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Abstract

Introduction There is growing evidence that the Wilms' tumor 1
suppressor gene (WT1) behaves as an oncogene in some forms
of breast cancer. Previous studies have demonstrated that the
N-terminal domain of WT1 can act as a dominant negative
through self-association. In the studies presented here we have
explored the potential for the zinc finger domain (ZF) of WT1 to
also have dominant-negative effects, and thus further our
understanding of this protein.

Methods Using full-length and ZF-only forms of WT1 we
assessed their effect on the WT1 and c-myc promoter using
luciferase and chromatin immunoprecipitation assays. The gene
expression levels were determined by quantitative real-time RT-
PCR, northern blot and western blot. We also assessed the
effect of the ZF-only form on the growth of breast cancer cell
lines in culture.

Results Transfection with WT1-ZF plasmids resulted in a
stronger inhibition of WT1 promoter than full-length WT1 in
breast cancer cells. The WT1-ZF form lacking the lysine—

threonine—serine (KTS) insert (ZF - KTS) can bind to the majority
of WT1 consensus sites throughout the WT1 promoter region,
while the ZF containing the insert (ZF + KTS) form only binds to
sites in the proximal promoter. The abundances of endogenous
WT1 mRNA and protein were markedly decreased following the
stable expression of ZF - KTS in breast cancer cells. The
expressions of WT1 target genes, including c-myc, Bcl-2,
amphiregulin and TERT, were similarly suppressed by ZF - KTS.
Moreover, WT1-ZF - KTS abrogated the transcriptional
activation of c-myc mediated by all four predominant isoforms of
WT1 (including or lacking alternatively spliced exons 6 and 9).
Finally, WT1-ZF - KTS inhibited colony formation and cell
division, but induced apoptosis in MCF-7 cells.

Conclusion Our observations strongly argue that the WT1-ZF
plasmid behaves as a dominant-negative regulator of the
endogenous WT1 in breast cancer cells. The inhibition on
proliferation of breast cancer cells by WT1-ZF - KTS provides
a potential candidate of gene therapy for breast cancer.

Introduction

The Wilms' tumor 1 suppressor gene (WT1) was first identi-
fied as a mutated gene in some cases of sporadic Wilms'
tumor, a malignancy of the kidney affecting pluripotent embry-
onic renal precursor cells [1]. As the gene is occasionally
mutated in the sporadic form of Wilms' tumor, it was assumed
that WT1 was a tumor suppressor and that the mutations

abrogated that function [2,3]. More recent data showing that
wild-type WT1 is expressed in the majority of Wilms' tumors,
and that the wild-type form is expressed in a variety of cancers
including breast cancer, renal cell cancer, ovarian cancer,
mesothelioma cancer, lung cancer, melanoma and acute
leukemia, however, have implicated WT1 as an oncogene in
those tumors [4-9]. This implication is strengthened by gene

7-AAD = 7-amino-actinomycin D; ALDH = aldehyde dehydrogenase 1 family member A2; AREG = amphregulin; BASP1 = brain acid soluble protein
1; CFSE = carboxy-fluorescein diacetate succinimidyl ester; HA = heme agglutinin; KTS = lysine—threonine-serine; PCR = polymerase chain reac-
tion; RT = reverse transcriptase; SDS = sodium dodecyl sulfate; sShRNA =short hairpin; RNA; TERT = human telomerase reverse transcriptase; WT1
= Wilms' tumor 1 suppressor gene; ZF = zinc finger domain; ZF-KTS = zinc finger domain protein lacking lysine-threonine—serine of WT1; ZF+KTS

= zinc finger domain protein with lysine—threonine—serine of WT1
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transfer and gene inhibition studies. High levels of WT1 are
also associated with poor prognosis in both breast cancer and
leukemia [10-12].

WT1 is a 449-amino-acid protein (molecular weight 52~54
kDa), with a glutamine and proline-rich N-terminal domain
involved in transcriptional repression and activation, and with
a C-terminal domain composed of four Cys—Cys—His—His-
type zinc finger domains (ZFs) — which are involved in DNA
and RNA binding and protein—protein interactions [13,14].
Although there are multiple forms of WT1, there are four main
ones designated isoform A, isoform B, isoform C and isoform
D. These isoforms are generated through two alternative splic-
ing events: one involves the 17 amino acids of exon 5 just
ahead of the ZF; the other alternative splicing event occurs in
exon 9 and results in the insertion of three amino acids, lysine—
threonine—serine (KTS), between the third and fourth ZF [15].
The WT1 - KTS form, lacking the KTS insert, has been shown
to bind GC-rich DNA sequences such as the WTE site (5™
GCGTGGGAGT-3") [16], the more degenerate 5'-GNGNG-
GGNG-3' motif [17], or the (TCC),, motif [18]. There is consid-
erable overlap between the known targets of WT1 and those
of early growth response protein 1; this is in keeping with the
high degree of homology between the ZF of WT1 and early
growth response protein 1 [13].

Several transcription factors have been shown to regulate the
WT1 promoter using reporter assays, including PAX2 [19,20],
PAX8 [21,22], early growth response protein 1 [23] and SP1
[24]. Of particular note is the autorepression of the mouse
WT1 promoter by full-length WT1 [25]. These latter experi-
ments were performed in HEK-293 cells. In addition, a number
of other genes have been shown to be direct targets of WT1
[17]. Among these genes are epidermal growth factor recep-
tor, c-myc, and Bcl-2. For many of these genes it has been
suggested that WT1 behaves as a repressor of transcription.
Our studies and those of other workers, however, have found
that WT1 behaving as a repressor or as an activator is
dependent upon the cellular context [26,27]. For example, in
Hela cells, WT1 inhibits the transactivation of c-myc — while in
the breast cancer cell line MDA468, WT1 activates c-myc
expression. Regardless of whether WT1 is behaving as a
repressor of or as an activator of gene expression, this activity
is due to the direct binding of the ZF of WT1 to DNA. In the
current study we have explored the ability of WT1-ZF to act
as a dominant negative. In approaching this goal we first dem-
onstrate that WT1 itself is regulated by ZF domain of WT1,
and that the endogenous expression of WT1 can be inhibited
by WT1-ZF. We then go on to demonstrate in WT1-express-
ing breast cancer cells that WT1-ZF behaves as a dominant
negative and inhibits cell growth and survival.
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Materials and methods
Cell culture

The human breast cancer lines MCF-7 (ATCC catalogue
number HTB22), MDA468 (ATCC catalogue number
HTB132) and MDA231 (ATCC catalogue number HTB26)
were routinely subcultured in minimal Eagle's medium supple-
mented with 10% heat-inactivated fetal bovine serum and anti-
biotics in a humidified atmosphere of 5% CO, at 37°C. The
breast cancer cells overexpressing WT1 were cultured in
media supplemented with 0.5 mg/ml G418.

Plasmids

The expression plasmids for the four full length murine WT1
isoforms (A, B, C, D), aminoterminal-only construct N-WT1
(amino acid residues 1-180), WT1-ZF - KTS or WT1-ZF +
KTS (amino acid residues 318-449), were constructed by
cloning the corresponding coding region into pcDNAg vector
(Invitrogen, Carlsbad, CA, USA). The plasmids for expression
of the GST/WT1-ZF - KTS and the GST/WT1-ZF + KTS
fusion proteins in Escherichia coli were generated by cloning
the fragments encoding the above WT1-ZF constructs into
Smal/EcoRI-digested pGEX2TK (Pharmacia, North Peapack,
NJ, USA), in frame with the GST domain.

To generate plasmid expressing WT1 shRNA, double-
stranded oligonucleotides were cloned into the Hind Ill/Bg/ |l
sites in pSuper vector (Oligoengine Inc., Seattle, WA, USA).
The WT1 shRNA sequence used is
gatccccTCAGGGTTACAGCACGGTCttcaagagaGACCGT-
GCTGTAACCCTGAttttigga (uppercase letters represent
WT1-specific sequence, and lowercase letters represent hair-
pin sequences).

The c-myc reporter constructs XNM/Luc and Xmut/Luc have
been previously described [27]. The promoter constructs for
human hW3/Luc (nucleotides -443 to +21) and mouse mW2/
Luc (nucleotides -502 to +21) were generated by PCR ampli-
fication of the corresponding promoter regions and cloning
into the Sacl/Xhol sites of the pGL2 enhancer vector
(Promega, Madison, WI, USA). Promoter constructs for
hW10/Luc (nucleotides -443 to +182) and mW9/Luc
(nucleotides -502 to +181) were cloned into the Kpnl/Bglll
sites of the pGL2 enhancer vector.

All constructs were verified by restriction enzyme digestion or
by sequencing.

Transfection and luciferase assays

Triplicate transfections in 60 mm plates were performed using
Lipofectamine (Invitrogen) and the following transfection mix:
1 ug luciferase reporter (pGL2 vectors as control), 0.1 pg B-
galactosidase internal control vector and 3 ug WT1 expres-
sion plasmid (pcDNA, containing no insert as control). After
48 hours the cells were washed twice with PBS and were har-
vested for luciferase and -galactosidase assays, which were



performed according to the manufacturer's protocols
(Promega). Promoter activation in cells transfected with pro-
moter constructs, relative to cells transfected with pGL2, was
calculated by dividing luciferase activities normalized to -
galactosidase expression between the two transfections. The
results of all assays are the average of at least three
experiments.

To obtain stable expression of WT1 proteins, cells were trans-
fected with expression constructs or the empty pcDNA4 vector
that contains a G418 resistance gene, and were then cultured
in selective medium containing 0.5 mg/ml G418 for at least 2
weeks. Several colonies from the transfected cell pool were
isolated and expanded. Overexpression of WT1 protein was
determined by western blotting.

Chromatin immunoprecipitation and PCR amplification
Chromatin immunoprecipitation reactions were performed
using the Chromatin Immunoprecipitation Assay Kit (Upstate
Biotech, Charlottesville, VA, USA) modified as follows.
Approximately 1 x 107 cells were cross-linked with 1% formal-
dehyde at 37°C for 15 minutes, and the cross-linking reaction
was terminated with 0.125 M glycine at room temperature for
10 minutes. Cells were washed in PBS, resuspended in 200
ul SDS lysis buffer (1% SDS, 10 mM ethylenediamine ter-
aacetic acid, 50 mM Tris—HCI, pH 8.1) and incubated on ice
for 15 minutes. Chromatin was sonicated on ice to an average
length of 500 bp using a Fisher Scientific Dismembranator
100 with 7 x 15 second pulses at a 4 W power output setting.
Cell debris was removed by centrifugation at 12,000 x g for
15 minutes at 4°C. The sheared chromatin was precleared
with salmon sperm DNA/protein A agarose for 30 minutes at
4°C and was subjected to immunoprecipitation with 2 pg
either anti-WT1 (C-19) (Santa Cruz Biotech, Santa Cruz, CA,
USA), anti-HA (Roche, Grenzacherstrasse, Basel, Switzer-
land) or anti-acetyl-histone H4 antibody (Upstate Biotech)
overnight at 4°C. A no-chromatin mock control and a preim-
mune serum control were prepared in parallel. One-tenth of
the supernatant obtained following immunoprecipitation with
preimmune serum sample was used as the chromatin input.
After incubated with the secondary antibody for the additional
1 hour at 4°C, followed by incubation with salmon sperm
DNA/protein A agarose for 30 minutes, the immunoprecipi-
tated chromatin complexes were washed five times according
to the manufacturer's protocol and were eluted with the elution
buffer (60 mM NaHCO,; and 1% SDS). Cross-links were
reversed with 0.3 M NaCl for 4 hours at 65°C, proteins were
digested with proteinase K for 2 hours at 45°C, and DNA was
extracted with phenol/chloroform, precipitated with ethanol
and resuspended in 30 pl water.

PCR reactions containing 3 pl of the above DNA preparation,
primers and Platinum Taq (Invitrogen) in a 50 pl final volume
was performed with the initial denaturation at 95°C for 4 min-
utes, followed by 35 PCR cycles (95°C for 45 seconds, 55°C
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for 30 seconds and 68°C for 1 minute) and a final extension at
72°C for 10 minutes. The sequences of the forward and
reverse primers for amplification of the endogenous human
WT1 promoter were: P1 forward, 5-GGTTGAAGAGGAG-
GGTGTCTC-3' and P1 reverse, 5-GCTTCCCAAAGCT-
CAAATAAG-3"; and P2 forward, 5'-
CAGCTGGGGTAAGGAGTTCAAG-3' and P2 reverse, 5'-
CAAGAGGAAGTCCAGGATCGC-3'. The sequences of
primers for human aldehyde dehydrogenase 1 family member
A2 (ALDH) promoter were: ALDH forward, 5'-CAATTTCATA-
CATAGGGAGACCAAG-3'; and ALDH reverse, 5'-TAG-
GCTATCTTGCAGAGCCAAA-3'. The specificity of the PCR
amplification reaction was determined by sequencing the cor-
rect-sized bands extracted from agarose gels.

Electrophoretic mobility shift assays

The purified GST fusion proteins (1 pg) were incubated with
40,000 cpm 32P-labeled WT1 binding site wild-type double-
stranded oligonucleotide and with 1 pg poly(dA—dT) in a
buffer containing 8% glycerol, 100 mM NaCl, 5 mM MgCl,, 5
mM dithiothreitol and 0.1 mg/ml phenylmethylsulphonyl fluo-
ride in a final volume of 20 pl for 15 minutes at room tempera-
ture. DNA-bound protein complexes were separated by
electrophoresis. The sequence of wild-type oligonucleotide
probe was 5'-
CGCTCCCCCACTTCCCGCCCTCCCTCCCACCTACTCAT-
TCACCCACCCACCCACCCAGAG-3'. The sequence of the
mutant probe was 5-CGATCATAGATTTCCATATATGAC-
TATTACCTACTCATTGAATAATGAGTATTATGAGAG-3'
(WT1 binding sites are boldfaced and underlined). These sites
were all changed in the oligonucleotide mutant probe.

Quantitative real-time RT-PCR

RNA was extracted with the RNeasy kit (Qiagen, Mississauga,
Ontario, Canada) and converted into cDNA with RT (Invitro-
gen). PCR reactions containing SYBR Green Master Mix
(Applied Biosystems, Foster City, CA, USA), 100 nM primer
and template cDNA in a 25 pl final volume were performed in
the ABI PRISM 7799 thermocycler (Applied Biosystems) with
the following parameters: an initial denaturation at 95°C for 10
minutes, followed by 40 PCR cycles (95°C for 15 seconds,
60°C for 60 seconds) with the continual measurement of
fluorescence.

The primer sequences for gene amplification were as follows.
GAPDH forward, 5'-GAAGGTGAAGGTCGGAGTC-3' and
GAPDH  reverse, 5-GAAGATGGTGATGGGATTTC-3';
hWT1 forward, 5-GAGAGCCAGCCCGCTATTC-3' and
hWT1 reverse, 5-CATGGGATCCTCATGCTTG-3'; mWT1
forward, 5'-TCAAGGACTGCGAGAGAAGG-3' and mWT1
reverse, 5-TGGTGTGGGTCTTCAGATGG-3'; c-myc for-
ward, 5-AGGCCCCCAAGGTAGTTATCC-3' and c-myc
reverse, 5-TTTCCGCAACAAGTCCTCTTC-3'; Bcl-2 for-
ward, 5'-CCTGTGGATGACTGAGTACCTGAAC-3' and Bcl-
2 reverse, 5-GGCCAAACTGAGCAGAGTCTTC-3";
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amphiregulin (AREG) forward, 5-GGTGGTGCT-
GTCGCTCTTG-3' and AREG reverse, 5-GGTCCCCA-
GAAAATGGTTCA-3'; TERT forward, -
GTCTTGCGGCTGAAGTGTCA-38' and TERT reverse, 5'-
TCCAAACTTGCTGATGAAATGG-3"; and brain acid soluble
protein 1 (BASP1) forward, 5'-GGCACCGCGCTAACTCA-3'
and BASP1 reverse, 5-TTGGCTTTCTCGTCGTTCAC-3'.

Specificity of the PCR amplification was demonstrated by no
amplification of the samples lacking a template, and by
sequencing of amplified templates. The calculation of relative
expression was performed as described by the manufacturer
(PE Applied Biosystems), using the comparative threshold
cycle normalized to GAPDH. Results are shown as the mean
* standard deviation from three independent experiments.

Northern blotting

Fifty micrograms of total cellular RNA was extracted using Tri-
zol, was fractionated on agarose—formaldehyde gels and was
transferred by capillary suction to nylon membranes. Blots
were prehybridized for 4 hours in hybridization buffer (0.5 M
sodium phosphate, pH 7.2,7% SDS, 1 mM ethylenediamine
tetraacetic acid, 1% bovine serum albumin) at 65°C. The
membrane was then incubated with 1 x 108 cpm 32P-WT1
cDNA probe per milliliter overnight in the same buffer, washed
three times with 1% SDS-containing phosphate buffer at
65°C, and was exposed to X-AR film for 24—48 hours. For the
B-actin RNA hybridization, the same membrane was reprobed
with 32P-labeled B-actin cDNA and was briefly exposed.

Western blotting

Two hundred micrograms of whole cell extracts was boiled in
Laemmli buffer, was separated on a 10% SDS-PAGE, and
was transferred to polyvinylidene difluoride membranes (Milli-
pore, Billerica, MA, USA). Membranes were then blocked in
PBS containing 8% milk and were immunoblotted with either
affinity-purified rabbit polyclonal anti WT1 (C-19) antibody
(Santa Cruz Biotech), which recognizes residues 431-449 of
WT1, or with rabbit anti-B-actin antibody (Sigma, Oakville,
Ontario, Canada). Immune complexes were detected by bind-
ing anti-rabbit IgG conjugated to horseradish peroxidase
(Santa Cruz Biotech) followed by reaction in the enhanced
chemiluminescence assay (Amersham Bioscience, Piscata-
way, NJ, USA) according to the manufacturer's
recommendations.

Colony assay

Cells were plated in 6 cm dishes at a density of 5 x 105 per
plate and were transfected with 2 g either control or expres-
sion plasmid. After 48 hours the cells were trypsinized and
plated into five 10-cm dishes for each transfectant. After cells
were selected in medium containing 0.5 mg/ml G418 for 2
weeks, the numbers of G418-resistant colonies were counted.
The assay results are the average of three individual
experiments.
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Cell division assay

MCF-7 cells (~2 x 106to 5 x 108) were transfected with 10
ng either control or expression plasmid per 10 cm plate and
cultured at 37°C for 48 hours. Following washing twice with
PBS, cells were labeled with 5 pM carboxy-fluorescein diace-
tate succinimidyl ester (CFSE) (Molecular Probes, Eugene,
OR, USA) at 37°C for 20 min. After the CFSE was washed
out, cells were selected in the medium containing 0.5 mg/ml
G418 for the indicated time. The CFSE-labeled transfectants
were then analyzed by a FACScan flow cytometer (Becton
Dickinson, Franklin Lakes, NJ, USA) using excitation at 488 nm
and the FL1 channel. At least 50,000 events were collected in
each final gated histogram.

The CFSE profiles were determined using Cell Quest software
(Becton Dickinson). The difference of average division num-
bers between the two kinds of cell populations was calculated
according to the following formula: N, - N,=(Ig A, - Ig A,)/Ig
2, where N, and N, are the average division numbers in faster-
growing and slower-growing cell populations, and A, and A,
are the mean fluorescence intensities of faster-growing and
slower-growing cell populations labeled with CFSE,
respectively.

Apoptotic assay

MCEF-7 cells were transfected with either control or expression
plasmid for 48 hours and were then cultured in the selective
medium for the indicated time. The transfectants of MCF-7
cells were stained with Annexin V-PE and 7-amino-actinomy-
cin D (7-AAD) (BD Pharmingen, San Diego, CA, USA) accord-
ing to the manufacturer's recommendation. Appropriate gates
of the intact cells, based on individual controls, were utilized to
determine the percentages of the cell population at the earlier
stage (Annexin V positive, 7-AAD negative) and at the later
stage (Annexin V positive, 7-AAD positive) of apoptosis.

Results

WT1-ZF abrogates transcriptional activity of the WT1
promoter

In our search to identify genes regulated by WT1, we identified
two regions in the human WT1 promoter that contain WT1
binding sites and are conserved between mouse and human.
To investigate the effect of full-length WT1 and the WT1-ZF
constructs on the human and mouse WT1 promoter, varying
lengths of the human and mouse genes were cloned upstream
of firefly luciferase in the pGL2 vector (Figure 1a). The position
of the WT1 binding sites in the promoters is indicated. The
human hW3/Luc and mouse mW2/Luc overlap the WT1 min-
imal promoter located from -202 to -99 in the human promoter
[28]. The hW10/Luc and mW9/Luc constructs contain the
full-length promoter of WT1 [29,30].

These constructs were then co-transfected with either full-
length WT1 or WT1-ZF expression plasmids into the WT1-
expressing breast cancer cells MCF-7 or MDA468. In contrast
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Figure 1
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Inhibition of transcriptional activity of the WT1 promoter by its zinc finger domain. (a) Schematic drawing for luciferase reporter constructs. The pre-
dominant transcription start site (+1) is indicated by an arrow. Small solid triangles indicate Wilms' tumor 1 suppressor gene (WT1) binding sites.
(b) MCF-7 cells and (c) MDA468 cells were co-transfected with plasmids expressing the WT1 proteins (either pcDNA; control (CON), aminotermi-
nal-only construct N-WT1, zinc finger domain lacking or with lysine—threonine-serine (ZF - KTS or ZF + KTS) or full-length WT1 vectors A~D), and
either the pGL2 vector control or the differential WT1 promoter-driven luciferase constructs (horizontal axis), respectively. Luciferase activity was
normalized with B-galactosidase activity and is expressed in relative luciferase activity as compared with the luciferase vector control (vertical axis).
Results are the average of three experiments.
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Figure 2
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WT1-ZF protein specific binding to WT1 consensus motifs in WT1 promoter in vivo/in vitro. (@) Chromatin immunoprecipitation/PCR analysis for
the cross-linked sheared chromatin from control MCF-7 cells (CON) and MCF-7 cells expressing HA-tagged zinc finger domain (HA/ZF-KTS, HA/
ZF+KTS) of Wilms' tumor 1 suppressor gene zinc (indicated on right). Upper panel, schematic representation of PCR-amplified fragments P1 and
P2 in endogenous human WT1 promoter. Input, mock control and immunoprecipitation with preimmune serum (Pl), anti-WT1, anti-HA or anti-acetyl-
histone H4 antibody are indicated. Left lane, 1 kb DNA ladder as marker. (b) Same chromatin immunoprecipitation/PCR analysis as (a) with alde-
hyde dehydrogenase 1 family member A2 (ALDH) promoter primers. (¢) Coomassie blue-stained gel. The bacteria-expressed GST and GST/WT1-
ZF fusion proteins (shown as GST, G/ZF-KTS and G/ZF+KTS) were purified, fractionated in a 10% SDS-PAGE and visualized by Coomassie blue
stain. The molecular sizes of standard protein markers (M) are shown. (d) Competition electrophoretic mobility shift assays were performed using
either GST only or GST/WT1-ZF fusion proteins (G/ZF-KTS, G/ZF+KTS) with the 32P-labeled oligonucleotide of human WT1 proximal promoter in
the absence (-) or presence of 20-fold or 100-fold molar excess of WT1 binding site wild-type or site mutant cold oligonucleotides (WT, Mut) as
indicated. Migration of DNA-binding complexes induced by GST/ZF-KTS protein and free probe is shown by an arrow. The lane GST displayed no

DNA-binding associated with purified GST protein. KTS, lysine—threonine—serine.

to the empty vector or full-length WT1, the WT1-ZF con-
structs caused a dramatic suppression of luciferase activity
regardless of the cell line or the presence or absence of the
KTS insert. It is of note that the ZF - KTS form was more sup-
pressive than the ZF + KTS form (Figure 1b,c). We also
included an aminoterminal-only construct (N-WT1) that con-
tains amino acids 1-190 as this has previously been shown to
repress transcription of WT1 targets [31-33]. In the case of
the WT1 promoter, N-WT1 had significantly less suppressive
effect when compared with the ZF constructs.

WT1-ZF binds to the WT1 promoter in vivo and in vitro

To determine whether WT1-ZF binds to the endogenous
human WT1 promoter, we introduced HA tagged WT1-ZF
into WT1-expressing MCF-7 cells, and selected stable
transformants. Using antibody against the HA tag or
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acetylated histone H4 as a control, we performed chromatin
immunoprecipitation followed by PCR amplification of DNA
with primers specific for the P1 and P2 regions of the WT1
promoter (Figure 2a). Both regions contain several potential
WT1 binding sites (Figure 1a). In the control cell line, P1 and
P2 amplifiable fragments were immunoprecipitated with anti-
body against WT1 but not with an anti-HA antibody. In cells
expressing HA-tagged WT1-ZF, the P1 and P2 fragments
were precipitated with anti-WT1 and anti-HA. The ALDH pro-
moter, however, which does not contain a WT1 binding site,
was not precipitated with these antibodies (Figure 2b).

Combined, these studies show that wild-type WT1 and the
ZF-only versions can bind to the WT1 promoter. For the ZF -
KTS version, approximately equal amounts of P1 and P2 were
amplified following chromatin immunoprecipitation with anti-
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Table 1
Quantitative Wilms' tumor 1 suppressor gene (WT1) expression in stable transfectant of breast cancer cells with quantitative real-
time PCR
MCF-7 cells MDA468 cells
Transfected plasmid Control ZF - KTS Control ZF - KTS
Mouse WT1-ZF 1+0.2 395 + 66 1£0.2 1894 + 136
Human WT1 1+01 0.43 £ 0.07 1+0.2 0.28+0.16

ZF - KTS, zinc finger domain lacking the lysine—threonine-serine insert of WT1.

HA. For the ZF + KTS form, however, much less P2 was pre-
cipitated. As the method is semiquantitative, the different
intensities between the amounts of P1 and P2 precipitated by
ZF + KTS may reflect differences in binding affinity or may
reflect technical variation. For this reason we used electro-
phoretic mobility shift assays to further investigate the binding
of the ZF to the P2 region of the WT1 proximal promoter. Puri-
fied GST/ZF fusion proteins produced and isolated from E.
coli were incubated with radiolabeled oligonucleotides
extending from +61 to +120 of the human WT1 promoter
(Figure 2¢,d). Under the conditions used, only the ZF - KTS
form bound the P2 oligonucleotide. The specificity of the
reaction was demonstrated by competition with excess cold
wild-type but not with mutant P2 oligonucleotide. Taken
together, these studies show that the ZF - KTS form binds to
the internal +61 to +120 region.

Endogenous WT1 expression is downregulated by ZF -
KTS

The above results indicate that WT1-ZF is a strong repressor
of an exogenous WT1 promoter in the context of the breast
cancer cell lines MCF-7 and MDA468. As the ZF - KTS form

Figure 3

is more repressive than the ZF + KTS form, experiments
designed to show inhibition of the endogenous WT1 expres-
sion were carried out only with the ZF - KTS form.

The MCF-7 and MDA468 cells were transfected with ZF - KTS
and stable clones were isolated. To assess the level of expres-
sion of the endogenous gene and the transfected mouse
gene, we used quantitative real-time PCR with primers to
amplify nucleotides 439-541 of human WT1 (detects endog-
enous gene only) and nucleotides 1,071-1,207 of mouse
WT1 (detects the transfected gene), respectively. We found
that the mRNA levels of the ZF - KTS in the stable transfect-
ants were 395-fold and 1,894-fold higher than in control MCF-
7 and MDA468 cells, respectively. In contrast, the endog-
enous WT1 gene was reduced by 43% (MCF-7) and by 28%
(MDA468) in WT1-ZF-transfected cells as compared with
nontransfected control cells (Table 1). The decreased RNA
levels were confirmed on northern blot analysis (Figure 3a). In
keeping with the reduced levels of RNA, there was a decrease
in endogenous WT1 protein (Figure 3b). These findings show
that the WT1-ZF - KTS can repress the endogenous WT1
expression in breast cancer cell lines.

(a)

CON ZF-KTS

< WT1 ZF —

(b)

MCF-7 MDA468
CON ZF-KTS CON ZF-KTS
— —

- ——

B - e e

Decrease of endogenous WT1 abundance by overexpression of zinc finger domain in breast cancer cells. (@) Northern blot: total RNAs were iso-
lated from the stable transfectants of MCF-7 cells with either pcDNAS3 control (CON) or the zinc finger domain lacking the lysine—threonine—serine
insert (ZF - KTS) of Wilms' tumor 1 suppressor gene (WT1) expression plasmids as indicated, and were analyzed with WT1 and B-actin probes.
Overexpressed WT1-ZF, endogenous WT1 (FL WT1) or B-actin RNA is indicated. (b) Western immunoblot: whole cell extracts were prepared from
the stable transfectants of MCF-7 cells or MDA468 cells with either pcDNA; control or ZF - KTS expression plasmids, and were analyzed by western
blot with either anti-WT1 and B-actin antibodies. Overexpressed WT1-ZF, endogenous WT1 (FL WT1) and B-actin proteins are indicated.
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Alteration of expression of WT1 target genes in zinc finger domain lack-
ing KTS-transfected MCF-7 cells. (a) Transient and (b) stable trans-
fectants of MCF-7 cells were analyzed for the expression of Wilms'
tumor 1 suppressor gene (WT1) target genes or nontarget genes (hor-
izontal axis) with quantitative real-time PCR assays. The relative expres-
sion (vertical axis) of these genes in the transfected MCF-7 cells was
calculated as compared with the pcDNA; control. Results are the aver-
age of three experiments. AREG, amphregulin; BASP1, brain acid solu-
ble protein 1; KTS, lysine—threonine—serine; WT1, Wilms' tumor 1
suppressor gene; ZF, zinc finger domain.

Several WT1 target genes are downregulated by ZF - KTS
Having shown that the ZF - KTS can decrease WT1 expres-
sion itself, we went on to determine whether other known WT1
target genes were similarly affected. Using quantitative real-
time PCR we assessed the level of expression of c-myc, Bcl-
2, AREG, TERT and BASP1 in WT1-ZF and in control cells
on days 4, 8, and 12 after transfection. BASP1 was included
as a non-WT1 target gene control.

At days 4, 8 and 12, the level of WT1-ZF was increased 74-
fold, 114-fold and 205-fold, respectively, as compared with
control cells. In keeping with previous results, the level of the
endogenous WT1 RNA progressively decreased over time in
the MCF-7 cell transfectants. Similarly, the levels of the four
target genes, but not BASP1, also decreased (Figure 4a).
These findings were confirmed in three independent clones
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isolated from the transfected population (Figure 4b). In con-
trast, and in keeping with WT1's role as a positive regulator,
the expression of these target genes was significantly upregu-
lated in MCF-7 cells expressing full-length WT1.

WT1-2ZF - KTS inhibits c-myc promoter activation by full-
length WT1

As a gene involved in modulating the cancer cell phenotype,
WT1 has been found to regulate the expression of genes
important in cell proliferation, differentiation and response to
chemotherapy. We previously reported that WT1 could
enhance the expression of the protooncogene c-myc [27]. To
determine the effect of WT1-ZF on transcriptional activation
of c-myc by full-length WT1, we co-transfected MCF-7 cells
with full-length WT1, or with WT1-ZF and a c-myc promoter—
luciferase construct that contains a single WT1 binding site
(XNM/Luc). In keeping with our previous results, the WT1-ZF
significantly reduced the transactivation of the c-myc reporter
(Figure 5). This effect was not seen if the WT1 binding site
was mutated (Xmut/Luc), confirming the importance of the
WT1 binding site for the observed result.

Cell growth and proliferation are inhibited by ZF - KTS
The ability of WT1-ZF to reduce/block the expression of
genes such as c-myc, Bcl-2, AREG and WT1 itself, genes
important for the survival and proliferation of breast cancer
cells [34], raised the possibility that WT1-ZF could impair the
growth of breast cancer cells. To assess the effect of WT1-
ZF on the clonogenic capacity of cells, MCF-7 cells and
MDA468 cells stably expressing ZF - KTS were plated on 10
cm dishes and their ability to form colonies was determined.
The expression of ZF - KTS reduced colony formation in MCF-
7 cells by 64% and that in MDA468 cells by 27%, similar to
the effect observed with WT1 shRNA (Table 2). We also
tested the effect of full-length WT1 and WT1-ZF in the WT1-
negative breast cancer cell line MDA231. In contrast to the
enhanced growth induced by full-length WT1 in MCF-7 cells
and MDAA468 cells, exogenous expression of WT1 produced
an insignificant increase in colony formation. Furthermore, in
keeping with the lack of importance of WT1 in regulating the
growth of MDA231 cells, WT1-ZF did not alter their growth
characteristics (Table 2).

Having shown a reduced colony forming ability with ZF - KTS,
we used CFSE to determine the proportion of cells undergo-
ing one or more cell divisions over a period of time; the inten-
sity of staining is decreased in proportion to the number of cell
divisions. Control and ZF - KTS cells were labeled with CFSE
and were assessed at days 1, 4, 7 and 10. The intensity was
greater at all time points in the ZF - KTS-transfected cells com-
pared with the control cells, indicating fewer cell divisions in
the ZF-transfected cells (Figure 6). The number of divisions
was reduced in ZF-transfected cells, as compared with control
cells, by factors of 1.63, 1.85 and 2.54 at days 4, 7 and 10,
respectively (Table 3). Of interest, and relevant to the above
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Abrogation of WT1-mediated c-myc transactivation by the zinc finger domain lacking KTS in MCF-7 cells. The MCF-7 cells were transiently co-trans-
fected with the reporter constructs (either pGL2 vector, XNM/Luc or Xmut/Luc), with expression plasmids of Wilms' tumor 1 suppressor gene
(WT1) isoforms (either pcDNA, vector, A, B, C or D) and with WT1-zinc finger domain (ZF) (either pcDNA, control (CON) or ZF lacking the lysine—
threonine—serine insert (ZF-KTS)) as well as B-galactosidase expression plasmid, respectively. Relative luciferase activity (vertical axis) is indicated.
Histograms show average of three independent experiments.

Table 2

Effect of Wilms' tumor 1 suppressor gene (WT1) plasmid with ZF - KTS on the growth of breast cancer cells

Cells pcDNA3 pcDNABS/ZF - KTS pcDNA3/WTH1 pSuper pSuper/WTH1
MCF-7
Mean = standard deviation (CFU) 142+ 3.3 51 + 4* 164 + 9* 51+ 4.8 40 £ 3.7*
Relative change (%) 0 -64.1 +15.5 0 -21.8
MDA468
Mean = standard deviation (CFU) 291 +8.7 214 + 15.3* 406 + 17 177 £ 6.1 42 +1.7*
Relative change (%) 0 -26.5 +39.5 0 -76.2
MDA231
Mean * standard deviation (CFU) 131 +6.2 130+ 3.8 142+ 5 36 1.1 32+3.0
Relative change (%) 0 -0.2 +8.8 0 -11.2

Relative change represents the percentage difference in number of colony-forming units (CFU) produced in the zinc finger domain lacking the
lysine—threonine—serine insert (ZF - KTS), in full-length WT1 or in WT1 shRNA transfected cells in comparison with empty vector, respectively. *P
<0.05.

Table 3

Effect of the zinc finger domain lacking the lysine-threonine-serine insert (ZF - KTS) on cell division of breast cancer cells

Mean CFSE fluorescence intensity

1 day 4 days 7 days 10 days
Control 381.82 31.25 37.92 16.80
ZF - KTS 418.21 96.89 136.32 97.65

CFSE, carboxy-fluorescein diacetate, succinimidyl ester.
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Retarded cell division in the zinc finger domain lacking lysine-threonine—serine-transfected MCF-7 cells. A typical result of three individual assays for
the carboxy-fluorescein diacetate succinimidyl ester (CFSE) labeling profiles of gated transfectants of MCF-7 cells. The transfectants (CON and zinc
finger domain lacking the lysine—threonine—serine insert (ZF - KTS)) and the days post G418 selection (day 1, day 4, day 7 and day 10) are

indicated.

findings, was our observation that it was not possible to carry
the WT1-ZF stably transfected cells for more than 3 months.
In addition, transfection of ZF - KTS had no inhibitory effect on
the growth of Cos-7 cells lacking WT1 expression (data not
shown).

ZF - KTS induce cell death due to apoptosis

The reduced plating efficiency and the number of cell divisions
could come about due to growth inhibition or cell death. To
determine whether there is increased death in the cultures,
MCF-7 cells and MCF-7-WT1-ZF cells were stained with
Annexin V and 7-AAD and were assessed by flow cytometry
(Figure 7). There was little evidence of apoptosis in the paren-
tal cells. Cells transfected with empty vector showed a modest
increase in apoptosis, probably due to the G418 selection.
The cells transfected with WT1-ZF - KTS, however, showed
an increase in early apoptosis (Annexin V positive, 7-AAD neg-
ative) of 9% on day 4 and of 24% on day 8 after transfection.
Similarly, late apoptosis (Annexin V positive, 7-AAD positive)
was increased by 12% and by 25% on days 8 and 12, respec-
tively. In keeping with this result, the transfection of full-length
WT1 had an inhibitory effect on cell apoptosis. These results
clearly demonstrate the specific nature of increased apoptosis
in the WT1-ZF-expressing cells.

Discussion
WT1 expression is important, if not critical, for the growth of
some forms of cancer, and its reduced expression by anti-
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sense means or by interfering RNA can lead to the induction
of differentiation, and to growth inhibition due to cell cycle
arrest or cell death. For example, the induction of erythroid or
megakaryocytic differentiation in K562 cells is strongly associ-
ated with decreased expression of WT1 mRNA [35]. In the
present study we have explored the possible utility of WT1-ZF
to block transactivation by WT1, and the consequence of this
on cell behavior. In developing WT1-ZF as a tool to study the
effect of WT1 on gene regulation and as a potential therapeu-
tic target, we felt it was important to demonstrate that WT1-
ZF would affect known WT1 targets. For this reason we
assessed the effect of WT1-ZF on the expression of WT1
itself, and on the expression of Bcl-2 and c-myc in the context
of WT1-expressing breast cancer cell lines. We also wanted
to determine whether the WT1-ZF construct would be of
value in determining the importance of the KTS insert, as our
attempts at using small interfering RNA to specifically elimi-
nate ZF - KTS or ZF + KTS in cells had been unsuccessful.

Previous studies have suggested that the N-terminal domain of
WT1 functions as a dominant negative of the wild-type WT1
gene. Using reporter assays, Reddy and colleagues found that
the co-transfection of N-terminal WT1 inhibited transcriptional
activation mediated by WT1 in CV-1 cells, which was related
to the self-association of the first 182 amino acids of WT1
[31]. This dominant-negative role of N-WT1 was further con-
firmed in yeast strains, and the domains involved in self-asso-
ciation were mapped to amino acids 1-45 and 157-253 [33].
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Accelerated apoptosis in the zinc finger domain lacking lysine—threonine—serine-transfected MCF-7 cells. Dot plots of a representative experiment of
flow cytometric analysis for staining of Annexin V-PE (horizontal axis) and 7-amino-actinomycin D (7-AAD) (vertical axis) in nontransfected MCF-7
cells (CON) and transfected MCF-7 cells (Vec, zinc finger domain lacking the lysine—threonine—serine insert (ZF - KTS) or full-length Wilms' tumor 1
suppressor gene (WT1)). Percentages of cell populations in the different quadrants are indicated. Days after G418 selection are shown.

In our reporter assays, N-WT1 had a weak suppressive effect
on WT1 transcription as compared with the ZF (Figure 1). This
is most probably explained by the fact that WT1-ZF inhibits by
directly binding to regulatory elements in the promoter of cru-
cial genes, while the inhibitory effect of N-WT1 requires pro-
tein—protein interactions that may be modified by post-
translational modifications of the proteins or interference by
other interacting proteins.

Previous studies by Rupprecht and colleagues and by Malik
and colleagues demonstrated that full-length WT1 repressed
the expression of WT1 promoter constructs in HEK-293 cells
[25,36]. This repression was shown to be due to several WT1
binding sites between +38 and +195 of the human promoter
as well as between -513 and +177 of the mouse WT1 pro-
moter. In our studies carried out in WT1-expressing breast
cancer cell lines, the co-transfection of WT1 along with
reporter constructs neither inhibited nor stimulated WT1
promoter reporter expression. The lack of suppression is in
contrast to what was previously observed, but is in keeping
with the observations by us and other investigators that

whether a particular WT1 target gene is increased or
decreased in expression is dependent upon the cellular con-
text. The failure to see enhanced expression of the WT1 pro-
moter reporter constructs could be because the endogenous
protein is already maximally stimulating the promoter or there
are other, as yet unknown, cooperating factors that limit the
ability of WT1 to enhance the expression of its own promoter.
Using WT1-ZF we have shown that both the human and
mouse WT1 promoters are negatively regulated by WT1-ZF,
and that this negative regulation is due to direct binding of
WT1-ZF to the promoter (Figures 1 and 2). This binding and
inhibition is significant as we found decreased expression of
WT1 mRNA and protein in the breast cancer cell lines trans-
fected with WT1-ZF (Figure 3). These data clearly
demonstrate that the WT1 promoter is a primary target for
WT1-ZF. In keeping with this observation, we also showed
that the expressions of two other WT1 targets, Bcl-2 and c-
myec, are repressed by WT1-ZF in breast cancer cell lines.

The WT1 + KTS and WT1 - KTS isoforms occur naturally
through alternate splicing of the primary transcript. Previous
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studies have indicated that the binding specificities of the ZF
- KTS and ZF + KTS isoforms differ. For example the ZF - KTS
form recognizes ERG1 sites (5'-GNGNGGGNG-3'), while the
ZF + KTS form does not [37,38]. It is proposed that the inser-
tion of the KTS tripeptide increases the flexibility between ZF3
and ZF4, thus disrupting the binding of ZF4 to its cognate
sites in the DNA major groove [39]. This is illustrated by the
reduced number of complexes formed between the mouse
WT1 promoter with ZF + KTS as compared with the ZF - KTS
form of WT1 [25]. In our DNA binding assays we also found
that the ZF - KTS form bound to most WT1 sites in the WT1
promoter, while the ZF + KTS isoform only bound to sites
between nucleotides -212 and -21 (Figure 2). This is consist-
ent with previous studies showing that the ZF + KTS form of
WT1 binds nucleotides -171 to -157 and nucleotides -155 to
-141 in the human promoter, and binds nucleotides -203 to -
192 in the mouse promoter [25,28]. In our studies we found
that ZF - KTS was a stronger repressor of the WT1 reporter
than the ZF + KTS form. This may be due to more binding of
the ZF - KTS protein to the promoter region, or it may reflect a
greater importance of the more upstream binding sites.
Regardless, for all reporters tested, it appears that ZF - KTS is
more potent at blocking transcription than the ZF + KTS
isoform.

Consistent with the ability to suppress the expression of genes
important for cell growth and survival, transfection of WT1-ZF
- KTS into the breast cancer cell line MCF-7 had a marked
effect on cell behavior. Consistent with reduced expression of
c-myc, the cells entered the cell cycle less often and at a
slower rate than the parental cells. In keeping with the reduced
levels of Bcl-2, there was increased apoptosis as measured by
Annexin V/7-AAD staining. Finally, in keeping with the reduced
expression of TERT, there was a reduction in plating efficiency
over time — and eventually the cells ceased growing
altogether.

Conclusion

In this manuscript we show that WT1-ZF can behave as a
dominant negative of WT1 in WT1-expressing breast cancer
cells. These studies further confirm the importance of WT1 in
the growth of some forms of breast cancer, and demonstrate
the importance of WT1 in regulating apoptosis, the cell cycle
and self-renewal capacity. The WT1-ZF construct should
prove to be an important reagent in identifying genes and cel-
lular processes regulated by WT1. Finally, the inhibitory effect
of WT1-ZF - KTS on breast cancer growth supports the
development of such a molecule or other inhibitors of WT1 in
the control of breast cancer and other malignancies character-
ized by WT1 overexpression.
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