations. p,p'-DDE and several other compounds possess
both antiandrogenic and estrogenic activities [34] and there-
fore may increase breast cancer cell proliferation through
interference with both estrogenic and androgenic pathways.

Our data suggest that one of the key events in the mechanism
of action through which p,p'-DDE increases CAMA-1 cell pro-
liferation is the upregulation of CCND1 expression. Indeed,
we observed concomitant increases in CCND1 expression
and S phase entry following treatment with p,p-DDE in the
presence of sex steroids compared with responses induced
by the E,+DHT treatment. This mechanism is apparently com-
mon to antiandrogens in general as similar results were



observed with OHF. Cyclin D1 is a major regulator of the G1/
S phase transition and a rate-limiting step in estrogen-induced
mammary cell proliferation [35,36]. This oncogene has been
shown to transform breast cells in transgenic mice [37] and is
frequently overexpressed in primary breast cancer, especially
in invasive carcinomas [38,39]. In our experiments, the cyclin
D1 protein expression pattern was remarkably similar to its
corresponding mRNA expression pattern, suggesting that
cyclin D1 expression is mostly controlled at the mRNA level in
CAMA-1 cells.

Our results also suggest that ESR7 expression is involved in
the mechanism through which antiandrogens increase the
expression of CCND17 in CAMA-1 cells. Effectively, we
observed similar treatment-related effects for the expression of
CCND1 and ESR1: DHT decreased the expression of both
genes whereas treatment with either p,p-DDE or OHF
increased their expression in the presence of E, and DHT.
ERa has been shown to be an important transcription factor
that acts indirectly on the CCND1 promoter [40-42]. That
androgens can downregulate the expression of ERa was pre-
viously reported in the ZR-75-1 breast cancer cell line and in
MCF7-AR1 cells [30,43].

We did not observe a reduction in ERa. protein expression fol-
lowing treatment of CAMA-1 cells with E,. This result is in con-
trast to those reported in the literature showing that estrogens
induce a downregulation of the ERa protein in hormone-
dependent breast cancer cell lines as well as in transfected
ER-negative cell lines [44-49]. The estrogen-induced down-
regulation of ERa occurs mainly through the regulated degra-
dation of the receptor protein by the 26S proteasome [49,50].
Hence, CAMA-1 cells appear different than other breast can-
cer cell lines in that regard.

We found that the AR protein is downregulated by estradiol
without any effect on the corresponding mRNA level. There-
fore, this downregulation may occur either at the level of trans-
lation or through a decrease in AR stability. In contrast, DHT
caused a significant increase in AR protein level in CAMA-1
cells. Similarly to our results, Ando and colleagues [51]
observed that the activation of AR by DHT resulted in the inhi-
bition of MCF-7 cell proliferation; this effect was accompanied
by an increase in AR protein cell content.

Our results are compatible with the existence of a crosstalk
between androgen and estrogen signalling pathways which
controls breast cancer cell proliferation, similarly to that
described by Lanzino and colleagues [52] in MCF-7 cells.
These authors showed that AR activation influences ERa sig-
nalling by reducing ERa cellular content and by competition to
recruit the coregulator ARA70, which although first described
as a specific AR coregulator [53] also increases the transcrip-
tional activity of ERa [52]. We speculate that binding of p,p"
DDE to the AR would increase the amount of ARA70 available
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to interact with ERaq, thereby increasing the estrogenic signal-
ling pathway and in turn cell proliferation. Additional experi-
ments are needed to substantiate this mechanism of action in
CAMA-1 cells.

Some evidence in the literature indicates that exposure to
antiandrogens could increase breast cancer risk through per-
turbation of the androgen-estrogen crosstalk in mammary epi-
thelial cells. Indeed, Dimitrakakis and colleagues [15] have
reported an increase in mammary epithelial cell proliferation
following treatment of female rhesus monkeys with flutamide
(the precursor of OHF). Furthermore, a downregulation of ERa
expression and a decrease in mammary epithelial cell prolifer-
ation were observed following treatment of ovariectomized
rhesus monkeys with a combined estradiol/testosterone treat-
ment compared with the group treated with estradiol alone
[15]. ERa is weakly expressed in normal mammary epithelial
cells and only a few cells express this gene [64], including the
putative breast stem cells [65]. A rigorous control must be
exerted on ERa expression in order to limit the number of 'at
risk' and precancerous cells in the breast [54], which may be
compromised by environmental antiandrogens.

Our results add biological plausibility to the association noted
in our previous epidemiological study between plasma levels
of p,p"-DDE and the aggressiveness of breast cancer. We
observed that women with breast cancer who had higher
plasma concentrations of this compound were at greater risk
of having a larger tumor and axillary lymph node invasion than
women with lower concentrations [21]. Although the informa-
tion is extremely limited, the association between organochlo-
rines and disease severity and progression is interesting and
worthy of further investigation [11]. By blocking the andro-
genic pathway, p,p-DDE may favor the proliferation of normal
and breast cancer cells and accelerate breast cancer
progression. Our results appear particularly relevant for cases
with tumors expressing high levels of ERa and AR. In that con-
text, it is worth mentioning that 70% to 90% of primary breast
tumors express the AR (reviewed in [56]).

We also noted that p,p'-DDE increased the expression of pS2
in CAMA-1 cells (Figure 6d), an estrogen-dependent protein
that increases the migration of hormone-dependent breast
cancer cells [57]. The failure of OHF to increase pS2 expres-
sion over the level induced by the E,+DHT treatment suggests
that this effect may be due to the estrogenic activity of p,p'-
DDE. Normal breast cells secrete low levels of this chemoat-
tractant trefoil protein [58]. This effect of p,p'-DDE could con-
tribute to breast cancer aggressiveness. Additional
experiments with animal models are required to further support
this hypothesis.

To our knowledge, this is the first report showing that p,p'-DDE
can significantly stimulate the proliferation of a breast cancer
cell line in the presence of androgens and estrogens. Our
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model is unique in that compounds are tested for their capac-
ity to stimulate cell proliferation in the presence of physiologi-
cally relevant concentrations of sex steroids. Although tests
based on the proliferation of hormone-dependent breast can-
cer cells have been used extensively in the past, none of them
can detect compounds that perturb the crosstalk between
estrogenic and androgenic pathways [59]. This experimental
model could be used to screen for compounds that can
increase breast cancer progression because of their estro-
genic potential, their antiandrogenic capacity, or a combina-
tion of both since many environmental estrogens are also AR
antagonists [34].

Figure 8

Conclusion
Our study provides new evidence that environmental antian-

drogens might favor breast cancer progression. Figure 8 illus-
trates part of the mechanism through which p,p'-DDE may
induce the proliferation of hormone-dependent cells in the
breast. Additional investigations are under way to investigate
the effect on breast cancer cell proliferation of a complex mix-
ture of environmental chemicals which comprises compounds
with estrogenic and antiandrogenic activities.
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A proposed mechanism for p,p'-DDE-induced proliferation of hormone-dependent cells. Lipophilic p,p-DDE is stored in adipocytes and can diffuse
to reach hormone-dependent cells. p,p'-DDE confers a proliferative advantage to precancerous hormone-dependent cells by blocking the androgen
receptor (AR) signalling pathway that represses cell growth. Tumor development is favored through the upregulation of the oncogene CCND1, a key
molecular event in the deregulation by p,p'-DDE of the crosstalk between estrogen receptor alpha (ERc) and the AR. E,, 17 B-estradiol; DHT, dihy-

drotestosterone; p,p'-DDE, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene.

Page 10 of 12

(page number not for citation purposes)



Authors' contributions

MA contributed to the study design, conducted the experi-
ments, and wrote the first draft of the manuscript. CL
contributed to the study design. PA contributed to the study
design, performed statistical analyses, supervised the experi-
ments, and prepared the final version of the manuscript. All
authors read and approved the final manuscript.

Acknowledgements

The authors thank Maurice Dufour from the Centre de Recherche du
Centre Hospitalier Universitaire de Québec-CHUL for performing flow
cytometry analyses. This work was funded by the Canadian Breast Can-
cer Research Alliance (Etiology Grant #013568).

References

1.

2.

10.

11.

12.

13.

14.

15.

Parkin DM, Bray Fl, Devesa SS: Cancer burden in the year 2000.
The global picture. Eur J Cancer 2001, 37(Suppl 8):S4-66.
Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE: Endog-
enous estrogen, androgen, and progesterone concentrations
and breast cancer risk among postmenopausal women. J Nat/
Cancer Inst 2004, 96:1856-1865.

Kurebayashi J, Otsuki T, Kunisue H, Tanaka K, Yamamoto S,
Sonoo H: Expression levels of estrogen receptor-alpha, estro-
gen receptor-beta, coactivators, and corepressors in breast
cancer. Clin Cancer Res 2000, 6:512-518.

Khan SA, Rogers MA, Khurana KK, Siddiqui JF: Oestrogen recep-
tor expression in normal breast epithelium. Eur J Cancer 2000,
36(Suppl 4):S527-S28.

Boyd NF, O'Sullivan B, Campbell JE, Fishell E, Simor I, Cooke G,
Germanson T: Mammographic signs as risk factors for breast
cancer. Br J Cancer 1982, 45:185-193.

Wallgren A, Baral E, Glas U, Karnstrém L, Nordenskiéld B, Theve
NO, Silfverswird C: Adjuvant tamoxifen treatment in postmen-
opausal patients with operable breast cancer. J Steroid
Biochem 1985, 23:1161-1162.

Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah
M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M,
Wieand S, Tan-Chiu E, Ford L, Wolmark N: Tamoxifen for pre-
vention of breast cancer: report of the National Surgical Adju-
vant Breast and Bowel Project P-1 Study. J Nat/ Cancer Inst
1998, 90:1371-1388.

Jorgensen M, Vendelbo B, Skakkebaek NE, Leffers H: Assaying
estrogenicity by quantitating the expression levels of endog-
enous estrogen-regulated genes. Environ Health Perspect
2000, 108:403-412.

Diel P, Olff S, Schmidt S, Michna H: Effects of the environmental
estrogens bisphenol A, o,p'-DDT, p-tert-octylphenol and cou-
mestrol on apoptosis induction, cell proliferation and the
expression of estrogen sensitive molecular parameters in the
human breast cancer cell line MCF-7. J Steroid Biochem Mol
Biol 2002, 80:61-70.

Lopez-Cervantes M, Torres-Sanchez L, Tobias A, Lopez-Carrillo L:
Dichlorodiphenyldichloroethane burden and breast cancer
risk: a meta-analysis of the epidemiologic evidence. Environ
Health Perspect 2004, 112:207-214.

Mendez MA, Arab L: Organochlorine compounds and breast
cancer risk. Pure App/ Chem 2003, 75:1973-2015.

Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson
EM: Persistent DDT metabolite p,p'-DDE is a potent androgen
receptor antagonist. Nature 1995, 375:581-585.

Wilson VS, Lambright C, Ostby J, Gray LE Jr: In vitro and in vivo
effects of 17beta-trenbolone: a feedlot effluent contaminant.
Toxicol Sci 2002, 70:202-211.

Zhou J, Ng S, Adesanya-Famuiya O, Anderson K, Bondy CA: Tes-
tosterone inhibits estrogen-induced mammary epithelial pro-
liferation and suppresses estrogen receptor expression.
FASEB J 2000, 14:1725-1730.

Dimitrakakis C, Zhou J, Wang J, Belanger A, LaBrie F, Cheng C,
Powell D, Bondy C: A physiologic role for testosterone in limit-
ing estrogenic stimulation of the breast. Menopause 2003,
10:292-298.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Available online http://breast-cancer-research.com/content/10/1/R16

Birrell SN, Bentel JM, Hickey TE, Ricciardelli C, Weger MA, Hors-
fall DJ, Tilley WD: Androgens induce divergent proliferative
responses in human breast cancer cell lines. J Steroid Bio-
chem Mol Biol 1995, 52:459-467.

Ortmann J, Prifti S, Bohimann MK, Rehberger-Schneider S, Strow-
itzki T, Rabe T: Testosterone and 5 alpha-dihydrotestosterone
inhibit in vitro growth of human breast cancer cell lines. Gyne-
col Endocrinol 2002, 16:113-120.

Tormey DC, Lippman ME, Edwards BK, Cassidy JG: Evaluation of
tamoxifen doses with and without fluoxymesterone in
advanced breast cancer. Ann Intern Med 1983, 98:139-144.
Colleoni M, Coates A, Pagani O, Goldhirsch A: Combined
chemo-endocrine adjuvant therapy for patients with operable
breast cancer: still a question? Cancer Treat Rev 1998,
24:15-26.

Guttes S, Failing K, Neumann K, Kleinstein J, Georgii S, Brunn H:
Chlororganic pesticides and polychlorinated biphenyls in
breast tissue of women with benign and malignant breast
disease. Arch Environ Contam Toxicol 1998, 35:140-147.
Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E: Risk
and aggressiveness of breast cancer in relation to plasma
organochlorine concentrations. Cancer Epidemiol Biomarkers
Prev 2000, 9:161-166.

Lapointe J, Labrie C: Role of the cyclin-dependent kinase inhib-
itor p27(Kip1) in androgen-induced inhibition of CAMA-1
breast cancer cell proliferation. Endocrinology 2001,
142:4331-4338.

Leung BS, Potter AH: Mode of estrogen action on cell prolifer-
ative kinetics in CAMA-1 cells. |. Effect of serum and estrogen.
Cancer Invest 1987, 5:187-194.

Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz
J, Fried G, Nordenskjold M, Gustafsson JA: Human estrogen
receptor beta-gene structure, chromosomal localization, and
expression pattern. J Clin Endocrinol Metab 1997,
82:4258-4265.

Lipman ML, Stevens AC, Bleackley RC, Helderman JH, McCune
TR, Harmon WE, Shapiro ME, Rosen S, Strom TB: The strong
correlation of cytotoxic T lymphocyte-specific serine protease
gene transcripts with renal allograft rejection. Transplantation
1992, 53:73-79.

Willey JC, Crawford EL, Jackson CM, Weaver DA, Hoban JC,
Khuder SA, DeMuth JP: Expression measurement of many
genes simultaneously by quantitative RT-PCR using standard-
ized mixtures of competitive templates. Am J Respir Cell Mol
Biol 1998, 19:6-17.

Ito K, Suzuki T, Akahira J, Moriya T, Kaneko C, Utsunomiya H, Yae-
gashi N, Okamura K, Sasano H: Expression of androgen recep-
tor and 5alpha-reductases in the human normal endometrium
and its disorders. Int J Cancer 2002, 99:652-657.

Gillesby BE, Zacharewski TR: pS2 (TFF1) levels in human
breast cancer tumor samples: correlation with clinical and his-
tological prognostic markers. Breast Cancer Res Treat 1999,
56:253-265.

Liao J, Xu X, Wargovich MJ: Direct reprobing with anti-beta-
actin antibody as an internal control for western blotting
analysis. Biotechniques 2000, 28:216-218.

Szelei J, Jimenez J, Soto AM, Luizzi MF, Sonnenschein C: Andro-
gen-induced inhibition of proliferation in human breast cancer
MCF?7 cells transfected with androgen receptor. Endocrinology
1997, 138:1406-1412.

Andersen HR, Andersson AM, Arnold SF, Autrup H, Barfoed M,
Beresford NA, Bjerregaard P, Christiansen LB, Gissel B, Hummel
R, Jergensen EB, Korsgaard B, Le Guevel R, Leffers H, McLachlan
J, Moller A, Nielsen JB, Olea N, Oles-Karasko A, Pakdel F, Peder-
sen KL, Perez P, Skakkeboek NE, Sonnenschein C, Soto AM, et
al.: Comparison of short-term estrogenicity tests for identifica-
tion of hormone-disrupting chemicals. Environ Health Perspect
1999, 107(Suppl 1):89-108.

Payne J, Jones C, Lakhani S, Kortenkamp A: Improving the repro-
ducibility of the MCF-7 cell proliferation assay for the detection
of xenoestrogens. Sci Total Environ 2000, 248:51-62.
Rasmussen TH, Nielsen F, Andersen HR, Nielsen JB, Weihe P,
Grandjean P: Assessment of xenoestrogenic exposure by a
biomarker approach: application of the E-Screen bioassay to
determine estrogenic response of serum extracts. Environ
Health 2008, 2:12.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15601642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15601642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15601642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10690532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10690532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10690532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7059469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7059469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3912623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3912623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9747868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9747868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9747868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10811566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10811566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10811566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11867264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11867264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11867264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14754575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14754575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14754575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7791873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7791873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12441365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12441365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12851512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12851512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7748811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7748811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12012621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6824247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6824247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6824247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9606365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9606365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9606365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9601932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9601932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9601932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10698476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10698476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10698476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3651865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3651865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9398750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9398750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9398750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1733089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1733089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1733089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9651175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10573116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10683726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10683726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10683726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9075695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9075695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9075695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10229711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10229711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10807042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10807042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10807042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613489

Breast Cancer Research Vol 10 No 1

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Aubé et al.

Sohoni P, Sumpter JP: Several environmental oestrogens are
also anti-androgens. J Endocrinol 1998, 158:327-339.

Zwijsen RM, Klompmaker R, Wientjens EB, Kristel PM, van der BB,
Michalides RJ: Cyclin D1 triggers autonomous growth of breast
cancer cells by governing cell cycle exit. Mo/ Cell Biol 1996,
16:2554-2560.

Lukas J, Bartkova J, Bartek J: Convergence of mitogenic signal-
ling cascades from diverse classes of receptors at the cyclin
D-cyclin-dependent kinase-pRb-controlled G1 checkpoint.
Mol Cell Biol 1996, 16:6917-6925.

Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV:
Mammary hyperplasia and carcinoma in MMTV-cyclin D1
transgenic mice. Nature 1994, 369:669-671.

Zhang SY, Caamano J, Cooper F, Guo X, Klein-Szanto AJ: Immu-
nohistochemistry of cyclin D1 in human breast cancer. Am J
Clin Pathol 1994, 102:695-698.

Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek J: Cyc-
lin D1 protein expression and function in human breast cancer.
Int J Cancer 1994, 57:353-361.

Planas-Silva MD, Shang Y, Donaher JL, Brown M, Weinberg RA:
AIB1 enhances estrogen-dependent induction of cyclin D1
expression. Cancer Res 2001, 61:3858-3862.

Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R,
Cancemi M, Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F,
Perillo B, Weisz A: Estrogens and progesterone promote
persistent CCND1 gene activation during G1 by inducing tran-
scriptional derepression via c-Jun/c-Fos/estrogen receptor
(progesterone receptor) complex assembly to a distal regula-
tory element and recruitment of cyclin D1 to its own gene
promoter. Mol Cell Biol 2004, 24:7260-7274.

Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown
M: A cell-type-specific transcriptional network required for
estrogen regulation of cyclin D1 and cell cycle progression in
breast cancer. Genes Dev 2006, 20:2513-2526.

Poulin R, Simard J, Labrie C, Petitclerc L, Dumont M, Lagace L,
Labrie F: Down-regulation of estrogen receptors by androgens
in the ZR-75-1 human breast cancer cell line. Endocrinology
1989, 125:392-399.

Valley CC, Métivier R, Solodin NM, Fowler AM, Mashek MT, Hill L,
Alarid ET: Differential regulation of estrogen-inducible proteol-
ysis and transcription by the estrogen receptor alpha N
terminus. Mol Cell Biol 2005, 25:5417-5428.

Fan M, Nakshatri H, Nephew KP: Inhibiting proteasomal prote-
olysis sustains estrogen receptor-alpha activation. Mo/
Endocrinol 2004, 18:2603-2615.

Petrel TA, Brueggemeier RW: Increased proteasome-depend-
ent degradation of estrogen receptor-alpha by TGF-betal in
breast cancer cell lines. J Cell Biochem 2003, 88:181-190.
Lonard DM, Nawaz Z, Smith CL, O'Malley BW: The 26S proteas-
ome is required for estrogen receptor-alpha and coactivator
turnover and for efficient estrogen receptor-alpha
transactivation. Mo/ Cell 2000, 5:939-948.

Wormke M, Stoner M, Saville B, Safe S: Crosstalk between
estrogen receptor alpha and the aryl hydrocarbon receptor in
breast cancer cells involves unidirectional activation of
proteasomes. FEBS Lett 2000, 478:109-112.

Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW: Pro-
teasome-dependent degradation of the human estrogen
receptor. Proc Nat/ Acad Sci USA 1999, 96:1858-1862.

Alarid ET, Bakopoulos N, Solodin N: Proteasome-mediated pro-
teolysis of estrogen receptor: a novel component in autolo-
gous down-regulation. Mo/ Endocrinol 1999, 13:1522-1534.
Ando S, De Amicis F, Rago V, Carpino A, Maggiolini M, Panno ML,
Lanzino M: Breast cancer: from estrogen to androgen receptor.
Mol Cell Endocrinol 2002, 193:121-128.

Lanzino M, De Amicis F, McPhaul MJ, Marsico S, Panno ML, Ando
S: Endogenous coactivator ARA70 interacts with estrogen
receptor alpha (ERalpha) and modulates the functional ERal-
pha/androgen receptor interplay in MCF-7 cells. J Biol Chem
2005, 280:20421-20430.

Yeh S, Chang C: Cloning and characterization of a specific
coactivator, ARA70, for the androgen receptor in human pros-
tate cells. Proc Nat/ Acad Sci USA 1996, 93:5517-5521.
Shoker BS, Jarvis C, Sibson DR, Walker C, Sloane JP: Oestrogen
receptor expression in the normal and pre-cancerous breast.
J Pathol 1999, 188:237-244.

Page 12 of 12

(page number not for citation purposes)

55.

56.

57.

58.

50.

Clarke RB: Human breast cell proliferation and its relationship
to steroid receptor expression. Climacteric 2004, 7:129-137.
Birrell SN, Butler LM, Harris JM, Buchanan G, Tilley WD: Disrup-
tion of androgen receptor signaling by synthetic progestins
may increase risk of developing breast cancer. FASEB J2007,
21:2285-2293.

Prest SJ, May FE, Westley BR: The estrogen-regulated protein,
TFF1, stimulates migration of human breast cancer cells.
FASEB J 2002, 16:592-594.

Lugmani YA, Campbell T, Soomro S, Shousha S, Rio MC,
Coombes RC: Immunohistochemical localisation of pS2 pro-
tein in ductal carcinoma in situ and benign lesions of the
breast. Br J Cancer 1993, 67:749-753.

Lackey BR, Gray SL, Henricks DM: Crosstalk and considera-
tions in endocrine disruptor research. Med Hypotheses 2001,
56:644-647.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9846162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9846162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8649362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8649362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8208295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8208295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8208295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7942638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7942638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8168995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8168995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11358796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11358796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11358796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16980581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16980581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16980581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2661209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2661209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15964799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15964799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15964799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12461787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12461787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12461787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10911988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10911988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10911988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10922479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10922479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10922479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10478843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10478843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10478843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12161011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8643607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8643607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8643607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10419589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10419589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15497901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15497901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17413000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17413000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17413000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11919164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11919164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8385977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8385977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8385977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399113

	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Introduction
	Materials and methods
	Reagents
	Cell proliferation assays
	Cell cycle analysis
	Gene expression levels
	Immunoblotting
	Statistical analyses

	Results
	Level of expression of ERa and AR in cell lines
	Cell proliferation
	Recruitment of CAMA-1 cells in S phase
	Modification of sex-steroid-dependent gene expression by p,p'-DDE

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

