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Abstract

Introduction We have previously shown that the Beta Protein 1
(BP1) homeodomain protein is expressed in 81% of invasive
ductal breast carcinomas, and that increased BP1 expression
correlates with tumor progression. The purpose of our current
investigation was to determine whether elevated levels of BP1
in breast cancer cells are associated with increased cell survival.

Methods Effects on cell viability and apoptosis of MCF7 cells
stably overexpressing BP1 were determined using MTT and
Annexin V assays, and through examination of caspase
activation. TNFα was used to induce apoptosis. The potential
regulation of apoptosis-associated genes by BP1 was studied
using real-time PCR and western blot analyses. Electrophoretic
mobility shift assays, site-directed mutagenesis, and transient
assays were performed to specifically characterize the
interaction of BP1 with the promoter of the bcl-2 gene.

Results Stable overexpression of BP1 led to inhibition of
apoptosis in MCF7 breast cancer cells challenged with TNFα.

Increased BP1 resulted in reduced processing and activation of
caspase-7, caspase-8, and caspase-9, and inactivation of the
caspase substrate Poly(ADP-Ribose) Polymerase (PARP).
Increased levels of full-length PARP and a decrease in
procaspase-8 were also associated with BP1 overexpression.
The bcl-2 gene is a direct target of BP1 since: (i) BP1 protein
bound to a consensus binding sequence upstream of the bcl-2
P1 promoter in vitro. (ii) MCF7 cells overexpressing BP1
showed increased levels of bcl-2 mRNA and protein. (iii)
Transient assays indicated that increased bcl-2 promoter
activity is due to direct binding and modulation by BP1 protein.
BP1 expression also prevented TNFα-mediated downregulation
of bcl-2 mRNA and protein.

Conclusion These findings suggest mechanisms by which
increased BP1 may impart a survival advantage to breast cancer
cells, which could lead to increased resistance to therapeutic
agents in patients.

Introduction
Homeobox genes are an important class of master regulatory
genes that encode transcription factors responsible for
orchestrating developmental processes in many species of
animals, as well as in plants and fungi. These genes are char-
acterized by a conserved 180-nucleotide sequence coding for
a 60-amino-acid homeodomain that directs binding to down-
stream target genes that may be activated or repressed. An
increasing number of investigations support the involvement of

homeobox genes in tumorigenesis of prostate, lung, renal,
ovarian, colorectal, and breast tissues [1,2]. Specifically in
breast cancer, altered levels of various homeobox genes are
directly associated with cellular transformation, disruption of
the cell cycle, apoptosis, and progression to a metastatic phe-
notype [3-7].

Beta Protein 1 (BP1) belongs to the Distal-less subfamily of
the homeobox gene family [8]. BP1 maps to chromosome
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17q21-22, a region of DNA that is often amplified in breast
cancer and that contains the tumor suppressor gene BRCA1
and the oncogene ErbB2 [9]. We have found that BP1 is
expressed in 81% of invasive ductal breast tumors [10,11].
Notably, BP1 expression correlates with breast cancer pro-
gression [11], suggesting BP1 may be important in breast
tumorigenesis. We have yet to fully understand, however, the
functional consequences of its increased expression. Our ear-
lier studies demonstrated that BP1 is expressed in 63% of
acute myeloid leukemias but is not detectable in normal lym-
phoid cells or in normal bone marrow [12]. In clonogenic
assays, K562 erythroleukemia cell lines stably overexpressing
BP1 showed a 45-fold increase in the number of cells able to
grow in soft agar compared with control cells, but we did not
observe differences in cell number per colony [12]. These
results indicate that BP1 may play an oncogenic role by
increasing cell survival.

Tumor cells are notorious for escaping cell death and often
develop resistance to therapeutic agents through activation of
antiapoptotic mechanisms. Apoptosis is coordinated by cas-
cades of caspases, a family of cysteine proteases that cleave
various substrates, ultimately leading to the destruction of the
cell. Two primary pathways of apoptosis have been estab-
lished. The death-receptor pathway, or extrinsic pathway, is
triggered through binding of cytokines (TNFα, TRAIL, Fas lig-
and) to their respective receptors that belong to the TNF
receptor family [13]. The mitochondrial pathway, or intrinsic
pathway, is regulated by proapoptotic and antiapoptotic mem-
bers of the Bcl-2 family, which collectively govern the permea-
bility of the mitochondrial membrane [13,14]. Crosstalk
between these two pathways can occur, whereby the mito-
chondrial pathway is triggered following death receptor activa-
tion [15,16].

Our objective in the present investigation was to determine
whether BP1 impacts antiapoptotic pathways in breast cancer
cells. Specifically, we demonstrate that increased BP1 expres-
sion protects MCF7 cells challenged with TNFα, resulting in
inhibition of apoptosis. We also show that BP1 protein binds
to and directly activates expression of bcl-2, an antiapoptotic
gene. These findings provide evidence of a role for BP1 in cell
survival and define mechanisms by which BP1 expression may
be tumorigenic.

Materials and methods
Cell culture and generation of stable cell lines
MCF7 cells were transfected with either the empty vector
pcDNA3.2 (Invitrogen, Carlsbad, CA, USA) or a plasmid con-
taining the BP1 open reading frame under control of the
cytomegalovirus promoter. Plasmid-containing cell lines were
selected in 800 μg/ml G418. Cells were maintained in RPMI
1640 supplemented with 10% fetal bovine serum, penicillin/
streptomycin, 500 μg/ml G418, and 2 mM glutamine. MTT
assays were performed to measure cell viability. Cells were

seeded in triplicate in 96-well plates, and were cultured in nor-
mal growth media containing 20 ng/ml human TNFα (Sigma-
Aldrich, St Louis, MO, USA) or were left untreated. After 72
hours, samples were incubated with 5 mg/ml MTT at 37°C for
4 hours. Formazan crystals were dissolved in dimethylsulfoxide
(Sigma-Aldrich). Samples were read at 570 nm with a Versa-
max microplate reader (Molecular Devices, Sunnyvale, CA,
USA).

Annexin V assay
Cell lines were cultured at 3 × 105 cells/well in six-well plates,
and were cultured in normal growth media containing 20 ng/
ml TNFα for 18 hours or were left untreated. Cells were
labeled with a 1:100 dilution of Annexin V–FITC conjugate and
5 μg/ml propidium iodide according to the manufacturer's
instructions (Trevigen, Gaithersburg, MD, USA). Each sample
was analyzed using a Nikon Eclipse TE300 inverted epifluo-
rescence microscope (Nikon Instruments Inc, Melville, NY,
USA) with filter sets for FITC and TRITC. Early apoptotic cells
were distinguished by the presence of green staining in the
plasma membrane and the absence of red nuclear staining.

Electrophoretic mobility shift assays
Complementary sequences spanning 2,555 to 2,513 nucle-
otides upstream of the bcl-2 ATG start site were annealed and
5'-end-labeled with γ-32P-ATP using T4 kinase (Invitrogen).
The Wheat Germ Coupled Transcription/Translation kit
(Promega, Madison, WI, USA) was used to generate BP1 pro-
tein from the plasmid pGEM7 containing the BP1 open read-
ing frame. Unlabeled competitor oligonucleotides were added
at 500× or 1,000× molar excess to binding reactions. For
supershift analyses, binding reactions included BP1 antibody
[8]. The following sequences were used as probes and com-
petitors: bcl-2, 5'-ACGGTGGGCCTGAAAGTTACTATAT-
GGAAGTCCTCATCGTGTA-3'; mutant bcl-2, 5'-
ACGGTGGGCCTGAAAGTTAGCTCGACGAAGTCCT-
CATCGTGTA-3'; negative control, 5'-TCTTAGAGGGAG-
GGCTGAGGGTTTGAAGTCCAACTCCTAAGCC-3'.

Luciferase reporter assays
A construct containing the bcl-2 P1 promoter region linked to
a luciferase reporter gene (LB170) was a kind gift from Dr
Linda Boxer (Stanford University, Stanford, CA, USA). Cells
were transfected with 2.5 μg LB170 and 1 μg plasmid encod-
ing β-galactosidase, using Fugene 6 Transfection Reagent
(Roche, Indianapolis, IN, USA) at a 3:2 ratio of Fugene:DNA
according to the manufacturer's instructions. Forty-eight hours
post transfection, β-galactosidase activity was measured
using the Beta-Galactosidase Enzyme Assay System
(Promega), and the luciferase reporter activity was assayed
using the Luciferase Assay System (Promega). Luciferase
activity output was given in relative light units. The relative light
unit value for each sample was divided by the β-galactosidase
activity to normalize differences in transfection efficiencies.
Each transfection was performed three times in duplicate.
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Site-directed mutagenesis
Using LB170 as a template, mutation of the BP1 binding site
was performed using the Quik Change II XL Site-Directed
Mutagenesis kit (Stratagene, La Jolla, CA, USA). HPLC-puri-
fied complementary primers (Invitrogen) were designed to
delete a seven-nucleotide region of the BP1 consensus bind-
ing site (underlined): 5'-'GGTGGGCCTGAAAGT TAC-
TATATGGAAGTCCTCATCGTGTA-3'. Plasmids containing
the deletion were designated delLB170. Subsequently, using
delLB170 as the template, plasmids were generated to con-
tain the mutant BP1 binding site (GCTCGAC), and were des-
ignated mutLB170.

Reverse transcription and quantitative PCR
Total RNA was extracted using Trizol Reagent (Invitrogen)
according to the manufacturer's instructions. Reverse tran-
scription of mRNA was performed using the iScript cDNA
Synthesis Kit (Biorad, Hercules, CA, USA). TaqMan analyses
of BP1 and 18S were performed using QPCR Master Mix Plus
reagent (Eurogentec, San Diego, CA, USA). For SYBR Green
analyses of bcl-2, the reactions were performed using iTaq
SYBR Green Supermix with ROX (Biorad). The cycling condi-
tions were as follows using the ABI Prism 7000 Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA): 50°C for 2 minutes, then 95°C for 10 minutes, followed
by 40 cycles at 95°C for 15 seconds and 60°C for 1 minute.
SYBR Green analyses also included a dissociation protocol.

The ABI Prism software was used to perform an automatic
cycle threshold analysis and to generate a standard curve for
extrapolation of the sample data. Mean values of each gene
were normalized to the corresponding mean value for 18S.
The following sequences were used for primers and probes:
18S primers, 5'-GCCGCTAGAGGTGAAATTCTTG-3' and
5'-CATT CTTGGCAAATGCTTTCG-3'; 18S probe, 5'-
ACCGGCGCAAGACGGACCAG-3'; BP1 primers, 5'-
CCTCCCCCAATTTGTCCTACTC-3' and 5'-GGTTGCT-
GGCAGGACAGGTA-3'; BP1 probe, 5'-AGCCAGCGAAC-
CCCGGAGACTC-3'; bcl-2 primers, 5'-
TGGGATGCCTTTGTGGAACT-3' and 5'-
GAGACAGCCAGGAGAAATCAAAC-3'.

Western blot analysis
Cell lysates were prepared in ice-cold RIPA lysis buffer (50
mM Tris, pH 7.5, 2 mM ethylenediamine teraacetic acid, 100
mM NaCl, 1% NP-40) containing 1× Complete Mini protease
inhibitor cocktail (Roche). Proteins were separated by SDS-
PAGE and were transferred to a polyvinylidene difluoride
membrane. Blots were probed overnight at 4°C with rabbit
anti-BP1 (Novus Biologicals, Littleton, CO, USA) at a 1:5,000
dilution, or with a 1:1,000 dilution of mouse anticaspase-7 and
anticaspase-8 antibody, rabbit anticaspase-9 and anti-PARP
(anti-Poly(ADP-Ribose) Polymerase) antibody (Cell Signaling,
Danvers, MA, USA) or mouse anti-Bcl-2 antibody (Santa Cruz,
Santa Cruz, CA, USA). After washing, blots were incubated

with either horseradish peroxidase-linked goat anti-mouse
(1:500 dilution) or donkey anti-rabbit secondary antibodies
(1:15,000 dilution). Signals were detected using SuperSignal
West Dura Extended Duration Substrate (Pierce, Rockford, IL,
USA). Relative band intensities were quantitated using the
Kodak Image Station 2000 MM and the Kodak ID software
(version 3.6.4; Scientific Imaging System, Eastman Kodak
Co., Rochester, NY, USA) and by standardizing protein levels
against β-actin.

Statistical methods
Statistical tests comparing mean levels were performed with
SAS software based on a priori analysis of variance contrasts.
Each replicate was treated as an independent observation.
Except where noted, contrasts involving MCF7/EV cells were
based on averaging across EV1 and EV2. Luciferase values
were log-transformed and the percentage of positive cells
stained with Annexin V was arcsine-transformed for signifi-
cance testing. Results are declared significant at α = 0.02,
two-sided.

Results
BP1 inhibits TNFα-mediated cell death through a 
caspase-dependent mechanism
Three MCF7 cell lines were generated that stably express
increased levels of BP1 protein (MCF7/BP1-1, MCF7/BP1-2,
and MCF7/BP1-4), as well as two control cell lines containing
the empty vector (MCF7/EV1 and MCF7/EV2) (Figure 1a).
We first compared the viability of MCF7/EV and MCF7/BP1
cell lines that were grown in the presence or absence of TNFα.
As shown in Figure 1b, an average of 43% of MCF7/EV cells
survived 3 days post TNFα treatment, whereas all three BP1-
overexpressing cell lines displayed an approximately twofold
increase in viability (74%, 90%, and 80% for BP1-1, BP1-2,
and BP1-4, respectively; P < 0.0001 for each comparison).
Furthermore, MCF7/BP1 cells exposed to TNFα showed a
twofold to threefold decrease in Annexin V binding compared
with MCF7/EV cell lines (Figure 1c, P < 0.0001 for all three
overexpressing cell lines), indicating that increased BP1
expression decreases the ability of MCF7 cells to undergo
apoptosis.

We then examined whether constitutive BP1 expression
affected TNFα-mediated cell death through modulation of cas-
pase pathways. Upstream initiator caspase-8 and caspase-9,
as well as the downstream effector caspase-7 and its sub-
strate PARP, were analyzed by Western blot analysis in
MCF7/EV and MCF7/BP1 cell lines treated with TNFα for var-
ious times (Figure 2a). MCF7 cells are deficient in caspase-3
due to a genomic deletion in exon 3 [17], so this caspase was
not examined. Processed fragments of each caspase are read-
ily apparent after 12 and 24 hours of exposure to TNFα.
Across each cell line, processing of PARP is also seen by 12
hours, with the amount of cleaved protein accumulating
through 24 hours. In each MCF7/BP1 cell line, however, there
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is a clear reduction in cleavage of every caspase as well as of
PARP. Analyses of band intensities of each fragment revealed
a ≥50% decrease in caspase and PARP cleavage in cells
overexpressing BP1, relative to the levels of cleaved products
in MCF7/EV cells. Strikingly, untreated MCF7/BP1 cells
showed a threefold to fourfold increase in levels of full-length
PARP relative to MCF7/EV cells (Figure 2b). In addition,
MCF7/BP1 cells show a 1.6-fold to 2.0-fold downregulation of
procaspase-8 (Figure 2c), indicating that BP1 may affect the
early stages of apoptosis. Together, our findings demonstrate

a role for BP1 in caspase-dependent pathways of TNFα-medi-
ated cell death.

BP1 regulates the expression of Bcl-2
We next sought to define transcriptional targets of BP1 that
might explain why its overexpression results in increased cell
viability in the presence of TNFα. bcl-2, a well-established
antiapoptotic oncogene, is often associated with resistance to
various cell-death-inducing agents [18]. The bcl-2 gene con-
tains two promoters: P1, located 1,386 to 1,423 bp upstream
of the translational start site; and P2, located 1.3 kb down-
stream of P1 [19]. The sequence 5'-TACTATATG-3' matches
a consensus binding site for BP1 protein [8] and is located
upstream of the P1 promoter at -2539 bp relative to the ATG
translational start site.

An electrophoretic mobility shift assay was used to demon-
strate that BP1 protein can specifically bind to a dsDNA oligo-
nucleotide probe containing this site (Figure 3a). A shifted
band was observed in the presence of in vitro transcribed and
translated BP1 protein (lane 2), while a faint band was
observed at this location when wheatgerm extract alone was
mixed with the bcl-2 probe (lane 1). Specificity of the interac-
tion was evidenced by the loss of the shifted band upon addi-
tion of 500× or 1,000× molar excess of competitor DNA of the
same sequence as the bcl-2 probe (lanes 3 and 4). Addition
of excess negative control DNA that lacks a BP1 binding site
did not reduce the intensity of the band (lanes 5 and 6). In the
presence of anti-BP1 antibody we observed both a decrease
in the shifted band as well as the appearance of a supershifted
band (arrow, lanes 7 and 8), verifying that BP1 protein bound
to the bcl-2 probe DNA. These data indicate that the bcl-2
gene is a potential target for regulation by BP1.

In support of this finding, a comparison of bcl-2 expression lev-
els in MCF7/EV and MCF7/BP1 cells by western blot analysis
and by real-time PCR revealed a twofold increase in both bcl-
2 protein (Figure 3b) and mRNA (Figure 3c, black bars; P <
0.0001 comparing the average of untreated EV1 and EV2 with
BP1-1, BP1-2, and BP1-4).

Constitutive expression of bcl-2 abrogates cell death in MCF7
cells exposed to TNFα [20,21]. To examine whether regulation
of bcl-2 by BP1 is associated with the observed increase in
MCF7/BP1 cell viability, bcl-2 mRNA expression was analyzed
in TNFα-treated cells. Although bcl-2 mRNA was downregu-
lated by TNFα in MCF7/EV cells (Figure 3c, gray bars; P =
0.004 and P < 0.0001 for EV1 and EV2, respectively), BP1-
overexpressing cells showed no significant change in bcl-2
mRNA after treatment. Consistent with these data, Bcl-2 pro-
tein levels are not reduced by TNFα treatment, in contrast to
the empty vector control (Figure 3d).

Figure 1

Effect of BP1 on TNFα-induced cell deathEffect of BP1 on TNFα-induced cell death. (a) Western blot analysis of 
Beta Protein 1 (BP1) protein expression in MCF7/EV cell lines and 
MCF7/BP1 cell lines. (b) MCF7/EV and MCF7/BP1 cell lines were 
treated with 20 ng/ml TNFα for 72 hours. MTT assays were performed 
to assess cell viability. To calculate the percentage viability, absorbance 
values were compared in treated cells versus untreated cells. *Statisti-
cally significant differences (P < 0.0001). (c) MCF7/EV and MCF7/
BP1 cell lines were treated with 20 ng/ml TNFα for 18 hours. Cells 
were labeled with both an Annexin V–FITC conjugate and propidium 
iodide to distinguish early apoptotic cells. Five fields of cells were pho-
tographed and counted for each sample in three independent experi-
ments. The percentage of cells in each field with Annexin V staining in 
the plasma membrane, but showing exclusion of propidium iodide, is 
reported. *P < 0.0001.
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BP1 directly targets the bcl-2 promoter
We next determined whether increased levels of bcl-2 expres-
sion in MCF7/BP1 cells could be attributed to direct regula-
tion of the bcl-2 gene by BP1 protein. A schematic diagram of
the promoter region of bcl-2 is shown in Figure 4a. MCF7/EV
and MCF7/BP1 cell lines were transfected with LB170 (a gift

from Dr Linda Boxer, Stanford University), a construct contain-
ing the bcl-2 P1 promoter region and the 5'-flanking sequence
[22], including the BP1 binding site, linked to the luciferase
reporter gene. MCF7/BP1-1 and MCF7/BP1-4 consistently
showed a fivefold activation of the P1 promoter, whereas
MCF7/BP1-2 showed up to an 11-fold increase, compared

Figure 2

BP1 inhibits TNFα-mediated caspase activationBP1 inhibits TNFα-mediated caspase activation. (a) MCF7/EV and MCF7/Beta Protein 1 (BP1) cells were treated with 20 ng/ml TNFα. At the indi-
cated times, protein was analyzed by western blot to examine the expression levels and processing of caspase-8, caspase-9, and caspase-7, as well 
as the substrate Poly(ADP-Ribose) Polymerase (PARP). In each case, the top band represents the uncleaved, inactive procaspase or full-length 
active PARP. Arrow, intermediate fragments; arrowheads, position of the expected cleaved product. (b) and (c) Western blot analyses of PARP and 
procaspase-8 expression in MCF7/EV and MCF7/BP1 cell lines.
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with levels seen in MCF7/EV control cells (Figure 4b, black
bars; P < 0.0001 for all three overexpressing cell lines). These
results show that BP1 overexpression increased transcrip-
tional activation through the bcl-2 promoter. The results do
not, however, distinguish between a direct effect, caused by
binding of BP1 protein to the promoter, and an indirect effect
by BP1, due to regulation of other factors that bind and acti-
vate transcription of bcl-2. Site-directed mutagenesis and
deletion of the BP1 consensus binding site were carried out
to differentiate these possibilities.

Using the LB170 construct as a template, a two-step site-
directed mutagenesis procedure was performed. First, seven
nucleotides of the nine-nucleotide sequence in the BP1 bind-
ing site were deleted to generate delLB170, followed by inser-
tion of the mutated sequence, described in [23], to create
mutLB170 (Figure 4a). An electrophoretic mobility shift assay
was performed to determine whether this mutation could
inhibit binding of BP1 to bcl-2 (Figure 4c). As before, BP1 pro-
tein (WG/BP1) bound to the bcl-2 probe, as indicated by the

shifted band (lane 2, arrow). No protein binding to the bcl-2
probe was observed at this location using the wheatgerm
extract (lane 1). Competition with 500× and 1,000× molar
excess of unlabeled probe DNA (bcl-2) resulted in the loss of
the shifted band signal (lanes 3 and 4). If excess competitor
DNA containing a seven-nucleotide mutation of the BP1 bind-
ing site was added (mbcl-2), however, little competition for
binding was observed (lanes 5 and 6). A negative control DNA
also did not compete for binding (lanes 7 and 8). This mutation
is thus sufficient to disrupt binding of BP1 protein to DNA.

MCF7/EV and MCF7/BP1 cell lines were then transiently
transfected with the wild-type LB170, delLB170, or
mutLB170. Notably, deletion of the BP1 binding site resulted
in an average 45% to 51% decrease in bcl-2 promoter activa-
tion across all cell lines (Figure 4b, grey bars; P < 0.05). Muta-
tion of this site caused an average 37% to 49% reduction in
activation of the bcl-2 promoter, which was statistically signif-
icant for BP1-1 (white bars, P = 0.02) but not for BP1-2 or
BP1-4, perhaps due to residual BP1 binding to the mutant site

Figure 3

Identification of bcl-2 as a putative target gene of BP1Identification of bcl-2 as a putative target gene of BP1. (a) Electrophoretic mobility shift assays were performed to detect potential binding of in vitro 
transcribed and translated Beta Protein 1 (BP1) to a consensus binding sequence located in bcl-2. Binding of BP1 to a 32P end-labeled dsDNA 
probe containing the putative BP1 binding site and surrounding sequence is observed as a shifted band (arrow). 500× and 1,000× molar excess 
unlabeled probes or a negative control (NC) sequence lacking a BP1 binding site were added as a cold competitor for BP1 binding. Addition of 1 or 
2 μl BP1 antibody (Ab) resulted in a supershift of the original band (arrowhead). Wheat germ extract alone (WG) served as a control. (b) Western 
blot analysis of Bcl-2 protein expression in MCF7/EV and MCF7/BP1 cell lines. (c) bcl-2 mRNA from each cell line was analyzed by real-time PCR. 
MCF7/EV and MCF7/BP1 cells were cultured in the presence or absence of TNFα for 72 hours. Data shown represent bcl-2 levels normalized to 
18S. *P < 0.0001. (d) Western blot analysis after culture of cell lines in the presence or absence of TNFα for 72 hours.
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(Figure 4c). We thus conclude that BP1 protein can bind to
the bcl-2 promoter and directly contribute to activation of its
expression in MCF7 cells.

Discussion
Inhibition of apoptosis is a key step in tumor development and
growth, promoting the selection and propagation of cells that
can resist destruction by various cellular stresses. Evasion of
apoptosis by tumor cells has been attributed to downregula-
tion or inactivation of tumor suppressor genes, and to
increased activation or expression of oncogenic factors [24].
The studies presented here reveal that high-level BP1 expres-
sion is associated with enhanced survival of breast cancer
cells challenged with TNFα. Potential mechanisms by which
BP1 promotes continued cell viability were identified, involving

genes in both extrinsic and intrinsic apoptotic pathways. Spe-
cifically, we demonstrated that BP1 can activate bcl-2 and
PARP, and can repress procaspase-8. BP1 transcriptionally
activates bcl-2 through direct binding upstream of the P1 pro-
moter region, resulting in a twofold increase in Bcl-2 protein.

Upon either deletion or mutation of the BP1 binding site, we
observed an approximately 40% to 50% decrease in bcl-2
promoter activity. One possible reason for the remaining activ-
ity is that the mutation did not completely prevent BP1 binding.
Another possibility is that there may be other factors present
that promote bcl-2 expression independent of BP1 binding.
The plasmid LB170, used in our studies of the bcl-2 promoter,
contains several binding sites for known transcriptional regu-
lators of bcl-2, including Wilms' Tumor 1, SP1, and cAMP

Figure 4

bcl-2 is a direct transcriptional target of BP1bcl-2 is a direct transcriptional target of BP1. (a) Schematic diagram of bcl-2 P1 promoter constructs. LB170 contains the Beta Protein 1 (BP1) 
binding site (underlined). delLB170 contains a deletion of seven of the nine nucleotides of the binding site (indicated by X), and mutLB170 contains 
the mutated BP1 binding site (lowercase, underlined). LUC, luciferase. (b) MCF7/EV and MCF7/BP1 cells were transiently transfected with LB170, 
delLB170, or mutLB170, as well as a plasmid encoding β-galactosidase. Forty-eight hours post transfection, protein was extracted and assayed for 
luciferase activity. Relative light units were normalized to β-galactosidase expression units to signify levels of bcl-2 P1 promoter activity (RLU/Bgal). 
*P < 0.0001, • P < 0.05. (c) Electrophoretic mobility shift assay: in vitro transcribed and translated BP1 protein (BP1) was incubated with a 32P end-
labeled DNA oligonucleotide probe containing the sequence from the bcl-2 promoter including the BP1 binding site (arrow). Cold competitor DNAs 
including a bcl-2 sequence identical to the probe (bcl-2), mutated bcl-2 (mbcl-2), and a negative control (NC) lacking the BP1 binding site, were 
added at 500× or 1,000× molar excess. Wheat germ extract (WG) incubated with the bcl-2 probe served as a control.
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response element binding proteins. Wilms' Tumor 1 protein
has been associated with aggressive phenotypes of breast
cancer and was recently shown to upregulate bcl-2 expres-
sion in BT-474 breast cancer cells [25]. Additionally, SP1
sites and a cAMP response element are necessary for estra-
diol-induced bcl-2 gene expression in MCF7 and T47D cells
[26].

Furthermore, high BP1 expression prevents TNFα-induced
downregulation of bcl-2 mRNA and protein. This is consistent
with data from other laboratories demonstrating that high
expression of Bcl-2 promotes cell survival in the presence of
TNFα [20,21]. These results not only support our observation
that bcl-2 is a transcriptional target of BP1, but identify the
upregulation of bcl-2 as a probable mechanism by which BP1
inhibits cell death.

As mentioned, our previous findings demonstrate BP1 expres-
sion in 100% of estrogen-receptor-alpha-negative breast can-
cers studied, compared with 73% of estrogen-receptor-alpha-
positive tumors [11]. This raises the intriguing possibility that
BP1 protein and estrogen receptor alpha protein may interact
and modulate bcl-2 gene expression and action. There is con-
sequently a possibility that a more robust interaction occurs
between BP1 protein and bcl-2 in the absence of estrogen
receptor alpha; hence, this would provide an interesting area
for future study.

Our data further point to a role for BP1 in modulation of cas-
pase-dependent pathways in apoptosis. Increased expression
of BP1 reduced TNFα-induced processing of caspase-7, cas-
pase-8, caspase-9, and the caspase substrate PARP by
approximately 50%, consistent with the ability of BP1 to
enhance cell viability by twofold. These findings suggest a
model by which BP1 may modulate TNFα-induced cell death
at several points (Figure 5).

First, full-length procaspase-8 expression is decreased in
MCF7/BP1 cell lines; lower levels of procaspase-8 may result
in less available activated caspase-8, which would lead to
decreased activation of downstream caspases and PARP, as
we observed. Scanning of the caspase-8 DNA sequence has
revealed possible binding sites for BP1 protein, indicating that
caspase-8 is a potential transcriptional target of BP1.

Second, Bcl-2 controls the release of cytochrome c from the
mitochondria. Following cytochrome c release, crosstalk
between the death-receptor and mitochondrial pathways of
apoptosis can lead to additional processing of caspase-8
mediated by effector caspases-3 and -6 [27,28]. Owing to its
regulation of bcl-2, BP1 may reduce activation of those cas-
pases downstream of the mitochondria [29].

A third point at which BP1 may affect apoptosis is through reg-
ulation of PARP. We discovered increased levels of full-length
PARP in MCF7/BP1 cells. PARP has been shown to be over-
expressed in 57% of breast tumors [30]. PARP has multiple
roles in cell death, and in regulation of gene expression, prolif-
eration, and differentiation, and is well known for its ability to
mediate DNA repair in response to DNA damage [31]. Of rel-
evance here, PARP inhibitors, when used in conjunction with
chemotherapeutic drugs or radiotherapy, are known to
increase the cytotoxic effects of these agents in tumor cells
[32]. We have located potential binding sites for BP1 protein
in the PARP genomic sequence, suggesting that PARP is also
a possible target gene for regulation by BP1.

Conclusion
Our findings reveal details of a role for BP1 in caspase-
dependent and bcl-2-linked mechanisms of tumor cell survival,
and suggest BP1 could serve as a marker for drug resistance
and a therapeutic target. This is the first study to define a
function for increased BP1 expression in breast cancer and to
highlight pathways important for further exploration.
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Figure 5
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