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Abstract
Genome-wide expression microarray studies have revealed that the
biological and clinical heterogeneity of breast cancer can be partly
explained by information embedded within a complex but ordered
transcriptional architecture. Comprising this architecture are gene
expression networks, or signatures, reflecting biochemical and
behavioral properties of tumors that might be harnessed to improve
disease subtyping, patient prognosis and prediction of therapeutic
response. Emerging ‘hypothesis-driven’ strategies that incorporate
knowledge of pathways and other biological phenomena in the
signature discovery process are linking prognosis and therapy
prediction with transcriptional readouts of tumorigenic mechanisms
that better inform therapeutic options.

Introduction
DNA microarrays are tools for assessing the functional
dynamics of genes and genomes in a highly parallel fashion.
Historically defined as ordered collections of DNA probes for
the specific detection of complementary DNA targets, micro-
arrays enable genome-wide surveys of the relative abundance
of mRNA transcripts, the high-resolution mapping of genomic
copy number alterations, the identification of binding sites of
nucleic acid-binding proteins, and the comprehensive
analysis of single-nucleotide polymorphisms (SNPs).
Although microarray technology and its applications have
evolved considerably over the years to meet a growing range
of genomic challenges [1], the classical format for micro-
arrays in interrogating the transcriptome (that is, expression
microarrays) has been a key technology for discovery in
functional and medical genomics.

Since the mid-1990s, expression microarrays have been
extensively applied to the study of cancer, and no cancer type
has seen as much genomic attention as breast cancer. The
most prolific area of breast cancer genomics has been the
elucidation and interpretation of gene expression patterns

that underlie biological and clinical properties of tumors. In a
seminal study that analyzed expression profiles of primary
breast tumors, Perou and colleagues [2] showed that the vast
and complex transcriptional data generated by microarrays
contained discernible patterns of gene expression that
related to tumor biology and behavior. Through hierarchical
cluster analysis, numerous ‘gene clusters’ could be
recognized as biologically distinct networks reflecting the
phenotypic wiring of individual tumors. These ‘molecular
portraits’ revealed information on multiple biological tiers –
from broad tumorigenic properties to discrete biochemical
pathways to intra-tumor tissue heterogeneity – and led to the
discovery of an ‘intrinsic’ gene subset that could distinguish
between multiple new cancer subtypes on the basis of
fundamental tumor properties associated with cell-type origin.
These subtypes, termed Luminal A/ER+, Luminal B/ER+,
Normal Breast-like, ERBB2+, and Basal-like (that is, the
Perou–Sorlie subtypes), were subsequently shown to be
stable and reproducible classes observable in different
patient populations, and correlated significantly with tumor
recurrence and patient survival [3,4].

Together, these studies provided early evidence that the
transcriptional circuitry of breast cancer, as revealed by
microarrays, could not only provide novel insights into the
biology of cancer but could also accurately identify certain
previously discernible clinical phenotypes (for example
estrogen receptor (ER) status, HER2/neu expression, and
proliferation rate) and robustly define new molecularly
informed classifications that delineate novel disease entities
associated with patient outcomes.

More recently, new investigative techniques have begun to
refine our understanding of the breast cancer onco-
transcriptome and how it relates to tumor biology and
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behavior. From this vantage point, the intersections between
pathological mechanisms and clinical endpoints are being
explored with new vigor. Traditional microarray methods for
uncovering prognostic expression signatures, based primarily
on empirical associations not requiring plausible biological
relevance of the markers used, are now sharing the stage
with mechanistically motivated strategies driven by
knowledge of oncogenic pathways and processes. More
commonly, experimental approaches show that patho-
biological simulations performed in vitro reveal transcriptional
configurations predictive of tumor biology in vivo. Together,
these functional genomics strategies are changing the
scientific process of breast cancer biomarker discovery,
towards one that incorporates mechanistic knowledge.

Patient prognosis
The work by Perou, Sorlie and colleagues demonstrated the
power of expression genomics to stratify patients clinically on
the basis of the complex molecular configurations of their
tumors. Questions remained, however, about the practical
utility of the Perou–Sorlie subtypes in prognosis, and whether
other genomic strategies might provide greater prognostic
resolution in certain clinically challenging patient subpopu-
lations.

Van ’t Veer and colleagues [5] and Wang and colleagues [6]
both focused on the identification of gene expression
‘signatures’ (rather than tumor subtypes) that could predict
outcome in patients with early-stage breast cancer (N0,
T1/T2), the majority of whom would unnecessarily receive
systemic adjuvant therapy according to conventional
guidelines. Working with primary tumor material from patients
who did not receive adjuvant systemic therapy, each group
identified and validated a prognostic signature capable of
predicting 5-year disease recurrence [5-7]. The signature by
van ’t Veer and colleagues (otherwise known as the
Amsterdam signature) consisted of 70 genes, whereas the
predictor of Wang and colleagues (otherwise known as the
Rotterdam signature) was composed of 76 genes: 60 for
prognosis of patients with ER-positive tumors, and 16 for
prognosis of those with ER-negative disease. In each case,
the prognostic power of the signature was independent of,
and even superior to, conventional risk factors (such as tumor
size, histologic grade, and patient age), and, in comparison
with the St Gallen’s and National Institutes of Health
consensus guidelines for establishing patient eligibility for
adjuvant chemotherapy, the signatures were better at
predicting which patients should not receive adjuvant therapy
(and similar at predicting who should receive adjuvant
therapy), potentially sparing a significant fraction of ‘cured’
patients from overtreatment.

Both the Amsterdam and Rotterdam signatures have now
been further validated in large multicenter investigations that
confirm the prognostic advantages of the expression
signatures over conventional guidelines for selecting patients

for adjuvant systemic therapy [8,9]. The Amsterdam signature
has now been marketed for clinical use through the
Amsterdam-based diagnostics company, Agendia, founded in
2003 by the Netherlands Cancer Institute (NKI).

An interesting aspect of these two studies is that although
the two gene lists were derived from the same basic scientific
question and using similar patient cohorts, only three genes
were found in common to both signatures [6]. Various
technical differences have been proposed to account for this
discrepancy, but others have noted that if one looks beyond
the genes to the pathways they represent, multiple pathways
can be found in common between the signatures, indicating
that the signatures and their predictive powers may converge
on the same underlying biology [6]. Although the endpoints of
these two investigations were clinical in nature, a compelling
biological interpretation of the results has emerged: that early
primary tumors may already possess the hardwiring necessary
for future metastasis, thus countering the view that metastatic
potential is an acquired trait that develops later in the course
of tumorigenesis and in a rare subpopulation of cells.

Tailored treatment
If early-stage primary breast tumors are already hardwired for
metastatic potential, might their propensity for therapeutic
response also be molecularly ingrained, and measurable via a
transcriptional readout? Valuable evidence supporting this
hypothesis was first demonstrated in the context of diffuse
large-B-cell lymphoma (DLBCL). Alizadeh and colleagues
[10] used expression microarrays to elucidate transcriptional
patterns that could dichotomize DLBCL samples into at least
two distinct classes reflecting different aspects of normal
B-cell physiology. One class showed expression of genes
commonly induced in germinal-center B cells (the GCB-like
class), whereas the other was characterized by expression of
genes associated with mitogenic stimulation of blood B cells
(termed the activated B-cell (ABC)-like class). Importantly,
these two classes showed distinct clinical behaviors after
chemotherapy; patients with GCB-like disease had twice the
5-year survival rate of those with ABC-like disease [10-12].

Because NF-κB activity is critical for the development and
survival of normal B cells and is known to be important in
several cancer types, Davis and colleagues [13] investigated
the possibility that the NF-κB pathway might be differentially
activated between GCB-like and ABC-like forms of DLBCL.
Indeed, the authors identified, in the microarray data, a
handful of NF-κB target genes that were significantly
differentially expressed between the two groups, with higher
expression in the ABC-like class. Using cell lines
representative of the two classes, the authors showed that
constitutive NF-κB activity was required for survival of the
ABC-like class, but not the GCB-like class. That NF-κB can
protect cells from death induced by certain chemo-
therapeutics may partly explain the poor survival outcomes
observed in the ABC-like class. Moreover, the results suggest
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that patients of the poor-outcome ABC-like class, as defined
by gene expression profiling, may derive benefit from
treatment with NF-κB inhibitors that are known to work in
synergy with chemotherapy to enhance cell death. This
hypothesis is currently under investigation in a phase II clinical
trial at the National Cancer Institute, Rockville, MD, USA.

In the context of breast cancer, several expression profiling
studies have provided preliminary evidence for the existence
of therapy-predictive signatures. These studies have relied
primarily on empirical approaches that assess, either directly
or indirectly, tumor sensitivity to drugs. The direct approach is
prospective, involving expression analysis of preoperative
tumor biopsies taken in the neoadjuvant setting, and
subsequent ‘supervised’ class prediction to determine
whether a multigene predictor can distinguish tumors that will
show complete pathologic response (pCR) from those that
will exhibit residual or progressive disease. So far, this
approach has been used in several contexts to elucidate
therapy-predictive signatures for treatments such as
docetaxel [14,15], T/FAC (paclitaxel, 5-fluorouracil, adriamycin,
and cyclophosphamide) [16,17], AC (adriamycin and
cyclophosphamide) [18], and AT (adriamycin and paclitaxel)
[19]. Although each study has reported the discovery of
predictive genes with some promising classification accuracy,
in most cases little or no independent validation has yet been
reported. In the largest and most validated of these studies,
Hess and colleagues [17] discovered a 30-probe predictor of
pCR after T/FAC therapy that, in validation, showed high
sensitivity for identifying pCR cases (92%) and a high
negative predictive value for predicting cases that exhibited
residual disease (96%). In comparison with the predictive
power of conventional variables, this result could be viewed
as a marginal, but valuable, prognostic improvement, but it
will require further validation in larger cohorts to demonstrate
significant clinical value.

A more indirect approach to identifying therapy-predictive
genes involves the retrospective analysis of historical
samples in which patient outcome data can be used as an
approximate measure of therapeutic response. An advantage
of this approach is that it uses a long-term measurement of
therapeutic efficacy, such as whether or not the cancer
returns over time, rather than a short-term pathologic
response that does not always correlate with future outcome.
However, a drawback is that the line between therapy
prediction and patient prognosis is blurred. Whereas a
relapsing cancer can be viewed as a therapy failure, one that
does not return may have been successfully treated at
surgery and may thus have no bearing on the effectiveness of
adjuvant therapy. Nevertheless, prediction of therapy failure
can indicate the need for a more aggressive treatment
strategy. Studies pursuing this line of investigation have
described a 2-gene test [20] and a 21-gene test [21] both for
tamoxifen failure, that, when validated, outperformed
conventional predictors of recurrence. Not found in these

studies, however, was direct evidence that alternative
therapies would provide benefit for these patients. In a follow-
up to the latter study, Paik and colleagues [22] showed a
significant interaction between the 21-gene test and
combined tamoxifen and chemotherapy (cyclophosphamide,
methotrexate and fluorouracil or methotrexate and fluorouracil),
suggesting that women predicted to fail tamoxifen treatment
could potentially benefit from additional chemotherapy.

Ultimately, prognostic signatures resulting from empirical
methods that group tumors into biologically uncharacterized
classes (such as ‘responders’ and ‘nonresponders’) may be
performance limited. The molecular heterogeneity of breast
cancer suggests that the biological programs driving tumor
progression are both numerous and diverse, and these
programs, operating independently or in aggregate, may
dictate how a tumor or subgroup of tumors will progress
clinically or will respond to certain drugs. The ability to define
these circuitries biologically, parse them out at the
transcriptional level, and assess their prognostic associations
will allow the identification of tumor subtypes based on
pathway activities that not only predict for tumor behaviors
but also explain them.

Surrogate signatures
In breast cancer, several clinicopathological markers are
frequently used alone or in combination to assess patient risk.
For example, lymph node stage, tumor size, and histologic
grade are important elements of the major prognostic indices,
whereas ER status is widely regarded as the primary
predictor of response to hormonal (antiestrogen) therapy.
Microarray data sets from large studies of breast cancer have
provided unique opportunities to investigate the relationships
between gene expression patterns and these clinical/
laboratory parameters. These studies have revealed several
underlying signatures associated with the primary physiology
of the tumor with important prognostic and predictive
implications, and suggest that the sum of multiple gene-
expression measurements may provide greater diagnostic
precision than the biochemical or morphological marker on
which they are based.

Perhaps the most apparent and widely observed of these
expression signatures is the one that reflects ER status.
Composed of hundreds of genes that include known direct
and indirect targets of the ER, this signature is strongly
correlated with clinical measurements of ER (for example by
immunohistochemistry, ligand-binding assay, and enzyme
immunoassay) and faithfully partitions tumors into ER-positive
and ER-negative classes with reproducible accuracy [2,5,23].
This close link between the signature and ER status is further
demonstrated by the observation that the relative levels of the
ER signature genes are predictive of ER protein levels as
measured by enzyme immunoassay in a panel of human
breast tumors [24]. Even the expression of the ER gene itself
(as measured by microarray) is highly correlated with ER
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status [2], leading some groups, for data analysis purposes,
to substitute microarray-based ER expression levels for
clinical measures of ER status in the absence of clinical data
[5,7]. Because the ER transcript is itself a central figure in the
ER signature, together with a number of known ER target
genes, it is plausible that the transcriptional activity of ER
drives expression of the ER signature genes. In this context,
the signature could be viewed as a functional readout of ER
activity. Recently, the ER signature was analyzed in a cohort
of ER-positive tumors and found to be prognostic of disease-
free survival in patients receiving adjuvant tamoxifen mono-
therapy [25], suggesting that a gene-expression-based
readout of ER functionality may be a greater predictor of
antiestrogen response than a measure based on ER protein
level alone.

In a study aimed at understanding the relevance of p53
status in breast cancer prognosis, we recently identified a 32-
gene signature capable of distinguishing p53 mutant and
p53 wildtype breast tumors with moderate (85%) accuracy
[26]. Subsequent analysis of the misclassified tumors,
however, shed light on the reason for classification failure.
Misclassified wildtype tumors (that is, with the mutant-like
signature; n = 26) showed highly significant underexpression
of several known direct target genes of p53, as well as the
p53 gene itself, whereas p53 mutant tumors with the
wildtype-like signature (n = 12) showed significantly higher
expression of the p53 target genes than other mutant tumors.

Furthermore, in an independent study of p53 activity, over half
of the p53 signature genes identified in the breast tumors
were found to be significantly modulated by p53 activation in
HCT116 colorectal cancer cells [27]. These observations
suggest that the signature, as a gauge of p53 transcriptional
endpoints, may be more tuned to p53 function than
mutational status as ascertained by the gold standard for
mutational analysis, direct sequencing. Moreover, survival
analysis of patients with p53 wildtype tumors showed that
those with the mutant-like signature had a significantly shorter
interval to disease-specific death than those with the
wildtype-like profile. In several independent breast cancer
cohorts, this signature of p53 deficiency was highly
correlated with metastatic recurrence and therapeutic failure,
regardless of treatment type, and remained a significant
prognostic predictor in multivariate analyses with conven-
tional risk factors, whereas p53 mutational status alone did
not. Together, these observations suggest that an expression
signature derived from the molecular differences between
p53 mutant and wildtype tumors may provide a more
comprehensive and clinically useful readout of p53
functionality than mutational status alone.

In a similar vein, we and others have recently investigated the
clinical utility of gene expression patterns associated with the
histologic grade of breast cancer. Although histologic grade
is widely regarded as a strong indicator of disease

recurrence, its acceptance as a routine prognostic variable
has been limited by the subjective nature of the grading
process and its history of inter-observer variability. Recently, a
5-gene genetic grade signature [28] and a 97-gene genomic
grade index [29] have been identified, both capable of
discriminating grade I and grade III tumors with high
accuracy, and partitioning intermediate grade II tumors into
grade I-like and grade III-like classes with enhanced
prognostic resolution. Patients with grade II disease classified
as grade I-like and grade III-like showed significantly different
10-year survival curves – similar to those of patients with
histologic grade I and grade III tumors, respectively.
Moreover, in multivariate analyses with conventional
prognostic variables, we found that the genetic grade
signature remained highly significant, even outperforming
lymph node status and tumor size in most cohorts analyzed
[28]. That most of these signature genes have known
functions in cell-cycle-related processes and are significantly
correlated with tumor mitotic index and Ki67 scores (A.
Ivshina, personal communication) suggests that these grade-
associated signatures are also markers of proliferation.

Thus, multigene predictors that objectively capture the
prognostic essence of histologic grade and cellular
proliferation have surprising precision in assessing risk of
recurrence, particularly for women with grade II disease.
Indeed, from a purely prognostic perspective, these studies
suggest that there is no grade II, only shades of low and high
grade. Furthermore, from a biological perspective, these
findings offer insight into the pathobiological nature of breast
cancer, suggesting that tumors of low and high grade may
reflect independent biological entities rather than a
continuum through which cancer progresses.

Parsing pathways
The expression signatures derived from ER status, p53
mutation, and histologic grade are products of ‘bottom-up’
analytical strategies [30] that are biologically motivated rather
than empirically derived. These strategies first define
relationships between a physiologic or biochemical
phenomenon and patterns of gene expression, then use the
expression patterns to predict the relative contribution of the
phenomenon or pathway to clinical tumor behavior. In
contrast to ‘top-down’ strategies that identify predictive
signatures in the absence of biological input, the bottom-up
approach has several advantages. First, by defining the
downstream genes, insights into the molecular underpinnings
of a discrete pathophysiologic phenomenon (such as an
oncogenic pathway) are obtained. Second, the transcript
levels of the genes themselves can be used to predict the
extent of pathway activation in individual tumors, with the
potential to select patients for pathway-targeted therapies.
Third, such signatures can be assessed singly or in parallel to
study the individual and combinatorial effects of distinct
pathways on tumor aggressiveness, patient outcome or
therapeutic response, in contrast to the dilution of individual
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pathway contributions that occurs in signatures derived from
empirically based methods.

Desai and colleagues at the National Cancer Institute (USA)
were among the first to investigate the global transcriptional
outputs of multiple oncogenic pathways and their discrimina-
tory powers [31]. Profiling breast tumors of transgenic mice
harboring different mammary-gland-specific oncotransgenes
(MMTV-Ha-ras, MMTV-neu, MMTV-myc, MMTV-polyoma
middle T antigen, C3T-SV40 large T antigen and WAP-SV40
large T antigen), the authors identified expression cassettes
unique to the different transgenes, indicating that
transcriptional fingerprints of the earliest initiating oncogenic
events could be identified within primary tumors.

Building on this concept, Joseph Nevins and colleagues at
Duke University have recently published a series of reports
that illustrate a systematic approach to the discovery and
clinical application of pathway-specific and drug-specific
signatures. Using primary mouse embryo fibroblasts [32] and
human mammary epithelial cells [33] transfected with
oncogenes such as HRAS, MYC, E2F and SRC, the authors
identified expression signatures that distinguished oncogene-
activated cells from controls. These signatures, representing
transcriptional readouts of pathway activity derived in vitro,
were then tested for their ability to assess pathway activation
states in vivo with the use of mouse and human primary
tumors previously characterized for aberrations in these
pathways. The relative probability of pathway activation (or
deregulation) was then estimated by comparing the
configuration of the tumor profiles with that of the (in vitro)
pathway-activated signatures. In this manner, the authors
demonstrated that, on a probability scale, pathway activity
could be predicted in vivo with significant accuracy. When
applied to data sets of breast, ovarian and lung tumors,
hierarchical clustering of the relative probabilities of pathway
activation (as measured for multiple pathway signatures)
could distinguish between patient subgroups with
significantly different survival rates, demonstrating a strong
association between multimodal pathway deregulation and
clinical tumor behavior [33]. Moreover, when applied to a
panel of cancer cell lines with known sensitivities to pathway-
specific compounds (for example, for Ras and Src), the
signatures were found to be significantly correlated with drug
response [33].

These results demonstrate that expression signatures
anchored to pathway activation states may aid in our
biological understanding of tumor behavior and potentiate a
means for selecting patients who will respond to pathway-
specific therapies. Furthermore, where traditional classifica-
tion methods have involved assigning patients (or tumors) to
classes with definitive boundaries, assessing the likelihood
that a tumor or patient will exhibit a certain trait (such as
pathway deregulation or survival), as demonstrated in these
studies, translates class prediction to a probability scale

whereby sensitivity relative to specificity may be adjusted
according to clinical need.

Taking these concepts further, Potti and colleagues [34]
combined microarray data from the NCI-60 cell lines with
historical pharmacologic data generated from the NCI-60
panel at the National Cancer Institute to define expression
signatures capable of discriminating between cell lines that
are sensitive to various drugs and those that are resistant. In
this manner, drug response signatures were obtained for
compounds such as docetaxel, topotecan, adriamycin,
paclitaxel, 5-fluorouracil, and cyclophosphamide. The
predictive capacity of these signatures was then validated by
using two types of independent data set: first, those
composed of cell line expression profiles generated in
independent pharmacologic studies, and second, those
composed of primary tumor profiles taken in the context of
neoadjuvant therapy. Remarkably, with the latter validation
approach, these predictors derived in vitro achieved more
than 80% accuracy in each of five independent neoadjuvant
studies involving breast and ovarian cancer patients treated
with docetaxel, topotecan, adriamycin, or paclitaxel. However,
it should be noted that the separation of patients into
predicted response groups (sensitive versus resistant) was
based on a ‘best-fit’ line; nevertheless in each case this line
fell close to the 50% probability score, thus introducing only
a small bias into the reported accuracies. Furthermore, the
authors showed that multiple drug response signatures could
be combined to predict sensitivity to multidrug regimens such
as T/FAC) and FAC (5-fluorouracil, adriamycin, and
cyclophosphamide), again with more than 80% accuracy.

Finally, the authors superimposed predictions based on the
two types of signature: for drug response and for oncogenic
pathways. In one example they found a significant association
between predicted activation of the phosphoinositide 3-
kinase (PI3-kinase) pathway and predicted docetaxel
resistance in the NCI-60 data set. In a separate group of lung
cancer cell lines, this association not only remained
significant but the cells predicted to be PI3-kinase activated
were significantly sensitive to a PI3-kinase inhibitor. This
demonstrates that the drug response and pathway activation
signatures can not only be used individually to predict
treatment outcomes, but can also be combined for insight
into the mechanisms modulating drug sensitivity. Together,
these studies present a rational knowledge-based approach
to individualized treatment, whereby the combinatorial
analysis of biologically and experimentally defined expression
signatures might one day guide therapeutic decisions that are
truly tailored to the unique molecular anatomy of an
individual’s tumor.

Moving forward with in vitro-based models for building
genomic predictors, several important considerations
regarding system design and prediction accuracy must be
addressed. What is the optimal number of models (namely
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cell lines, pathway targets, and so on), and how much
biological diversity should be included in the system? What
phenotypic endpoints should be used (IC50? LC50? a
specific time point?) and how do these relate to tumor
pharmacokinetics or pathway activation states? How do
different classification strategies compare with respect to the
robustness and accuracy of the genomic predictors they
generate?

Mining mechanisms
The vast quantities of data generated from large-scale
expression profiling studies provide a rich ground for
exploring the complex and conditional relationships that exist
between genes, their expression patterns, and tumor
phenotypes. These relationships, although complex, exhibit a
natural order governed by biological rules. This order is
manifested in the hierarchical structure of gene–gene
correlations from which the various prognostic expression
signatures have been mined. Although bottom-up investiga-
tions have elucidated the biology underlying several of these
signatures, most multigene expression patterns associated
with prognosis remain biologically anonymous. Under-
standing this biology, and the transcriptional mechanisms
regulating these signatures, may lead to the discovery of new
oncogenic pathways and therapeutic targets.

To explore the diversity of gene correlations that underlie the
clinical behavior of cancer, we have analyzed large microarray
data sets of primary breast tumors for genes that are both
coordinately expressed (in clusters) and individually related to
clinical outcomes, and have discovered numerous distinct
expression cassettes that may signify clinically relevant
pathways in breast carcinogenesis (Figure 1). However, a
biological definition of these pathways and the mechanisms
that regulate them requires more than simple inference, but
rather the integration of multiple forms of information (for
example biological, clinical, and genomic) coupled with
statistical and experimental validation methods.

Early microarray studies involving breast cancer cell lines
identified a large cluster of coordinately expressed genes
associated with cell proliferation rates [35]. Later dubbed the
proliferation signature, these genes have since been linked to
various aspects of tumorigenesis in breast and other cancer
types including neoplastic transformation [36], histologic
grade [28,29,37], and poor patient survival [38,39]. (Cluster
4 in Figure 1 represents this signature.) For statistical support
of the notion that this signature reflects cellular proliferation in
primary breast tumors, we analyzed various subsets of these
signature genes for correlations with different forms of
biological and clinicopathological information. Gene ontology
analysis of the signature genes consistently resulted in the
significant enrichment of proliferative processes such as
mitosis, cytokinesis, chromosomal segregation, chromatin
packaging and remodeling, and DNA metabolism and
replication (LDM and ETL, unpublished results). Using clinical

tumor annotations, we found significant correlations between
expression of the signature genes and pathologic markers of
proliferation including Ki67, S-phase fraction and mitotic
index (LDM and ETL, unpublished results), further supporting
the link between gene expression and tumor cell proliferation.
Furthermore, a significant fraction of these signature genes
have been observed in cell synchronization experiments
involving HeLa cells (cervical carcinoma) as being expressed
periodically at specific phases of the cell cycle [40]. Thus, as
illustrated in this simple example, the integrative analysis of
functional, clinical, and experimental information can provide
substantial support for the hypothesis that an expression
signature reflects a specific biological phenomenon – in this
case, the proliferative capacity of tumor cells.

Integration of additional forms of data, such as genomic
sequence, location, and copy number alterations, can
potentially expose the transcriptional mechanisms that
regulate the expression of these correlated genes. For
example, Gasch and Eisen [41], exploring mechanisms of
gene co-regulation in yeast, demonstrated that promoter
analysis of coordinately expressed genes could reveal
significant enrichments of binding motifs specific for the
transcription factor(s) responsible for the observed co-
ordinate expression. However, despite the success of this
approach in identifying gene regulatory mechanisms in
organisms of lower complexity [42], it has so far shown little
success in elucidating transcriptional mechanisms in cancer,
perhaps owing in part to the greater complexity and lack of
spatial compactness of human gene promoters. In a recent
study by Kristensen and colleagues [43], the impact of
genetic variation on breast cancer gene expression was
examined. Using a panel of 50 primary human tumors with
matched patient blood samples, the authors found that
selected germline SNPs at putative regulatory loci in 115 of
203 candidate genes (of the reactive oxygen species
pathway) showed highly significant associations with
microarray expression patterns, indicative of both cis-acting
and trans-acting effects. In some instances, transcripts
associated with SNPs in trans showed significant enrichment
for certain gene ontology terms and pathways, suggesting
linkages between SNPs and the activity of biological
programs. This work indicates that the coordinate expression
of genes in breast cancer may be markedly influenced by
genetic variation at gene regulatory loci, and opens up a new
avenue for the discovery of transcriptional regulatory
mechanisms and genetic biomarkers in breast cancer.

Alterations in chromosomal copy number are also manifested
in the gene expression patterns of breast cancer. In Figure 1,
for example, clusters 7 and 11 are significantly enriched for
genes mapping to cytobands 17q12 and 16p13, respectively
(see Figure 1 legend). Both loci are frequently amplified in
breast cancer, suggesting that the correlated expression of
these genes may be explained, in large part, by the
transcriptional consequences of genomic amplification. This
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Figure 1

Clustergram of diverse gene expression signatures prognostic of breast cancer recurrence. Tumors (n = 251; columns) and gene probe sets
(n = 816; rows) of the Uppsala cohort (GEO ID GSE3494) [26] were hierarchically clustered by using Pearson correlation and average linkage
analysis. Probe-set values were natural-log-transformed and mean centered before clustering. Initially, all 44,928 probe sets (on the Affymetrix
U133A and U133B arrays) were assessed for survival correlations as follows. The expression value for each gene was used to dichotomize
patients into below-mean and above-mean expression groups. The two groups were then assessed for differences in distant metastasis-free
survival (DMFS) by Cox regression analysis. Probe sets significantly associated with DMFS (that is, with likelihood-ratio test P values of less than
0.05) were hierarchically clustered as described above, and clusters with average correlations of more than 0.5 were selected for inclusion in the
figure. Probe sets within clusters were then averaged for each tumor, and cluster survival associations were determined as described above.
Kaplan–Meier plots for selected numbered clusters are shown at the right. The red survival curves indicate patients with above-mean cluster
expression. Cluster 7 is composed of five genes, all mapping to chromosome 17q12 (ORMDL3, PSMD3, CRKRS, PERLD1, and C17ORF37)
with an average expression correlation of 0.64. Cluster 11, with an average correlation of 0.65, consists of 31 distinct genes, 18 of which map to
chromosome 16p13 (PPP4C, PARN, ATP6V0C, C16orf14, GBL, HAGH, ITFG3, MGC13114, MRPS34, NDUFB10, NMRAL1, NTHL1, NUBP2,
POLR3K, RNPS1, STUB1, TBL3, and USP7).
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hypothesis is supported by the work of Pollack and
colleagues [44], who first examined the intersection between
expression array and array comparative genomic hybridization
(CGH) data from breast cancer cell lines and primary breast
tumors, and observed that more than 60% of high-level copy-
number gains coincided with the coordinate overexpression
of involved genes, producing, in effect, a residual expression
footprint of a genomic amplicon. The integrative analysis of
high-resolution array CGH and microarray expression data is
now frequently applied to investigations of the mechanistic
context of genomic aberrations. In breast cancer, focused
studies on 17q12 and 8p11 have revealed new oncogene
candidates in which amplification and overexpression are
highly correlated [45,46]. Genes identified by this strategy,
such as LSM1, BAG4, and C8orf4 on 8p11, have
subsequently been shown to drive neoplastic transformation
in vitro, and when expressed in combination can induce
growth that is independent of both growth factors and
anchorage to substrate [47].

The intersection between gene amplification and over-
expression has also been exploited to uncover transcriptional
regulators of a prognostic expression signature in breast
cancer. In a series of work, Howard Chang and colleagues
explored the relationship between wound healing and cancer
progression [30,48,49]. Initial microarray analysis defined an
expression signature of serum response in fibroblasts that,
when applied to breast and other epithelial cancer data sets,
seemed indicative of tumors exhibiting an active wound
response [48]. This wound response signature was
subsequently found to be prognostic of survival for patients
with breast, lung, and gastric cancers [30,48].

To uncover the transcriptional mechanisms driving expression
of the wound response genes, Adler and colleagues [49]
used a genetic linkage approach (stepwise linkage analysis of
microarray signatures (SLAMS)) involving the integration of
gene expression and array CGH data. Considering the
possibility that the origin of the wound response signature
may be rooted in chromosomal alterations, the authors
identified genes with patterns of copy number gain or loss
that significantly distinguished breast tumors positive and
negative for the wound signature. They observed an enrich-
ment of genes localized to 8q and amplified in tumors with
the activated wound response. Analysis of the distributions of
8q-amplified genes within tumor groups led the authors to
deduce the possibility of a regulatory interaction between
components of 8q24 and 8q13. Closer examination of the
expression patterns of the amplified genes revealed that the
MYC gene on 8q24 was the one most highly induced by
fibroblasts upon serum stimulation, and the CSN5 gene on
8q13 was the one most highly correlated with the wound
signature, suggesting a synergistic role for these two proteins
in modulating the expression of the wound signature genes.
MYC encodes an oncogenic transcription factor frequently
amplified in breast cancer, and CSN5 encodes the catalytic

subunit of the COP9 signalosome, a multifunctional activator
of cullin-based ubiquitin ligases.

To test for a functional interaction, Adler and colleagues over-
expressed MYC and CSN5 in noncancerous MCF10A breast
epithelial cells. Co-expression of MYC and CSN5, but not the
expression of a green fluorescent protein control or of either
gene alone, resulted in the induction of more than 75% of the
255 genes overexpressed in the activated wound signature,
as well as significant increases in cellular proliferation and
invasion through Matrigel that were consistent with the
association between the activated wound response and more
aggressive disease. Thus, from in silico prediction to
experimental validation, Adler and colleagues demonstrate a
methodology of integrative genomic analysis that can
facilitate the discovery of complex transcriptional mechanisms
regulating gene expression signatures. The increased
complexity is that the expression phenotype is manifested
only with the activation of two cooperating gene products: a
synthetic or conditional effect.

Future challenges
Expression arrays initially began simply as a method of multi-
plexing single gene discovery, akin to running several
thousand quantitative RNA dot-blots. From this one-
dimensional approach evolved the current state of the art:
expression profiling to uncover pathway regulation of gene
expression and to define molecular classes on the basis of
integration of the total signals experienced by the cancer cell.
Fundamental to this transition has been the ability to analyze
and model complex systems made possible by mathematical
algorithms coupled with computational capacity. It is in this
realm of complexity analysis that the future of array-based
expression genomics will lie. One can clearly see some of the
more immediate areas of expansion.

First, data content can increase. Other characteristics of the
transcriptome such as exon usage and noncoding RNAs
(including microRNAs) are not well covered by the existing
array technologies and their inclusion would inevitably result
in greater precision and comprehensiveness. Exon junctions
could conceivably be included in the battery of tests yet to be
applied. Of course, this will require greater array capacity in
terms of encompassing more probes in smaller spaces.
Given the advances in microelectronics, those possibilities
are currently available but are perhaps not cost-effective for
broad biological experimentation.

Second, the analytical systems can be more informed.
Although the output of individual probes can be viewed as
events that are independent from that of any other probe,
biologically, the degrees of freedom of transcriptional
systems are already constrained by biochemical and even
evolutionary reality. Thus, gene X is always coordinately
expressed with gene Y, or gene A is always upstream of gene
B, or proteins C, E, and F are always in a complex and
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function only as a unit, never alone. These genetic,
biochemical, or physiologic relationships validated by other
means can be incorporated as ‘priors’ as we seek higher
orders of interaction.

Last, metadata sets will emerge that will markedly expand the
ability to validate and to model transcriptional networks of
biological and clinical significance. This is already taking
place with Oncomine [36], and follows the success of other
genomic databases. As a result of standardization, the
availability of large numbers of data sets describing the
transcriptional behavior of breast cancers has permitted the
validation of local observations in silico. In the context of
prognosis, the performance of expression signatures can now
be validated in and compared across numerous independent
cohorts [4,26,28,50], and analyzed in combination for
synergistic interactions [30]. At some point, the content of
the expression metadata sets for breast cancer will be large
enough to sustain continuous activity in data mining, hypothe-
sis generation, and validation. This requires the inclusion of
detailed clinical information. In some medical research
communities, this metadata set approach is more advanced.
Comparative and evolutional geneticists use the growing
number of complete genomes in publicly available databases
as their primary substrate for investigation. In molecular
epidemiology, whole-genome SNP databases with linked
clinical data are being made available to qualified researchers
for analysis and data mining.

These trends will have a great impact on breast cancer
research. The advantage will be the ability to be compre-
hensive and yet precise at the same time, and the speed of
discovery will be breathtaking. The challenge, however, will
shift to organizational issues. How fast can we validate new
marker sets? What kind of incentives can we use to
encourage groups to share primary data? How can we
sustain teams of computer scientists, basic molecular
biologists, molecular pathologists, and oncologists to meet
these challenges?
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