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Abstract

Introduction 1,1-Bis  (3"-indolyl)-1-(p-biphenyl)  methane
(CDIM9) has been identified as a new peroxisome proliferator-
activated receptor (PPAR)-y agonist that exhibits both receptor
dependent and independent antitumor activities. CDIM9 has not
previously been studied with respect to its effects against basal-
like breast cancer. Our goal in the present study was to
investigate the anti-basal-like breast tumor activity of CDIM9 in
vitro and in vivo.

Methods The effects of CDIM9 on cell protein and DNA
syntheses were determined in basal-like breast cancer MDA-
MB231 and BT549 cells in vitro. Maximum tolerated dose and
dose-limited toxicity were determined in BalB/c mice, and
antitumor growth activities were assessed in MDA-MB231
basal-like breast tumor xenografts in athymic nude mice.

Results CDIM9 exhibited selective cell cytotoxicity and anti-
proliferation effects on basal-like breast cancer lines. In MDA-
MB231 cell, CDIM9 induced caveolin-1 and p27 expression,
which was significantly downregulated by co-treatment with the
PPAR-y antagonist GW9662. Nonsteroidal anti-inflammatory

drug-activated gene-1 and activating transcription factor-3 were
upregulated by CDIM9 through a PPAR-y independent pathway.
CDIM9 (40 mg/kg daily, intraperitoneally, for 35 days) inhibited
the growth of subcutaneous MDA-MB231 tumor xenografts by
87%, and produced a corresponding decrease in proliferation
index. Nearly half of the treated mice (46%) had complete
durable remissions, confirmed by histology. The growth of an
established tumor was inhibited by CDIM9 treatment (64 mg/kg
daily, intraperitoneally, for 10 days), with a mean tumor growth
inhibition of 67% as compared with controls. CDIM9 induced
increases in tumor caveolin-1 and p27 in vivo, which may
contribute to its antitumor activity in basal-like breast cancer.

Conclusion CDIM9 showed potent antiproliferative effects on
basal-like breast cancer cell in tissue culture and dramatic
growth inhibition in animal models at safe doses. These findings
justify further development of this drug for treatment of basal-like
breast cancer.

Introduction

Over 40,000 women each year in the USA are diagnosed with
basal-like breast carcinoma [1]. This represents 20% of all
breast cancers [2]. Basal-like breast cancers exhibit low
expression of HER2 and estrogen receptor (ER), and high
expression of epidermal growth factor receptor and cytokera-

tin-5/6 [3]. In addition, tumor cells often express mutant p53,
or the exhibit BRCA T mutations or gene silencing [4]. Patients
with basal-like breast tumors are more likely to be African-
American, to be premenopausal, and to have tumors with high
nuclear grade, high histologic grade, high mitotic index, and
unfavorable histology. Survival of these patients is poor, with

ATF = activating transcription factor; CDDO = 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid; CDIM9 = 1,1-bis (3'-indolyl)-1-(p-biphenyl) methane;
15dPGJ, = 15-deoxy-deltal2, 14-prostaglandin J,; EC5,= concentration producing 50% of the maximum possible response; ER = estrogen recep-
tor; HER = human epidermal growth factor receptor; HSMM = primary human muscle myoblast; NAG = nonsteroidal anti-inflammatory drug-activated
gene; PBS = phosphate-buffered saline; PPAR = peroxisome proliferator-activated receptor; SMKC = human skeletal muscle cell; TGF = transform-
ing growth factor; TUNEL = terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling.

Page 1 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17764562
http://breast-cancer-research.com/content/9/4/R56
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

Breast Cancer Research Vol9No4 Suetal

twice the mortality of luminal breast cancer patients [1]. Unlike
other breast cancers, there is no approved molecular targeted
therapy, and therefore development of an effective agent
remains an important goal in the treatment of basal-like breast
carcinoma.

The gene expression profile of basal-like breast cancer is dis-
tinct from that of other subtypes of breast cancer. Many of the
basal-like gene products have been implicated in cell prolifer-
ation, apoptosis regulation, and extracellular matrix remodeling
[5]. Among the genes selectively altered in basal-like breast
cancer are those encoding p27 and caveolin-1. The cell cycle
inhibitor p27 inhibits cyclin-E/cyclin-dependent kinase-2,
which prevents the activation of S-phase-specific transcription
factors such as elongation factor-2. Cells become arrested in
the G, phase of the cell cycle [6]. In basal-like tumors, p27
expression is downregulated [7]. Caveolin-1, a 22 kDa protein,
participates in caveolae formation and binds and inactivates
cell surface protein kinases through its caveolar scaffolding
domain (residues 82 to 101) [8]. Caveolin-1 expression is
reduced in early mammary carcinogenesis [9], but increased
levels have been found in many basal-like breast cancers [10].
Distinct domains of caveolin-1 (phosphorylated Tyr-14 and
Ser-80 or mutated Pro-132) may override the growth inhibitory
activity of the caveolin-1 and lead to tumor cell invasion and
metastases [11].

We sought to define key regulatory genes that may modulate
both p27 and caveolin-1 expression in basal-like tumor cells,
and one such candidate is the peroxisome proliferator-acti-
vated receptor (PPAR)-y. This critical transcription factor plays
a role in a variety of biologic processes, including metabolism,
inflammation, cell growth and differentiation, and there are
reports that PPAR-y is over-expressed in multiple tumor types
and their derived cancer cells [12-14]. PPAR-y is also
expressed in the breast tumor derived cancer cell lines MDA-
MB-231, MCF-7, SKBR-3, MDA-MB-435, and MDA-MB-453,
irrespective of ER, HER2/neu, or p53 status [13,15,16]. Small
molecule ligands bind PPAR-y and form heterodimers with
retinoid X receptors. The PPAR-y/retinoid X receptor complex
binds peroxisome-proliferation response element within pro-
moters of target genes, recruits co-factor complexes (either
co-activator or co-repressors), and then modulates their
expression. PPAR-y regulates expression of several genes in
cancer cells lines, including p27 and caveolin-1 [17,18].

A number of PPAR-y agonists have been tested preclinically
and clinically, yielding evidence for tumor growth inhibition and
differentiation in liposarcoma and prostate cancer [19,20].
The influences of other members of PPAR family on tumor
growth are less investigated. PPAR-a. agonists LY-171883
and WY-14,643 inhibit cyclo-oxygenase-2 and vascular
endothelial growth factor transcriptional activation in human
colorectal carcinoma cells via inhibition of activator protein-1
[21]. Fenofibrate decreases metastatic potential of melanoma
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cells in vitro via downregulation of Akt, and it inhibits
melanoma tumor growth in vivo [22,23]. In breast cancer,
however, one study suggests that PPAR-a activation
increases proliferation of both MDA-MB-231 and MCF-7 cells
[24]. The promotion of proliferation following PPAR-a activa-
tion is in stark contrast to the effects of PPAR-y-activating lig-
ands, which decrease proliferation in those cells [24].

The 1,1-bis(3"-indolyl)-1-(p-substituted phenyl)methanes con-
taining p-trifluoromethyl, p-tbutyl, or p-phenyl (CDIM9) substit-
uents were initially identified as a novel class of PPAR-y
agonists in breast cancer cells [25]. These compounds
increase PPAR-y activity in prostate, pancreatic, colon, and
bladder cancer cells [26-33]. Similar to other PPAR-y agonist,
CDIM9 and related compounds exhibit a broad spectrum of
anticancer activities by inducing cancer cell differentiation,
growth inhibition, and apoptosis. The growth inhibition of can-
cer cells by CDIMs may be either PPAR-y dependent or inde-
pendent [26,27,33]. We chose to investigate anti-basal-like
breast cancer activity of CDIM9 in vitro and in vivo and corre-
late the effects with modulation of PPAR-y activity.

Materials and methods

Cells

The human basal-like breast cancer cell lines MDA-MB-231
and BT549 were purchased from the American Type Culture
Collection (Manassa, VA, USA). MDA-MB231 cells were cul-
tured in Leibovitz's L-15 medium with 2 mmol/I L-glutamine
and 10% fetal bovine serum, at 37°C and 100% air. BT549
cells were cultured in RPMI 1640 medium with 2 mmol/I L-
glutamine adjusted to contain 1.5 g/l sodium bicarbonate, 4.5
g/l glucose, 10 mmol/l HEPES, and 1.0 mmol/l sodium pyru-
vate supplemented with 0.023 IU/ml insulin and 10% fetal
bovine serum. The primary human skeletal muscle cells
(SKMCs) and human muscle myoblast (HSMM) were pur-
chased from Lonza (Baltimore, MD, USA). SKMCs were cul-
tured in SkGM SingleQuots medium (Lonza, Baltimore, MD,
USA). with supplements and growth factors (human epidermal
growth factor, insulin, bovine serum albumin, fetuin, dexameth-
asone, and gentamicin/amphotericin-B). HSMMs were cul-
tured in SkGM-2 SingleQuots medium with supplements and
growth factors (human epidermal growth factor, dexametha-
sone, L-glutamine, fetal bovine serum, and gentamicin/ampho-
tericin-B) at 37°C and 5% carbon dioxide.

Drug

CDIM9 used in this study was prepared using the same proto-
col as described previously [34], modified by Plantacor Inc.
(Bryan-College Station, TX, USA). Briefly, indole was con-
densed with a p-phenyl substituted benzaldehyde at pH 2.5 in
dilute aqueous acetic acid. The progress of the condensation
reaction was monitored by thin-layer chromatography and,
when 80% to 90% of the reaction was completed, the result-
ing solid was filtered and crystallized from 1-propanol. CDIM9
structure was confirmed by gas chromatography/mass



spectrometry and/or nuclear magnetic resonance spectros-
copy. The placebo used in this study contains 5% oleic acid,
0.2% vitamin E, 92.8% Cremophor ELP (3Plantacor College
Station, TX, USA).

Animals

Female Balb/c and athymic nude mice (nu”), aged 4 to 6
weeks, were purchased from Charles River Laboratories
(Wilminton, MA, USA) and maintained in a ventilated rack sys-
tem. Irradiated food and autoclaved water were provided ad
libitum. These experiments were approved by the Institutional
Animal Care and Use Committee at the Scott & White Memo-
rial Hospital (Temple, TX, USA). The mice were allowed to
adjust to their environment for 1 week before initiation of the
experiments.

Cytotoxicity assay and TUNEL staining

Cytotoxicity was determined using a [3H]leucine incorporation
inhibition assay. Cells were plated in 96-well flat bottomed
plates at 104 cells per well and cultured in the growth medium
overnight. The next day, fresh medium was replaced contain-
ing serial diluted CDIM9 between 1 x 103 mol/land 1.9 x 10
6 mol/l and cultured at 37°C for 48 hours. Then, 1 pCi (0.037
MBq) of [3H]leucine (NEN DuPont, Boston, MA, USA) in 100
pl RPMI-1640 leucine-free medium was added to each well to
replace the old medium and incubation was continued for an
additional 18 hours at 37°C/5% carbon dioxide. Cells were
then harvested using a Skatron Cell Harvester (Skatron Instru-
ments, Lier, Norway) onto glass fiber mats, and the counts/min
of incorporated radiolabel was measured using an LKB-Wal-
lac 1205 Betaplate liquid scintillation counter (Perkin-Elmer,
Gaithersburg, MD, USA) gated for 3H. The percentage maxi-
mal [3H]leucine incorporation was then plotted versus the log
of CDIM9 concentration, and nonlinear regression with a vari-
able slope sigmoidal dose-response curve was generated
along with EC5, (concentration producing 50% of the maxi-
mum possible response) using GraphPad Prism software
(GraphPad Software, San Diego, CA, USA). All assays were
done at least twice with an interassay range of 30% or less for
ECs,. Apoptosis was visualized with terminal deoxynucleoti-
dyltransferase-mediated dUTP nick-end labeling (TUNEL)
using the Apoptag kit (Serologicals, Norcross, GA, USA).

Cell proliferation assay

MDA-MB231 and BT549 cells (2 x 104) were plated in 12-
well plates and allowed to attach for overnight. Fresh medium
containing 1, 5, or 10 mmol/l of CDIM9 or solvent (Me,SO)
was added every 48 hours and cells were then trypsinized and
counted after 48, 96, 144 hours by trypan blue counting.
Results for each treatment group were determined from tripli-
cate studies.

Maximum tolerated dose studies
To determine the maximum tolerated dose (MTS), to Balb/C
mice per group were injected intraperitoneally with increasing
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doses of CDIM9 every day for a total 35 injections. Mice were
monitored twice per day for sign of toxicity. Mice that exhibited
dehydration, hypothermia, or dyspnea were considered mori-
bund and were killed following institutional regulations. Sam-
ples from major organs were removed, fixed in 10% buffered
formaldehyde, dehydrated, and embedding in paraffin. Sec-
tions were stained with hematoxylin and eosin and examined
under a microscope. All surviving mice were killed at day 60
after injection.

Antitumor efficacy studies

Athymic nude mice (Nu’") were injected intraperitoneally with
75 ug of a rat antimouse asialo GM1 antibody (Wako Chemi-
cal Company, Richmond, VA, USA) to reduce natural killer
cells. Injections were carried out on days -4 and -2 before the
injection of MDA-MB231 cells. At day O, mice were injected
subcutaneously in the left flank with 107 MDA-MB231 cells in
100 to 200 ul serum-free medium. Three groups of mice (12
to 13 mice/group) were then treated intraperitoneally with 40
mg/kg CDIM9 in 50 pl placebo, 50 pl placebo, or 50 pl phos-
phate-buffered saline (PBS) every day for 35 total injections
starting at day 4 after tumor inoculations. Animals were
observed twice daily and tumor sizes were measured twice
per week using calipers, based on the formula L x W2 (where
L is the length and W is the width of the tumor). Moribund mice
and mice whose tumor burdens exceeded 20% of their body
weight were killed, as described above. All mice were killed at
day 60 after tumor injection following institutional regulation.
Tumor tissues were removed for immunohistochemistry stain-
ing and in vitro tumor cell cytotoxicity assay.

Histological analysis

The organs (liver, spleen, heart, lung, kidney, small intestine,
and brain) and tumors were fixed for 24 hours in 10% buffered
formaldehyde, dehydrated, and embedded in paraffin. Sec-
tions were stained with hematoxylin and eosin, and subjected
to microscopic analysis.

Advanced tumor therapy with CDIM9

Thirty days after antitumor efficacy studies, four mice bearing
tumors (average about 400 mm3) from the PBS-treated group
were treated intraperitoneally with CDIM9 (64 mg/kg) or PBS
every day for 10 total injections. On day 11, animals were killed
following institutional regulations, and tumors were harvested
and processed as described above. Proliferating cells were
tested by staining of section with mouse anti-Ki-67 antibody
(Neomarkers/Labvision) and angiogenesis was visualized by
staining with mouse anti-CD34 antibodies (Neomarkers/Lab-
vision, Fremont, CA, USA). Immunostaining was performed as
described previously [35].

Tumor tissue and cell lysate preparation and
immunoblotting

The tumor tissue and cell lysates were prepared as described
previously [36]. Briefly, tumor tissues were collected and kept
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frozen at -80°C until use. Ice cold lysis buffer (2% Triton X-
100, 10 mmol/I Tris-HCI [pH 8], 150 mmol/I NaCl, 10 mmol/|
NaN3, and 10 mmol/l EDTA) containing protease inhibitors
(Sigma, St. Louis, MO, USA) was added to tissues (20 mg tis-
sue/ml lysis buffer). Tissues were homogenized using a poly-
tron and maintained on ice for 60 min. Soluble material was
selected by centrifugation at 39,800 g for 30 min at 4°C using
a J-17A rotor. Whole cell lysates were obtained using Ack lys-
ing buffer with protease inhibitor cocktail. The tissue lysates
were tested by Western blot with caveolin-1 (1:1,000 dilu-
tion), p21 (1:1,000), and p27 (1:200) antibodies (Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA). Anti-B-actin was
used at 1:1,000 dilution (Sigma). The peroxidase-conjugated
antimouse or antirabbit antibodies were used at 1:1,000 dilu-
tion (Jackson ImmunoResearch, West Grove, PA, USA).

Statistical analysis

Survival was analyzed using the Kaplan-Meier method. For
comparison of tumor volumes and ECg,s, a Mann-Whitney or
Kurskal-Wallis test was used. P values below 0.05 were con-
sidered to represent statistical significance. Statistical analy-
ses were conducted using GraphPad Prism software
(GraphPad Software, San Diego, CA, USA). Statistical com-
parisons were conducted using a 5% level of significance.

Results

Cytotoxicity of CDIM9

Two different cell cytotoxicity assays were performed. Protein
synthesis inhibition assay revealed that that two different
human basal-like breast cancer cells, namely MD-MB231 and
BT549, exhibited comparable sensitivities to CDIM9, with
ECs, values of 5 and 3 umol/l, respectively, after treatment for
48 hours (Figure 1a). In comparison, SKMCs and HSMMs
were less sensitive to CDIM9 than were tumor cells, with ECg
values of 17 and 22 pumol/l, respectively. A cell proliferation
inhibition assay based on viable cell counts also showed that
CDIM9 inhibited proliferation of the basal-like MDA-MB231
and BT549 cells, with 50% inhibitory concentrations values of
1 to 5 umol/I (Figure 1b).

Effects of CDIM9 on cell cycle related proteins

The effects of CDIM9 on expression of various cell cycle pro-
teins were investigated in MDA-MB231 and BT549 basal-like
breast cancer cells treated with 5 to 20 umol/l CDIM9 for 24
hours (Figure 2a). CDIM9 increased p27 expression level in
MDA-MB231 cells in a concentration-dependent manner.
Concentrations of 10 and 20 umol/l of CDIM9 increased p27
expression 2.1-fold and 8-fold in MDA-MB231 cells, respec-
tively (Figure 2a). The expression of caveolin-1 was also
affected by CDIM9 treatment; in MDA-MB231 cells caveolin-
1 expression was upregulated 1.7-fold, 2.4-fold, and 3.4-fold
after treatment with 5, 10, and 20 umol/I CDIM9, respectively
(Figure 2a). Levels of p21 were not affected in MDA-MB231
cells but were slightly increased (1.5-fold) in BT549 cells
treated with 5 to 20 umol/l CDIM9. Neither p27 nor caveolin-
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1 was induced in BT549 cells after treatment with CDIM9
(Figure 2b).

To further investigate the role played by PPAR-y in mediating
CDIM9 induction of caveolin-1 and p27, MDA-MB231 cells
were treated with 10 or 20 pmol/l CDIM9 in combination with
20 umol/l of the PPAR-y antagonist GW9662. Co-treatment
of GW9662 inhibited the induction of caveolin-1 and p27 by
CDIM9 in MDA-MB231 cells (Figure 2a), suggesting that
these responses were PPAR-y dependent, as previously
described in colon and pancreatic cancer cells [26,28-30].

No significant induction of apoptosis was observed in MDA-
MB231 cells treated with up to 20 pmol/l CDIM9 using
TUNEL staining (Figure 3a). Furthermore, the pan-caspase
inhibitor Z-VAD-FMK had no inhibitory effects on the cytotox-
icity of CDIM9 in MDA-MB231 cells (data not shown). Based
on observation of CDIM9 with other tumor cells [23,24], we
analyzed the levels of the transcription factors nonsteroidal
anti-inflammatory drug-activated gene (NAG)-1 and activating
transcription factor (ATF)3 in the basal-like breast cancer cells
treated and untreated with CDIM9. NAG-1 was upregulated in
MDA-MB231 cells after treatment with 10 and 20 pmol/I
CDIM9. ATF3 was also elevated in both MDA-MB231 and
BT549 cells treated with CDIM9 (Figure 3b). The induction of
NAG-1 and ATF3 were not inhibited by the PPAR-y antagonist
GW9662.

Maximum tolerated dose and dose-limiting toxicity of
CDIM9

As shown in Figure 4a, the MTD of CDIM9 given by intraperi-
toneal injection every day was 40 mg/kg. No deaths were
observed at or below the MTD of all animals (two groups of
10). In contrast, animals that received 80 mg/kg and 160 mg/
kg of drug for 10 continuous days exhibited mortality rates of
60% and 70%, respectively.

The dose-limiting toxicities of CDIM9 were kidney and liver
damage. As shown in Figure 4b, intraperiteonal injections of
160 mg/kg CDIM9 for 10 continuous days caused 70% of ani-
mals to die. The remaining animals at this dose became mori-
bund, with fur ruffling and loss of physical activity by day 10.
Necropsies of dead or terminally ill animals showed profound
histologic damage to kidney (tubular vacuolization) and liver
(steatosis; Figure 4b). The infrequent apoptotic cells in the
small intestine might be associated with the location for the
injection of CDIM9 (data not shown). The heart, spleen, lung,
and brain were not affected by CDIM9 treatment and showed
no signs of histologic toxicity. Recovered mice from CDIM9
treatment after 3 weeks showed complete resolution of tubu-
lar vacuolization and hepatic steatosis (Figure 4b).
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were treated with serial diluted CDIM9 at between 1 x 10-3and 1.9 x 106 mol/l for 48 hours. The ECg, values were determined using GraphPad
Prism software. (b) Cell growth inhibition assay. MD-MB231 and BT549 cells were treated with 1 to 10 umol/| CDIM9 for 6 days, and cell numbers
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HSMM, human muscle myoblast; SKMC, human skeletal muscle cell.

Human basal-like breast tumor growth in athymic nude
mice.

Athymic nude mice treated with anti-asialo GM1 antibody
were inoculated with 107 MDA-MB231 cells. After a long lag-
phase, subcutaneous tumors exhibited rapid tumor growth.
Mean = standard error tumor volume was 336 + 56 mm3 after
29 days, which then doubled (672 + 180 mm3) by day 35 and
then again (1,129 £ 372 mm3) by day 39. The tumors contin-
ued to grow until animals were killed on day 43 (1,430 + 462

mm3). Based on these results, we could detect a 50% tumor
growth inhibition with 12 to 13 animals per group, respec-
tively, with a two-sided type | error of 5% and a power 0.9.
Pathology of the tumors confirmed the malignant histology.

Inhibition of basal-like breast tumor growth by CDIM9

Beginning on day 4 after tumor cell inoculation, a cohort of 12
to 13 animals received treatment systemically by intraperito-
neal injection with 40 mg/kg CDIM9, 50 pl placebo, or saline
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Induction of cell cycle proteins by CDIM9. (a) MDA-MB231 and (b) BT549 cells were treated with Me,SO or 5, 10, and 20 umol/| CDIM9 for 24
hours. Whole cell lysates were analyzed for caveolin-1, p27, and p21 by Western blot assays, as described in Materials and methods. B-Actin served

as loading control. CDIM9, 1,1-bis (3'-indolyl)-1-(p-biphenyl) methane.

every day for a total of 35 doses (Figure 5). On day 29 the
saline and placebo control tumor volumes were 336 £ 56 mm?3
and 359 * 95 mm3, respectively. The volumes of CDIM9
treated tumor volumes were only 53 £ 148 mm3 (P = 0.009
versus placebo control and P = 0.006 versus saline control).
By day 39 when treatment was terminated, the saline treated
tumor volumes were 1,129 * 372 mm3 and the placebo
treated tumors were 910 = 343 mm3. The CDIM9-treated
tumor volumes were 115 £ 54 mm3 (P = 0.009 versus pla-
cebo control and P = 0.006 versus saline control). By day 48,
six out of 13 (46%) originally CDIM9-treated mice remained in
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complete remission both grossly and by histology. However,
tumors in three mice re-grew to between 600 and 1,200 mm3.

Growth inhibition of established tumor by CDIM9

We then evaluated the therapeutic efficacy of CDIMS9 in estab-
lished MDA-MB231 basal-like breast tumors. Nude mice bear-
ing solid subcutaneous tumor nodules constituting 1.5% to
3% of the total body mass were treated with intraperitoneal
injections of 64 mg/kg CDIM9 for 10 days (Figure 6a). The
tumor growth was inhibited by CDIM9 treatment. By day 11
the treatment caused 67% tumor growth inhibition as com-
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Figure 3

Fig 3
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were treated with Me,SO or 5, 10, and 20 umol/I CDIM9 for 24 hours. Whole cell lysates were analyzed for NAG-1 and ATF3 by Western blot
assays. -Actin served as loading control. ATF, activating transcription factor; CDIM9, 1,1-bis (3"-indolyl)-1-(p-biphenyl) methane; NAG, nonsteroidal
anti-inflammatory drug-activated gene; TUNEL, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling.

pared with the size of tumor treated with saline (Figure 6a). endothelial cell damage based on equal CD34 vessel staining
Immunohistologic analysis of tumor tissues revealed inhibition of CDIM9-treated tumor samples compared with PBS-treated
of tumor cell proliferation with dramatic cession of Ki-67 stain- tumor samples (data not shown).

ing (Figure 6b). Moreover, CDIM9 did not produce tumor
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Figure 4

Fig 4
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(liver). CDIM9, 1,1-bis (3"-indolyl)-1-(p-biphenyl) methane.
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Inhibition of basal-like breast tumor growth by CDIM9. Shown are tumor sizes (following inoculation of MDA-MB231 basal-like breast cancer cells
subcutaneously) tumor size in athymic nude mice treated daily with CDIM9 (40 mg/kg in 50 pl placebo, intraperitoneally), placebo, or PBS starting
on day 4 after tumor inoculation. Values are expressed as mean * standard error. CDIM9, 1,1-bis (3'-indolyl)-1-(p-biphenyl) methane; PBS, phos-

phate-buffered saline.

In vivo effects of CDIM9 on cell cycle-related proteins
The in vivo gene modulation activity of CDIM9 was further
investigated by immunoblotting analyses of MDA-MB231
xenograft tumor lysate after treatment with 64 mg/kg CDIM9
by intraperitoneal injection every day for seven total doses. As
shown in Figure 6c, a dramatic increase in caveolin-1 expres-
sion (7.2-fold) was detected in tumors from CDIM9 treated
mice. Expression of p27 was moderately induced (2.9-fold)
after CDIM9 treatment.

Discussion

CDIM9 exhibited remarkable growth inhibitory effects on
basal-like breast cancer in our animal model, with 87% tumor
growth inhibition after daily treatment for 35 days. The dose
used was twofold below the toxic dose of CDIM9; we there-
fore estimate a therapeutic index of at least 2, and this may be
significantly higher because we did not investigate lower
doses of CDIM9. In addition, six out of 13 (46%) of the tumor-
bearing animals had complete tumor regression with no re-
growth of tumors by day 50 and absence of basal-like breast
tumor cells by histologic examination of necropsy specimens.
This anticancer efficacy compares favorably with results
obtained in similar subcutaneous MDA-MB231 xenografts in
athymic nude mice treated with gamma radiation (94% tumor
growth inhibition), doxorubicin (63% tumor growth inhibition),

and paclitaxel (650% growth inhibition) [37-39]. Because each
of the listed treatments are currently used for treatment of
basal-like breast cancer and have demonstrated clinical bene-
fit, we expect CDIM9 will also be beneficial in these patients.

Other PPAR-y agonists with chemical structures different from
that of CDIM9 have been tested in vitro and in vivo in basal-
like and ER-positive breast tumors [16,40,41]. 2-Cyano-3, 12-
dioxooleana-1, 9-dien-28-oic acid (CDDO) produced 60%
tumor growth inhibition of MDA-MB435 cells in nude mice
[18]. Troglitazone significantly inhibits MCF7 tumor growth
(>85%) in triple-immunodeficient BNX nude mice [41]. A pilot
study of short-term rosiglitazone therapy in early-stage breast
cancer patients led to local and systemic effects on PPAR-y
signaling, but it did not show significant effects on breast
tumor cell proliferation using Ki67 expression [40]. 15-Deoxy-
deltal12, 14-prostaglandin J, (15dPGJ,) or troglitazone atten-
uated cellular proliferation of the ER-negative MDA-MB-231
cells, as well as the ER-positive line MCF-7. This was marked
by a decrease in total cell number and by an inhibition of cell
cycle progression [42]. Brief exposure of MDA-MB-231 cells
to 156dPGlJ, inhibited tumorigenesis of MDA-MB231 cells in a
nude mouse model [42]. 15dPGJ, also induces cytotoxic
effects in basal-like breast cancer cells, including MDA-
MB231, BT549, and HS578T cells, through PPAR-y
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The growth inhibitory effects of CDIM9 on established MDA-MB231 tumor. (a) Athymic nude mice bearing established MDA-MB231 tumors were
injected intraperitoneally with 64 mg/kg CDIM9 in 100 pl placebo or 100 pl saline for 10 total doses. The tumor size was measured on days O and
10. (b) Tumors collected from CDIM9 (64 mg/kg per day, intraperitoneally) or PBS treated mice were tested by Ki-67 immunohistochemistry stain-
ing and H&E staining. (c) The in vivo gene modulation activity of CDIM9 was investigated by immunoblotting analyses of MDA-MB231 tumor lysates
after treatment with 64 mg/kg CDIM9 by intraperitoneal injection every day for seven total doses. CDIM9, 1,1-bis (3"-indolyl)-1-(p-biphenyl) methane;

H&E, hematoxylin and eosin; PBS, phosphate-buffered saline.

independent mechanisms [43]. In MDA-MB231 cells,
15dPGlJ, increased expression of p21Wafl/Cipl  r27Kip1 and
other de novo gene expressions [44]. CDDO transactivated
PPAR-y and induced dose-dependent and time-dependent
cell growth inhibition, cell cycle arrest in G;-S and G,-M, and
apoptosis in MDA-MB231 and MDA-MB435 cells [16]. We
expect CDIM9 to exhibit improved anti-breast-cancer proper-
ties. Its PPAR-y activities are stronger, and it has PPAR-y inde-
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pendent tumor inhibitory properties. Furthermore, we intend to
use this drug to treat patients with metastatic basal-like breast
cancer.

The mechanism underlying tumor growth inhibition by CDIM9
probably involves PPAR-y activation and upregulation of the
cell cycle regulating genes p27 and caveolin-1. Tumor growth
inhibition with CDIM9 in vitro and in vivo correlated with



increased p27 and caveolin-1 protein expression. The induc-
tion of p27, but not that of caveolin-1, was dependent on the
concentration of CDIM® in vitro. The greater induction of cave-
olin-1 compared with p27 in vivo may reflect pharmacologic
barriers preventing the drug from reaching all of the tumor cells
in vivo. A member of KIP/CIP family of cyclin-dependent
kinase inhibitors, p27 blocks G;-S cell cycle progression by
binding and inhibiting cyclin-E/cyclin-dependent kinase-2
[45]. Levels of p27 are low in many breast cancers, in particu-
lar basal-like breast cancers [46]. The expression of p27 is
upregulated by PPAR-y agonists in some cancer cell lines
[17], and the p27 promoter contains PPAR-y response ele-
ments. Immunohistochemistry of breast tumors demonstrated
linked expression of PPAR-y and p27 [17,47]. Shortened sur-
vival of basal-like breast cancer patients was closely
associated with decreases in nuclear p27 [7,47]. In our study,
induction of p27 by CDIM9 was PPAR-y dependent (based on
PPAR-y antagonist modulation). Furthermore, we and other
groups have found that CDIM9 produces cell cycle arrest both
in tissue culture and in animal tumors [25,48]. Caveolin-1
contains a caveolin scaffolding domain that inhibits activation
extracellular signal-regulated kinase-1/2, represses cyclin D,
transcription, and induces CIP-dependent G/G;, arrest [11].
There is preclinical and clinical evidence that caveolin-1 is a
breast tumor suppressor gene [8,9,49]. PPAR-y binds to
response elements in the caveolin-1 promoter and triggers
caveolin-1 transcription [18,50]. Although basal/mesenchymal
MDA-MB231 cells contain measurable caveolin-1, PPAR-y
activation led to further increases in caveolin-1 expression and
cell growth arrest. Our findings suggest that caveolin-1 may
still possess tumor suppressor activities in basal-like breast
cancers. Our combined results with p27 and caveolin-1 dem-
onstrate a potential PPAR dependent molecular mechanism
for the inhibition of tumor growth by CDIM9.

Because CDIM9 exhibits PPAR-y dependent and independent
effects on tumor cells [26,27,33], there are probably other fac-
tors that contribute to the observed inhibition of basal-like
breast cancer growth. Our observation of ATF-3 and NAG-1
induction by CDIM9 may also contribute to tumor growth inhi-
bition. Both of these transcription factors are negative regula-
tors of tumor cell growth. ATF-3 inhibits cancer cell
proliferation and invasion, and its induction correlates with cel-
lular damage [61,52]. Interleukin-10 induced ATF-3 transcrip-
tional suppression of matrix metalloproteinase-2 gene
expression in human prostate CPTX-1532 cells [53]. Indole-3-
carbinol and CDIM compounds induce proapoptotic gene
NAG-1 expression mediated by ATF3 in human colorectal
cancer cells [26-28,54]. Furthermore, ATF-3 is upregulated in
HCT-116 human colorectal cancer cells following treatment
with PPAR-y agonist troglitazone, nonsteroidal anti-inflamma-
tory drugs, diallyl disulfide, and resveratrol [65]. NAG-1, a
member of the transforming growth factor (TGF)-B super-
family, inhibits proliferation of breast carcinoma cells [56],
mink lung epithelial cells, and prostate carcinoma cells [57].

Available online http://breast-cancer-research.com/content/9/4/R56

NAG-1 is induced by multiple agents including CDIM com-
pounds [26-28]. Its induction can be either mitogen-activated
protein kinase dependent (in LNCaP prostate cancer cells) or
phosphoinositide-3 kinase dependent (in MDA-MB231 basal-
like breast cancer cells and HCT-116 colon cancer cells). In
MDA-MB231 cells, ATF-3 and NAG-1 are upregulated
through a PPAR-y independent pathway. In BT549 cells, the
increase in ATF3 after CDIMO treatment leads to the observed
growth inhibition in vitro. We did not observe caspase
dependent cytotoxicity or positive TUNEL staining in MDA-
MB231 and BT549 cells after CDIM9 treatment. Other PPAR-
v agonists, including CDDO and troglitazone, yielded low per-
cent apoptosis of MDA-MB231 and MDA-MB468 basal-like
breast tumor cells [25,48].

ER-negative basal-like breast cancer cells such as MDA-
MB231 are highly invasive and metastatic in rodent models.
They are generally independent of exogenous hormone. Auto-
crine growth factors such as TGF- are necessary for growth
and survival of MDA-MB231 cells [58]. It has been reported
that exogenous growth factors could influence the angiogen-
esis, metastasis, and tumorigensis of basal-like breast cancer
cells. TGF-B enhances bone metastases in MDA-MB231 cells
through stimulation of cyclo-oxgenase-2 expression [59].
Hepatocyte growth factor/scatter factor increases the inva-
siveness and migration of MDA-MB231 cells in vitro and
induces angiogenesis [60]. Interleukin-10a. also contributes to
the local invasiveness and malignant behavior in less differen-
tiated and ER-a negative tumors [61]. Tissue factor and factor
Vlla promote MDA-MB231 tumor cells migration and invasion
[62]. CDIM9 and its analogs were reported to inhibit tumor
necrosis factor-o. induced endothelial cell activation by inhibit-
ing the expression of intercellular adhesion molecule-1,
interleukin-6 and monocyte chemoattractant protein-1 [63].
The involvement of growth factors in basal-like breast cancer
cell growth inhibition by CDIM9 will be explored in future.

Established tumors exhibited tumor growth inhibition, but
there were no observed regressions. The lack of regressions
in these tumors may relate to poor drug penetration or limited
cytolytic toxicity. Our observations that relapsed tumor cells
remained sensitive to CDIM9 are consistent with both pharma-
cologic explanations. Combinations of CDIM9 with other
agents such as retinoic acid receptor ligands may produce
greater anti-breast-cancer efficacy, as previously shown in
preneoplastic rodent mammary treated with thiazolidinedione
PPAR-y agonists and all-trans-retinoic acid [64]. Alternatively,
cytoreduction with chemotherapy may reduce tumor burden,
facilitating control with CDIM9 monotherapy.

The dose limited toxicities of CDIM9 appeared to be hepatic
steatosis and renal tubular vacuolization. The spleen, heart,
lung, brain, and bone marrow were not affected by CDIM9
treatment based on histopathology. CDIM9 is a potent PPAR-
y agonist [25], and this receptor is a master regulator of adipo-
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genesis and lipogenesis. The ligand-receptor complex coordi-
nates transcription of multiple adipogenic and lipogenic
genes, leading to lipid accumulation [65]. In the liver, lipid
mediated stimulation of PPAR-y leads to steatosis and liver
injury [66]. PPAR-y is also expressed in the kidney mesangial
and tubular cells, and its activation can produce lipotoxicity,
inhibition of cell proliferation, and cell death [67]. We only
observed hepatic steatosis and renal tubular vacuolization in
mice treated with CDIM9 at 80 or 160 mg/kg per day in the
12-day study. Furthermore, these toxicities were reversible
after 3 weeks of recovery.

Conclusion

In summary, CDIM9 exhibited potent antiproliferative effects
on basal-like breast cancer cell in tissue culture and dramatic
growth inhibition in animal models at safe doses. These results
justify further development of this drug for therapy of basal-like
breast cancer patients. We have prepared a clinical batch of
CDIM® for clinical studies, and the trials on metastatic basal-
like breast cancer patients should be initiated by 2008.
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