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Abstract

Introduction BRCA1 is involved in numerous essential
processes in the cell, and the effects of BRCA1 dysfunction in
breast cancer carcinogenesis are well described. Many of the
breast cancer susceptibility genes such as BRCA2, p53, ATM,
CHEK2, and BRIP1 encode proteins that interact with BRCA1.
BCL6 corepressor-like 1 (BCoR-L1) is a newly described
BRCA1-interacting protein that displays high homology to
several proteins known to be involved in the fundamental
processes of DNA damage repair and transcription regulation.
BCoR-L1 has been shown to play a role in transcription
corepression, and expression of the X-linked BCoR-L1 gene
has been reported to be dysregulated in breast cancer subjects.
BCoR-L1 is located on the X chromosome and is subject to X
inactivation.

Methods We performed mutation analysis of 38 BRCA1/2
mutation-negative breast cancer families with male breast
cancer, prostate cancer, and/or haplotype sharing around
BCoR-L1 to determine whether there is a role for BCoR-L1 as

a high-risk breast cancer predisposition gene. In addition, we
conducted quantitative real-time PCR (qRT-PCR) on
lymphoblastoid cell lines (LCLs) from the index cases from these
families and a number of cancer cell lines to assess the role of
BCoR-L1 dysregulation in cancer and cancer families.

Results Very little variation was detected in the coding region,
and qRT-PCR analysis revealed that BCoR-L1 expression is
highly variable in cancer-free subjects, high-risk breast cancer
patients, and cancer cell lines. We also report the investigation
of a new expression control, DIDO1 (death inducer-obliterator
1), that is superior to GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) and UBC (ubiquitin C) for analysis of
expression in LCLs.

Conclusion Our results suggest that BCoR-L1 expression
does not play a large role in predisposition to familial breast
cancer.

Introduction
Less than 40% of familial breast cancer can be attributed to
mutations in the high-risk genes BRCA1 and BRCA2 despite
their high penetrance [1,2]. Syndromes displaying a predispo-
sition for breast cancer such as Li-Fraumeni syndrome (result-
ing from p53 gene mutations) [3], ataxia telangiectasia (ataxia
telangiectasia-mutated, or ATM, gene) [4], and Cowden syn-

drome (phosphatase and tensin homologue, or PTEN, gene)
[5] are estimated to account for no more than 10% of familial
breast cancer collectively, and additional moderate-risk genes
such as CHEK2 [6] and the recently reported BRIP1 (also
called BACH1) [7] and PALB2 [8,9] account for an even
smaller percentage. This leaves a large proportion of the
genetic basis of familial breast cancer unexplained.
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Interestingly, BRCA2, p53, ATM, CHEK2, and BRIP1 all inter-
act with the multifunctional tumour suppressor, BRCA1.
BRCA1-interacting proteins are logical breast cancer candi-
dates for two reasons. First, they are likely to be involved in
some of the important roles of BRCA1 such as genome main-
tenance, transcription regulation, and cell cycle control and, if
mutated, may result in the same highly penetrant and damag-
ing effect as a BRCA1 mutation. Second, mutations in these
interacting genes may prevent BRCA1 from performing vital
functions, resulting in the same acute effect as a BRCA1
mutation itself. Recently, Pagan and colleagues [10]
described the characterisation and functional analysis of a
novel BRCA1-interacting protein, BCL6 corepressor-like 1
(BCoR-L1), that displays homology to several proteins
involved in pathways such as DNA damage repair (BARD1
and Drosophila recombination repair protein 1) and transcrip-
tion regulation (BCoR). Functional analysis thus far has
revealed a role for BCoR-L1 in transcriptional corepression
[10], placing it in a large group of proteins involved in the reg-
ulation of proliferation and apoptosis [11]. It is well established
that uncontrolled overexpression of oncogenes and repres-
sion or mutation of tumour suppressors contribute to tumouri-
genesis by disturbing these vitally important and tightly
controlled cellular processes [12].

Evidence that BCoR-L1 operates primarily as a transcription
corepressor includes its ability to dramatically reduce reporter
gene expression through an interaction with the CtBP (car-
boxyl-terminal binding protein) corepressor via a PLDLS motif
and the fact that it associates with a number of class II histone
deacetylases (HDACs), factors also involved in transcription
repression [10]. Similarly, BRCA1 interacts with a number of
proteins involved in chromatin remodelling and transcription
control [13]. Like BRCA1, BCoR-L1 is also involved in main-
taining genomic stability after DNA damage.

In addition to its interaction with BRCA1, there is indirect evi-
dence to suggest that BCoR-L1 may behave as a tumour sup-
pressor. The BCoR-L1 protein appears to be expressed
ubiquitously at low levels (including breast tissue), with high
levels in reproductive tissues such as prostate and testes [10].
However, BCoR-L1 expression was found to be decreased in
a variety of breast cancer subjects, including BRCA1/2 muta-
tion carriers and 'sporadic' breast cancer subjects [14]. In
addition, the BCoR-L1 gene is located at Xq26.1, a region
reported to exhibit loss of heterozygosity (LOH) in many
tumour types, including those of the breast [15-17]. BCoR-L1
is subject to complete X inactivation [18], and interestingly, an
increased frequency of skewed X inactivation has been
reported in both ovarian [19] and early-onset BRCA1/2 muta-
tion-negative (BRCAX) breast [20,21] cancer populations. It
has been proposed that skewed X inactivation could provide
a novel mechanism for nonrandom expression of a mutant
tumour suppressor gene and thereby contribute to
tumourigenesis.

We sought to determine whether there is a role for BCoR-L1
as a high-risk breast cancer predisposition gene by screening
the coding region of the gene in 38 BRCAX breast cancer
families by means of the highly sensitive mutation detection
technique, denaturing high-performance liquid chromatogra-
phy (DHPLC). The majority of families were chosen specifically
for the presence of male breast cancer and/or early-onset
prostate cancer, in combination with being a high-risk female
breast cancer family, for two reasons. We hypothesised that
an X-linked gene may be involved in these male cancer
because males carry only one copy of the X chromosome and
because BCoR-L1 has been found to be expressed highly in
the prostate [10]. A small number of breast cancer families in
which the affected individuals showed haplotype sharing
around the BCoR-L1 locus were also included in this study. In
addition, we conducted quantitative real-time PCR (qRT-PCR)
on lymphoblastoid cell lines (LCLs) from members of these
families and a number of cancer cell lines to assess the role of
BCoR-L1 expression in cancer and cancer families. We
assessed BCoR-L1 expression in LCLs from breast cancer
cases to determine whether BCoR-L1 expression was altered
in familial breast cancer cases and, if so, whether this was
associated with the presence of genetic variation. Analysis of
X inactivation status of BCoR-L1 was also undertaken in order
to assess the likely mode of inheritance of BCoR-L1 as a can-
didate tumour suppressor gene.

Materials and methods
X inactivation status analysis
X inactivation status was assessed by comparison of BCoR-
L1 mRNA expression with human-specific primers (forward:
CATATGATGTGACGGAATCTC; reverse: CCCTGGACTTT-
GTTGGGCA) in mouse-human or hamster-human hybrid cell
lines containing a human active X chromosome (AHA-11aB1,
A23-1aC1I5, t60-12, GM06318D, CHO-01416-M) or a
human inactive X chromosome (LT23-1E2, t48-1a-1Daz4a,
t11-4Aaz5, t75-2maz34-1a, t86-B1maz1b-3a, X8-6T2S1,
CHO-01416-07). Comparison of expression levels between
the two groups of cell lines (containing an inactive versus inac-
tive human X chromosome) was used to establish whether
BCoR-L1 is subject to X inactivation.

Subjects
Multiple-case breast cancer families were ascertained through
the Kathleen Cuningham Foundation Consortium for Research
into Familial Breast Cancer (kConFab) [22]. Inclusion criteria
for all families in this study required that the family be classified
as category 3 (high-risk) according to the National Breast
Cancer Centre guidelines [23] and that the family not possess
any known mutations in the BRCA1 or BRCA2 genes
(BRCAX) at the time of initiation of the study. Ethics approvals
were obtained from the ethics committees of the Peter Mac-
Callum Cancer Institute (East Melbourne, Victoria, Australia)
and the Queensland Institute of Medical Research (Brisbane,
Queensland, Australia), and all subjects gave written informed
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consent. Male breast cancer families selected for study (n =
21) all contained one or more male breast cancer cases occur-
ring on the same side of the family as at least three female
breast cancer cases. A total of 11 male breast cancer cases
and 16 female index cases (the youngest breast cancer case
in the family from which biospecimens were available) were
screened from these families. Prostate/female breast cancer
families (n = 12) were chosen to contain at least one 'early-
onset' prostate cancer case (cancer diagnosed at not more
than 60 years of age) on the same side of the family as three
or more female breast cancer cases. A total of 2 prostate can-
cer cases and 12 index female breast cancer cases were ana-
lysed from these families. Pedigrees were examined to ensure
the absence of male-to-male transmission of the disease in
these families because this would imply involvement of an
autosomal gene. Additionally, families with female breast can-
cer only (n = 7) were selected for analysis because they dem-
onstrated haplotype sharing in the same chromosomal region
as BCoR-L1 (DXS1001, DXS1047, and DXS1227; LOD
[logarithm of the odds] score greater than 0.5; data not
shown) and are referred to as BCoR-L1 haplotype sharing
families. Two BCoR-L1 variants were found in one family and
were then genotyped in all family members from which
biospecimens were available (n = 12). Mutation screening in
the kConFab cohort during the course of the study subse-
quently identified BRCA2 mutation carriers in two male breast
cancer families. Control subjects (46 females and 55 males)
without cancer or a family history of cancer included subjects
ascertained via the Queensland Blood Bank and a group of
geriatric controls (average age of 80 years).

Screening for BCoR-L1 variation
BCoR-L1 is expressed in two isoforms. The most common iso-
form is 1,711 amino acids in size and lacks exon 9, but the full-
length protein (1,785 amino acids long) is derived from the
alternative transcript. This study screened the entire coding
region of the BCoR-L1 gene, including exon 9. Primers
encompassing the 13 coding exons of BCoR-L1 (and sur-
rounding intronic regions; GenBank: exons 2 to 8: Z82208;
exons 9 to 14: AL136450) were designed using Primer3 [24]
(Table 1). Exon 4 was too large to be amplified at an optimal
size for DHPLC analysis and was therefore analysed with 10
overlapping polymerase chain reaction (PCR) fragments.
'Standard' PCR reactions were carried out in a 20-μl mixture
containing 15 ng of genomic DNA, and a final concentration of
20 pmol of each primer, 200 μM each of dATP, dCTP, dGTP,
and dTTP (Promega Corporation, Madison, WI, USA), 1.5 mM
MgCl2, 1× PCR buffer, and 1 U AmpliTaq Gold polymerase
(PE Applied Biosystems, Foster City, CA, USA). Any variation
to the reaction is detailed in Table 1, along with a description
of 'touchdown' PCR amplification conditions. All products
(and H2O controls) were visualised on a 1.5% agarose gel.
Male samples were mixed with sequence-confirmed wild-type
female PCR product (2:1) to encourage heteroduplexes to
form for successful DHPLC analysis. Samples were denatured

by heating to 95°C for 5 minutes and cooling to 60°C over a
period of 30 minutes and then analysed on a Varian Helix
DHPLC system (Varian, Inc., Palo Alto, CA, USA) at the rec-
ommended melt temperature(s) as determined by the Stanford
DHPLC Melt program [25] (Table 1). Analysis of results was
carried out using Star Workstation Reviewer software (version
5, Varian) and any aberrant or shifted profiles were reamplified
for confirmation of the aberrant profile by repeat DHPLC
before being sequenced using the Big-Dye (version 3.1)
sequencing chemistry and PE Applied Biosystems 377
sequencer.

Loss of heterozygosity analysis
LOH analysis was carried out on tumour blocks from the
BCoR-L1 haplotype sharing family carrying the exon 4
c.516T>C variant, because genotyping analysis revealed that
the variant segregated with breast cancer. Macrodissected
tumour and adjacent cancer-uninvolved tissue DNA was
extracted from tumour blocks by means of a modified version
of the method of Levi and colleagues [26], and 2 μl of each
DNA (plus 20 ng of lymphocyte-derived germline DNA from
the same subject) was then added to separate 20-μl PCR
reactions, as detailed above. Primers used were (forward)
TCAACACCCAAATGAGCAAA and (reverse) GAACA-
GAGTGGGGCACAGAG to give a product of 242 base
pairs. 'Touchdown' PCR was used with an annealing temper-
ature of 50°C. PCR products were then purified (Qiagen Inc.,
Valencia, CA, USA) and sequenced. LOH was evaluated by
scoring the absence of the allele in the sequencing trace of the
tumour, compared to matching germline DNA.

BCoR-L1 expression analysis
All LCLs and normal and cancer cell lines were grown in RPMI
1640 media with 10% fetal calf serum and 1% penicillin/strep-
tomycin. Cell lines used are detailed in Figure 1a. RNA was
extracted from LCLs and cell lines using TriReagent (Sigma-
Aldrich, St. Louis, MO, USA) according to the manufacturer's
instructions, and 1 μg of each sample was placed in a reverse
transcription-PCR reaction using Superscript III RNAse H-

Reverse Transcriptase as directed by the manufacturer (Invit-
rogen Corporation, Carlsbad, CA, USA). qRT-PCR was then
carried out in a 15 μl reaction containing a final volume of 20
ng of cDNA, 20 pmol of each primer, and 7.5 μl of Platinum
SYBR Green qPCR Supermix UDG (Invitrogen Corporation).
Primer sequences used are detailed in Table 2. qRT-PCR con-
ditions were 50°C for 2 minutes and 95°C for 2 minutes, 40
cycles of 95°C for 20 seconds, 60°C for 15 seconds, and
72°C for 20 seconds (acquiring) on a Rotor-Gene RG-3000
Real-Time PCR machine (Corbett Research Australia, Mort-
lake, New South Wales, Australia). All samples were run in
duplicate and were repeated if profiles did not replicate
according to Rotor-Gene analysis software (version 5).
Accordingly, the maximum standard deviation allowed for a
pair of duplicates ('Rep. Ct Std. Dev' in analysis software) was
low (≤0.2). Expression levels were presented as the mean of
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two duplicates, normalised to expression of either GAPDH (all
samples) or DIDO1 (death inducer-obliterator 1) (LCLs only).
Expression levels of different groups were compared using the
Student t test (two-tailed).

Assessment of expression controls for lymphoblastoid 
cell lines
RT-PCR expression controls are typically chosen for their sta-
bility of expression not only during various phases of the cell
cycle, but also between different tissue types. However, it is
well known that these characteristics are very difficult to
obtain. It has been reported that widely accepted expression
controls such as β-actin and GAPDH show unacceptable var-
iation in expression in a large number of tissues and are there-
fore not ideal controls [27]. We sought to find a suitable
expression control for analysis of expression in LCLs and com-
pared this with two widely used expression controls, GAPDH

and ubiquitin C (UBC). Cheung and colleagues [28] used
microarray analysis to establish the variability of expression of
5,184 genes in LCLs taken from random individuals. We eval-
uated the 100 least variably expressed genes for suitability as
an LCL expression control for our project via a PubMed [29]
search of the literature to identify the genes that (a) had not
been reported to be associated with cancer of any kind and (b)
were not in a region of LOH or linkage to any cancer. DIDO1
was chosen according to these criteria.

Results and Discussion
BCoR-L1 was selected as an interesting breast cancer candi-
date gene for a number of reasons. BCoR-L1 interacts with
the important breast cancer susceptibility gene product,
BRCA1, and there is the possibility that BCoR-L1 is involved,
with BRCA1, in critical DNA repair and cell growth pathways.
Indeed, mutations in repressor proteins have been implicated

Table 1

BCOR-L1 polymerase chain reaction conditions

Exon PCR
fragment

Forward primer Reverse primer PCR conditions Annealing
temperaturea

(°C)

Size
(bp)

DHPLC
temperature

(°C)

2 2 GGCTGGCTGCTTTAACATTC CTCCCCAGGCCCTATTGTAT 2 U Taq, 40 pmol primers, 0.5 M 
betaine

54 425 62

3 3 AGGTGGTGTTGGCTCAAATC CAACTCGACCAACCAGGTCT 40 pmol primers 54 404 62

4 4a TGTGCATGCTATCCTGTCGT GCTGGCAGAGGACTGAAGTT 40 pmol primers 54 450 62

4 4b GAACTGGAGTCCCTGTGGAG GAGGGTGGGGGTAGAAGGT 2 U Taq, 1 mM MgCl2, 1 M betaine 54 578 63

4 4c GTCCCCACTCCGGTTCTG CAGGGAGCGTAAGAGTGGAG Standard 54 442 63

4 4d TGGTATATATCCCGCCTCCA GTCCCTTCTGTTTGCTGCTC 40 pmol primers 54 436 57, 62

4 4e CTTCCAACTCCACAGCCTCT AATGGTGCTGATCAGTGCAG 2 mM MgCl2, 0.5 M betaine 58 459 62

4 4f CTCGCCCTTTGTCATCTTTC GCTGGTAGGTTTCCCATTGA 2 mM MgCl2 54 424 62

4 4g GACAGCCAAGCACAGTGAAA GCTGAGGGTCAAGAGGACAG Standard 54 452 62

4 4h CTCCTTCGTTCCAGAGCAGG CCAGGACCAGCTCATGGGAC Standard 59 314 61

4 4i AGAGAGCCACCTCTGCTCTG ACCCCTACGCTTTCCTGTTT Standard 54 435 62

4 4j AAGGTGGATGGTGATGTGGT GAGGGGACAGCAGGTCATTA Standard 54 457 62

5 5 GCAGCTCATGCCTCTAGGTC ATCCTTGCTCGCTCACCTTA Standard 54 446 62

6 6 GCAAAAGCGACCAAACTCTC AATTCCCAACTCGACACCTG 2 U Taq 56 423 60

7 7 TCCTCTGTACATCCCATCCAC GTAGAGATGCCCGAGGGTTC 2 mM MgCl2 63 483 62

8 8 AGGCGTTGCTTTTCTGTGTT CGCCACACACACCTTCTACA 2 mM MgCl2 57 332 60

9 9 ATGACCCTGGTGGATGGATA GGTTCAAGCACCAGAAGAGC Standard 62 378 61

10 10 TGGGCAACAGAGTGAGACTG GCAGGCAAGGTCTTTTGAGT Standard 54 488 62

11 11 CAGGTGGTTCCCTTGTCCTA GAGCTGTTCAAGGTGGAAGG Standard 54 399 61

12 12 CTTCTCCCAATTCCCTTAGCC AAAGCCAGGGAGAAGAAAGG 0.5 M betaine 54 454 60

13 13 CCCCTATATGCTCCCCTTACA TTGCCAGGTCTTCACTTCCT Standard 54 273 60

14 14 TTCCTCCAGCCTCCTTCAAT CCCGGGACCTCTTGTCCT 40 pmol primers 54 595 62

a'Touchdown' polymerase chain reaction (PCR) amplification conditions were as follows: denaturation at 94°C for 10 minutes, followed by two 
cycles of 94°C for 30 seconds, 30 seconds at the fragment annealing temperature (TA) + 6°C, and 72°C for 30 seconds. The conditions remained 
the same for the rest of the PCR except for the TA, which consisted of two cycles at (TA + 4°C), then two cycles at (TA + 2°C), and (finally) 35 
cycles at the TA. A final extension step was conducted at 72°C for 7 minutes. bp, base pairs; DHPLC, denaturing high-performance liquid 
chromatography.
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in several diseases, including cancer [30]. For example, func-
tional mutations in the transcriptional repressor Rb gene result
in dysregulation of cell cycle control [31]. In addition, the
BCoR-L1 gene is located at Xq26.1, a region that exhibits
LOH in cancers, including breast cancer, and there is some
evidence that BCoR-L1 mRNA expression is deregulated in
breast cancer. Skewed X inactivation has been reported in
breast and ovarian cancer subjects, indicating the possible
presence of an X-linked cancer predisposition gene.

X inactivation status analysis
Analysis of the hybrid cell lines showed that BCoR-L1 was not
expressed in 4/5 hybrid cell lines containing an inactive X
chromosome and was expressed at very low levels in the fifth
cell line t48-1a-1Daz4a, using hybrids containing an active X
chromosome as reference. These results indicate that BCoR-
L1 is subject to X chromosome inactivation in humans, which
is in agreement with the study of Carrel and Willard [18], who
showed that the proximal UTP14A gene was expressed in 3/
9 hybrids whereas BCOR-L1 (FLJ11362) was silent in all 9.
As some of the hybrids in this study overlap, BCOR-L1 is
silenced in 11/11 hybrids studied to date. The fact that BCoR-
L1 is subject to X inactivation suggests that only a single muta-
tional event in the BCoR-L1 gene would be required to initiate
tumourigenesis.

Variation in the BCoR-L1 gene
DHPLC analysis of the coding region of BCoR-L1 in 48 mem-
bers of 38 high-risk BRCAX breast cancer families revealed
only four different sequence variations (Table 3). A nucleotide
variation in exon 4 (c.516T>C; p.N172N) was found in one
breast cancer family known to share a haplotype at the BCoR-
L1 locus. This variant was carried primarily by breast cancer
cases from this family (Figure 2). However, this c.516T>C
nucleotide substitution is not likely to be functional because it
does not result in an amino acid change and is not predicted
by in silico modelling to have any effect on mRNA structure
(MFOLD [32]) and the wild-type T allele is not conserved in
either mouse or rat (PipMaker [33]). Investigation of exonic
splice enhancer (ESE) sites by means of ESEfinder (version
2.0) [34] revealed that the variant allele produces an SC35
site (of value 2.455), but this score is very close to the SC35
threshold of 2.383. Similar analysis using Rescue ESE [35]

revealed no change. Additionally, analysis of codon usage of
the AAT codon (wild-type) in the human genome versus the
AAC codon (variant) showed that the two codons are used at
similar frequencies (16.8 versus 19.1/1,000 codons) [36].
Finally, LOH analysis of the c.516T>C variant gave no evi-
dence of the change being involved in tumourigenesis. LOH
analysis of tumour blocks and germline DNA from all four
breast cancer cases in this family revealed either loss of the
variant allele or no LOH (data not shown), indicating that this
variant is unlikely to be pathogenic.

The intron 5 c.3608-156C>T variant was found only in mem-
bers of the family who carried the exon 4 synonymous variant
p.N172N (Figure 2). Due to its deeply intronic location,
c.3608-156C>T is not predicted to have any functional effect.
SpliceSiteFinder did not predict any changes to splicing as a
result of this nucleotide substitution [37]. Furthermore, mRNA
expression analysis (see below) of BCoR-L1 in two of the var-
iant-carrying breast cancer cases and one wild-type non-
breast cancer subject from this family revealed no evidence for
consistent differences in expression in LCLs. Relative to the
unaffected wild-type family control, one variant carrier dis-
played increased expression and the other displayed
decreased expression (Figure 3a,b; subjects marked with #).

The two other variants detected in and around the BCoR-L1
coding region in this study, c.625G>A (p.G209S) and
c.5075+21C>T, were found in similar frequencies in the con-
trol sample. Similarly, there were no major differences
between groups when the study sample was divided into male
breast, prostate, or BCoR-L1 haplotype sharing families.
Although the exon 4 p.G209S variant is a missense amino
acid substitution, this change is predicted by SIFT (Sorting
Intolerant From Tolerant) to be 'tolerated' [38]. p.G209S is
also located in a region of BCoR-L1 that is not thought to be
involved in BRCA1 interaction or transcription repression [10].
Additionally, qRT-PCR analysis of BCoR-L1 expression in
breast cancer cases carrying the p.G209S and
c.5075+21C>T variants showed no differences when com-
pared with controls (Figure 3c,d), with overlapping standard
deviations for expression. Furthermore, both variants were
present in individuals found to carry pathogenic BRCA2 muta-
tions during the course of the study.

Table 2

Quantitative real-time polymerase chain reaction primer sequences

Gene GenBank ID Forward primer Reverse primer

BCoR-L1 AL136450 GACCGACATCCTGAACATCC ATAGGACAGCAGGAGCCAGA

GAPDH NT_009759 CTGCACCACCAACTGCTTAG GTCTTCTGGGTGGCAGTGAT

UBC NM_021009 CTTGTTTGTGGATCGCTGTG GTGTCACTGGGCTCAACCTC

DIDO1 NT_011333 GCCTGAATGTGAGGGTTACG ACAATCGCCATGAAACCATT

BCoR-L1, BCL6 corepressor-like 1; DIDO1, death inducer-obliterator 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; UBC, ubiquitin 
C.
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Overall, we detected very little variation in the coding region
(and surrounding intronic region) of the BCoR-L1 gene in our
population of familial cancer cases. The low level of variation
detected in the BCoR-L1 gene is consistent with reports that
the X chromosome carries very little variation when compared
with autosomal chromosomes [39-41].

BCoR-L1 expression analysis
To further investigate the role of BCoR-L1 in familial breast
cancer and male cancers, we undertook qRT-PCR expression
analysis on LCLs from subjects previously screened for
BCoR-L1 coding region variation. Alteration of BCoR-L1
expression in LCLs from breast cancer-affected family mem-
bers may indicate the presence of a regulatory mutation in a
noncoding region of the gene. In addition, since various
HDACs are aberrantly expressed in a number of cancers sus-
ceptible to treatment using HDAC inhibitors [42], including
breast cancer [43], we speculated that BCoR-L1, given its
association with HDACs, might also be abnormally expressed
in breast cancer cases. We thus assessed BCoR-L1 expres-
sion in a range of breast, ovarian, and prostate cancer lines.

DIDO1 expression in lymphoblastoid cell lines and cell 
lines
To investigate the suitability of DIDO1 as an LCL expression
control, we analysed expression of DIDO1, GAPDH, and
UBC in all LCLs and cell lines tested (Figure 4a,b).
Interestingly, we found that DIDO1 expression varies consid-
erably less in LCLs than GAPDH or UBC, with GAPDH and
UBC showing similar levels of expression variation (Figure 4a).
The interquartile range for DIDO1 was 2.5-fold and 2.7-fold
less than those for UBC and GAPDH, respectively. In cancer
cell lines, all three expression control genes showed large
ranges of expression levels across lines, with GAPDH per-
haps showing the least variation (Figure 4b). Therefore,
DIDO1 is an improved expression control for LCLs but has
variability similar to the commonly used GAPDH control in nor-
mal and cancer cell lines.

BCoR-L1 expression in lymphoblastoid cell lines from 
breast cancer families
Twenty-nine LCLs from breast cancer cases and their family
members (23 families in total, including 14 with male breast
cancer, 7 with prostate cancer, and 2 BCoR-L1 haplotype
sharing families) were analysed for changes in BCoR-L1
expression when compared with LCLs from 6 healthy controls
(Figure 3a–d). Although expression of BCoR-L1 appeared to
be greatly variable, there were no apparent differences in
expression levels between breast cancer cases and controls,
nor were there any differences between groups when segre-
gated by family cancer type (that is, male breast, prostate, and
so on). Likewise, there was no indication of any association
between BCoR-L1 genotype and expression. Skewed X chro-
mosome inactivation data were available for a limited number
of samples (n = 8). However, skewing did not correlate with

Figure 1

BCoR-L1 expression in cancer and normal cell linesBCoR-L1 expression in cancer and normal cell lines. (a) BCoR-L1 
expression in cancer and normal cell lines. (b) Mean and standard devi-
ation of BCoR-L1 expression in cancer and normal cell lines. Normal 
cell lines: ovarian – OSE 64/96, HOSE 17.1; breast – SVCT, 
Bre80hTERT; prostate – RWPE1. BCoR-L1, BCL6 corepressor-like 1; 
GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Table 3

Variation detected in the BCoR-L1 gene

Gene
region

Polymerase
chain reaction

fragment

Nucleotide
change

Amino
acid

change

Number
of total

heterozygousa

cases

Male
breast
cancer
families

Prostate
cancer
families

BCoR-L1
haplotype
sharing
families

Number of
heterozygous

controls

Previously
reportedb

Exon 4 4a c.516T>C p.N172N 2/48 4.2% - - 2/9 22.2% 0/101 0% No

Exon 4 4b c.625G>A p.G209S 6/48 12.5% 2/29c 6.9% 3/15 20.0% 2/9 22.2% 18/73 24.6% Yes

Intron 5 6 c.3608-156C>T - 2/48 4.2% - - 2/9 22.2% 0/99 0% No

Intron 13 13 c.5075+21C>T - 10/48 20.8% 5/29c 17.2% 3/15 20.0% 2/9 22.2% 26/102 25.5% Yes

Three samples were included in both the male breast cancer family and prostate cancer family categories because they fitted both criteria. Two 
samples were similarly included in both male breast cancer family and BCoR-L1 haplotype sharing family categories. aMales carrying a variant are 
homozygous. bReported in dbSNP or SNPper databases. cOne of the variant-carrying subjects possesses a mutation in BRCA2. BCoR-L1, 
BCL6 corepressor-like 1.

Figure 2

BCoR-L1 haplotype sharing family pedigree detailing carriers of the c.516T>C and c.3608-156C>T variantsBCoR-L1 haplotype sharing family pedigree detailing carriers of the c.516T>C and c.3608-156C>T variants.  = breast cancer-positive; 

c.516T>C and c.3608-156C>T-positive.  = breast cancer-negative; c.516T>C and c.3608-156C>T-positive. � = breast cancer-negative; 
c.516T>C and c.3608-156C>T-negative. Circle = female, square = male; subjects marked by small shapes were not available for genotyping. 
BCoR-L1, BCL6 corepressor-like 1.
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BCoR-L1 expression or genotype (data not shown). Results
correlating expression with sample source or sample
genotype were similar using GAPDH (Figure 3a,c) or DIDO1
(Figure 3b,d) normalisation, although the decreased variability
observed in normal controls for DIDO1 normalisation sup-
ported our earlier observations that DIDO1 is an improved
control for LCL expression analysis. The standard deviation of
expression in control LCLs was approximately 20% less for
DIDO1 compared with GAPDH. Overall, it appears that
BCoR-L1 expression is not altered in familial breast cancer
cases, even for subgroups defined by male cancer type, and it
is unlikely that there is any variation in the BCoR-L1 gene
(detected or otherwise) which has a profound effect on
expression.

BCoR-L1 expression in cancer and normal cell lines
To assess a possible role for BCoR-L1 in tumourigenesis, we
also analysed BCoR-L1 expression in various ovarian, breast,
and prostate cancer and normal cell lines (Figure 1a,b). Most
normal and cancer cell lines exhibited increased expression
levels compared with LCLs. Once again, it was observed that
BCoR-L1 expression is highly variable in both cancer and nor-
mal cell lines, with up to 13-fold differences in expression

observed. There were no significant differences between the
mean BCoR-L1 expression in normal cell lines compared with
cancer cell lines, but individual ovarian and breast cancer cell
lines showed significantly increased expression compared
with the mean expression in normal cell lines. Markedly ele-
vated levels of BCoR-L1 (P < 0.05) were observed for a total
of 4/10 ovarian cancer cell lines (OVCAR3, SKOV3, A2780,
27/87; 4-fold to 13-fold upregulation compared with the
HOSE17.1 normal ovarian epithelial control) and 2/13 breast
cancer cell lines (BT20 and T47D; 3-fold and 4-fold upregula-
tion compared with SVCT normal breast control). This was
interesting, considering that skewed X inactivation has been
reported in ovarian cancer cases [19]. It would also seem to
suggest that dysregulation of expression in the form of upreg-
ulation may play a role in tumourigenesis. However, a study
using a BCoR-L1-containing Affymetrix microarray (Affymetrix,
Santa Clara, CA, USA) did not provide any evidence for
BCoR-L1 deregulation in ovarian cancers [44]. Comparison of
gene expression between 37 advanced-stage serous ovarian
carcinomas and normal ovarian surface epithelium cytobrush-
ings revealed that BCoR-L1 was not one of 1,191 genes that
were significantly differentially regulated (defined as greater
than or equal to 1.5-fold change in expression). This contrasts

Figure 3

BCoR-L1 expression in lymphoblastoid cell lines (LCLs) from breast cancer familiesBCoR-L1 expression in lymphoblastoid cell lines (LCLs) from breast cancer families. (a) BCoR-L1 expression in LCLs from breast cancer fam-
ilies (normalised to GAPDH). (b) BCoR-L1 expression in LCLs from breast cancer families (normalised to DIDO-1). (c) Mean and standard devia-
tion of BCoR-L1 expression in samples, grouped according to type of family cancer or BCoR-L1 genotype (normalised to GAPDH). (d) Mean and 
standard deviation of BCoR-L1 expression in samples, grouped according to type of family cancer or BCoR-L1 genotype (normalised to DIDO-1). 
*Subject also carries a BRCA2 mutation. #Subjects from the same BCoR-L1 haplotype sharing family. BCoR-L1, BCL6 corepressor-like 1; DIDO-
1, death inducer-obliterator 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Figure 4

Variation in control gene expressionVariation in control gene expression. (a) Variation in control gene expression in lymphoblastoid cell lines. (b) Variation in control gene expression 
in cell lines. DIDO-1, death inducer-obliterator 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; UBC, ubiquitin C.
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with the 4- to 13-fold increased expression we observed for
specific cancer lines compared with normal ovarian epithelial
cell lines.

There was no evidence that the hormone receptor status of
each cell line correlated with these BCoR-L1 expression dif-
ferences because the highly estrogen receptor (ER)- and pro-
gesterone receptor (PR)-positive breast cancer cell line T47D
showed similar BCoR-L1 expression to BT20, a breast cancer
cell line that does not express ER or PR [45]. In addition, the
ovarian cancer cell lines OVCAR3 (ER-positive) and SKOV3
(ER-negative) expressed similar levels of BCoR-L1 [46].
Investigation of the X chromosome karyotype of these ovarian
cancer cell lines did reveal a possible relationship with BCoR-
L1 expression. Karyotype data were available for OVCAR3,
SKOV3, OVCAR5, and OVCAR8 [47], with the BCoR-L1-
overexpressing lines OVCAR3 and SKOV3 found to possess
three copies of Xq and four X chromosomes, respectively.
Conversely, OVCAR5 and OVCAR8 each possess only one X
chromosome and express normal levels of BCoR-L1. Informa-
tion on the X chromosome karyotype of breast cancer cell lines
was limited, but there was no indication of an association
between karyotype and BCoR-L1 expression [47,48]. The
finding that BCoR-L1 expression tends to correlate with
supernumary X chromosomes suggests that this overexpres-
sion probably does not contribute to carcinogenesis but may
occur as a result of carcinogenesis. Although it is unknown
whether the superfluous X chromosomes in OVCAR3 and
SKOV3 are active, it has been reported that ovarian (and
breast) tumours can possess multiple active X chromosomes
[48-51].

Conclusion
The aim of the present study was to attempt to elucidate a role
for BCoR-L1 as a high-risk breast cancer predisposition gene
by mutation screening of well-characterised non-BRCA1/2
familial breast cancer subjects who were selected to maximise
the probability of identifying a mutation. We detected minimal
variation in the coding region of BCoR-L1, which may imply
the importance of maintaining the structural integrity of the
BCoR-L1 protein. It is also unlikely that noncoding region var-
iation in the BCoR-L1 gene is involved in breast cancer pre-
disposition as we did not detect any significant changes in
expression between cancer cases and cell lines and controls.
The absence of pathogenic coding mutations or expression
deregulation in this set of familial cases indicates that BCoR-
L1 is extremely unlikely to be a major high-risk familial breast
cancer predisposition gene. However, it is still possible that
BCoR-L1 could be involved in breast cancer predisposition as
a moderate- or low-penetrance risk gene, as has been found
with CHEK2 [6], BRIP1 [7], and PALB2 [8,9] in large studies
of BRCAX cases and controls. The involvement of BCoR-L1
in ovarian cancer may also be worthy of investigation, and fur-
ther functional analysis of the BCoR-L1 protein will help to elu-

cidate the involvement of BCoR-L1 in various essential
pathways.
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