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Adjuvant treatment: the contribution of expression microarrays
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Introduction

Although gene expression microarrays provide novel tools
and hold great promise in cancer research, achievements
thus far in terms of improved prognostication and, in
particular, prediction of drug sensitivity have been moderate.
To improve clinical therapy, we believe that it is imperative to
integrate gene expression arrays with other laboratory
methods based on functional concepts [1,2].

Breast cancer taxonomy

The first study to explore human breast cancer biology
applying gene expression signatures was that reported by
Perou and coworkers [3] in 2000. Here, oestrogen receptor
(ER)-positive breast cancers (designated luminal class, based
on cytokeratin expression) were found to be associated with
particular gene expression profiles. Moreover, the gene
expression signatures revealed (at least) two distinct
subclasses among the ER-positive tumours, termed luminal A
and luminal B. This subclassification provided novel prog-
nostic information. Thus, among patients with locally
advanced breast cancers undergoing primary chemotherapy
with either doxorubicin monotherapy [4] or 5-fluorouracil and
mitomycin given in concert [5] to be followed by tamoxifen
adjuvant for 5 years, a poor prognosis was identified among
patients with tumours expressing a luminal B profile as
opposed to the luminal A group [6]. Interestingly, when the
classification was applied to a second cohort of patients with
early stage breast cancers who had not received adjuvant
endocrine therapy [7], again the luminal A and B classes
were associated with different prognosis; the relative
difference, however, was much less than that in patients
receiving tamoxifen treatment. Although this could indicate a
predictive component (higher sensitivity for luminal A class
tumours to tamoxifen treatment compared with luminal B
ones), such conclusions should not be inferred from indirect
comparison.
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The second major achievement was further subclassification
within the group of ER-negative tumours. This led to identi-
fication of the so-called ‘triple negative’ class (tumours
negative with respect to expression of ER and progesterone
receptor that, in addition, lack over-expression and/or amplifi-
cation of HER2) as a distinct subclass. These triple negative
tumours expressed keratin markers that are strongly sugges-
tive of a basal cell origin (for which reason they are frequently
referred to as ‘basal cell class’ tumours), contrasting with the
luminal origin of breast cancers in general.

Prognostication

Subsequently, several studies [8-13] have identified different
gene expression profiles as being associated with prognos-
tication in breast cancer [8-13]. Notably, however, the various
profiles identified differ considerably with respect to genes
included, and the extraction of multiple signatures from the
same dataset questions the specificity of such signatures
[14]. Others have argued that the information provided may
not be superior to what is achieved by optimal use of
conventional factors [15]. Moreover, because these studies
in general were conducted retrospectively in unselected
patient cohorts, meaning that the patients were exposed to
various drug regimens, the issue of potentially predictive
components may not be excluded. Notably, a main reason
why lymph node status may be used as a single marker to
select high-risk patients for adjuvant therapy based on risk for
having a relapse is due to the fact that it is a ‘pure’ prognostic
factor; patients defined as having a poor prognosis are not
more likely to be therapy resistant than those having a better
prognosis. This underlines a general principle. When looking
for novel prognostic factors, it is mandatory to keep in mind
that no prognostic factor may be defined and implemented
for clinical use without detailed knowledge regarding its
potential predictive effect for the therapy applied [16,17].
Considering a factor such as TP53, mutations that affect the
DNA-binding part of the protein are associated with a poor
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Figure 1
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prognosis [18]; however, they also confer poor sensitivity to
chemotherapeutics such as anthracyclines and mitomycin
[5,19].

Predicting response to therapy

Primary medical therapy (previously termed ‘neoadjuvant
treatment’) represents an optimal setting in which to study
drug effects on tumours directly [20]. Thus, several studies
have explored gene expression profiles that predict
responsiveness to different chemotherapeutic regimens,
including taxane monotherapy [21,22] or anthracycline- or
mitomycin-containing regimens administered as monotherapy
[23] or in combination with other drugs [23-25], including
taxanes [24,26-29]. The general conclusion from these
studies may be summarized as follows. First, independent of
regimen and the statistical approach (supervised or unsuper-
vised), there is in general a correlation between gene expres-
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sion profiles and responsiveness to therapy. Second, for
none of the signatures identified has the combined sensitivity
and specificity reached a level that allows its implementation
for clinical use outside trials. Third, in none of these
signatures has the value repeatedly been corroborated by
other investigators.

Interestingly, looking at response to therapy across the
different breast cancer subclasses [23,25], some differences
in responsiveness could be detected. However, these differ-
ences were not of sufficient magnitude to allow clinical
application to therapy selection.

There are several limitations to the use of microarray analysis
as a single method for exploring tumour biology. The
spectrum of pathological events that lead to disturbed gene
function is huge [16], involving components such as large
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and small deletions or single base substitutions, mutations
that affect promoter regions or splice-sites, as well as
epigenetic silencing (Figure 1). In addition, the issue of
multiple splice variants generated from the same gene has
received increasing attention [30]. Alternative splices may be
transcribed into protein products with different biological
function [31]; whether such splices are detected together
with the main transcript on microarrays depends on whether
the sequence covered by the probe is included in the splice
transcript and how the mutation affects hybridization
(Figure 2). Additionally, the stability of the different splice
transcripts and encoded proteins may vary considerably.
Finally, many signalling pathways, including activation of p53
[32], involve post-translational modifications such as protein
phosphorylations, deacetylations, and so on, meaning that
information relevant to changes in biological function of
specific proteins is not reflected in altered mMRNA expression.

It is clear (Figures 1 and 2) that although microarrays may
provide information about transcriptional status of individual
genes, interactions such as inclusion of alternative splices
may confound the biological interpretation. Mutations that
affect genes encoding proteins that are involved upstream or
downstream in a particular functional cascade may generate
different overall gene expression profiles, despite having

similar effects on this particular pathway [2]. On the other
hand, a single mutation in a critical gene may have profound
biological effects despite having a limited effect on the total
gene expression profile. Thus, to identify defects in functional
pathways that lead to outcomes such as drug resistance, we
need a panel of methods that detects different pathological
disturbances based on functional hypotheses [2].

Adjuvant therapy

In contrast to the number of studies conducted in the primary
medical setting, data with respect to the predictive value of
gene expression profiles in the adjuvant setting are scarce.
Although studies have addressed genetic factors that
determine prognosis in patient cohorts exposed to defined
therapies such as tamoxifen [33], the only large study
exploring gene expression profile with respect to benefit of
chemotherapy was that conducted by the NSABP (National
Surgical Adjuvant Breast and Bowel Project). Taking a 21-
gene expression signature previously shown to be associated
with prognosis in tamoxifen-treated breast cancer patients
[34], they reported that the same profiles also predict the
likelihood of benefit from adjuvant chemotherapy with a
regimen containing cyclophosphamide, methotrexate, and 5-
fluorouracil [35]. Notably, they found a high recurrence score
to be associated with profound effect of chemotherapy; this
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is in contrast to the intermediate and low scores, for which no
significant clinical benefit of chemotherapy was achieved.
Although this test has been implemented in many centres
around the world, independent validation is still awaited.

Testing for chemo-resistance in vivo: adjuvant
versus primary medical treatment as the
optimal setting

Although primary medical therapy is considered to be the
optimal way to assess direct antitumour efficacy of drug
treatment, this may not automatically imply a correlation with
outcome defined as general relapse or cancer death.
Pathological complete response to primary medical treatment
has clearly been correlated with long-term prognosis [27];
however, several patients achieving a complete response may
later relapse. There may be a number of explanations for this
observation, such as survival of resistant subclones among
micrometastases. However, we should recognize that a
number of biological parameters in addition to direct drug
sensitivity are involved in the metastatic process, such as
blood vessel wall invasion, tumour-host organ interactions
and angiogenesis. Notably, gene signatures have been
identified that predict organ-specific metastatic propensity in
experimental as well as clinical materials [36-38]. Interes-
tingly, Massagué and coworkers [39], in addition, have identi-
fied a few key genes from their lung metastases signature
associated with growth, invasion and angiogenesis, which
play a key role in regulating lung metastases in experimental
systems. Although adjuvant studies need larger patient
cohorts as well as longer follow up in comparison with
studies of primary medical therapy, there is clearly a need for
long-term follow up of patients undergoing primary medical
as well as adjuvant therapy to address these issues.
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