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Abstract
Overexpression of the human epidermal growth factor receptor
(HER)-2 oncogenic receptor tyrosine kinase, which occurs in 25%
of breast cancers, portends poor clinical outcome and conse-
quently represents an attractive target for therapeutic intervention.
Small molecule tyrosine kinase inhibitors that compete with ATP
binding at the cytoplasmic catalytic kinase domain of HER-2 block
autophosphorylation and activation of HER-2, resulting in inhibition
of downstream proliferation and survival signals. These agents
have exhibited clinical activity in patients with HER-2 overexpress-
ing breast cancers. Here we review the development of HER-2
tyrosine kinase inhibitors, their mechanisms of action, their biologi-
cal and clinical activities, their safety profile, and combination strategies
including conventional cytotoxics and other targeted agents.

Introduction
Members of the human epidermal growth factor receptor
(HER) family of transmembrane receptor tyrosine kinases
(HER-1/epidermal growth factor receptor [EGFR], HER-2,
HER-3, and HER-4), particularly EGFR, HER-2 and HER-3,
promote tumor cell proliferation and survival in a variety of
epithelial malignancies. HER-2 protein overexpression or
gene amplification, which occurs in approximately 25% to
30% of breast cancers, portends poor clinical outcome [1-3].
Members of the epidermal growth factor family of soluble
ligands bind to their cognate HER receptors and induce
formation of HER receptor homodimers or heterodimers,
resulting in autophosphorylation of specific tyrosine residues
within the cytoplasmic catalytic kinase domain of the
activated receptor (Figure 1) [4]. These tyrosine autophos-
phorylation residues serve as docking sites for SH2 (Src-
homology 2) and phosphotyrosine-binding domain containing
protein, which links the activated, phosphorylated HER

receptor with downstream cell proliferation (mitogen-
activated protein kinase [MAPK]) and survival (phosphatidyl-
inositol-3 kinase [PI3K]) signaling pathways (Figure 1) [5,6].
HER receptor heterodimers are potent signaling complexes,
with HER-2 being the preferred heterodimeric partner.
Consequently, HER-2 represents an attractive target for
cancer drug development.

Trastuzumab (Herceptin®; Genentech, South San Francisco,
CA, USA) is a humanized anti-HER-2 monoclonal antibody
that has been approved for treatment of patients with breast
cancers that overexpress HER-2 protein or that exhibit
ErbB2 gene amplification. It has revolutionized the treatment
of HER-2 overexpressing breast cancers by improving
survival in metastatic breast cancer when combined with
cytotoxic agents; recently, it also exhibited significant clinical
efficacy in the adjuvant breast cancer setting [7-12]. The
precise mechanism(s) by which trastuzumab exerts its anti-
tumor effects is unknown, although it is probably multi-
factorial, including antibody-dependent cell mediated
cytotoxicity [13], downregulation of HER-2 signaling
following antibody mediated receptor internalization [14],
inhibition of cell proliferation and survival signals [15,16],
and interference with DNA repair [17]. However, the majority
of HER-2 overexpressing breast cancers do not respond to
trastuzumab therapy alone. Several mechanisms of
resistance have been proposed, including the following [18-
24]: expression of redundant survival signaling pathways (for
example, the insulin-like growth factor [IGF] receptor);
deficient expression of the PTEN tumor suppressor gene;
expression of p95HER-2, a highly active truncated form of
HER-2 that lacks the extracellular domain, which is the
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recognition site for trastuzumab; and downregulation of the
cyclin-dependent kinase inhibitor p27kip1. However, these
mechanisms of trastuzumab resistance do not appear to
preclude the antitumor activity of small molecule inhibitors of
HER-2 kinase, as is discussed below.

Small molecule tyrosine kinase inhibitors
targeting HER-2
In addition to targeting HER-2 using antibody therapies, small
molecule tyrosine kinase inhibitors (TKIs) that compete with

ATP for binding at the HER-2 catalytic kinase domain block
HER-2 signaling (Table 1). These compounds may be reversible
(for instance GW572016 [lapatinib]; GlaxoSmithKline, King of
Prussia, PA, USA) [25] or irreversible inhibitors (for example
CI-1033 [canertinib]; Pfizer, Groton, CT, USA) [26]. Most of
these compounds target more than one HER receptor, which
has the potential advantage of simultaneously blocking two or
more heterodimer components.

However, many so-called HER specific inhibitors are promis-
cuous kinase inhibitors. A recent study [27] investigated the
specificity of 20 TKIs that are approved by the US Food and
Drug Administration or are currently in clinical trials. Their
binding specificity against 113 kinases, mostly tyrosine
kinases with an additional small number of serine/threonine
kinases, was then determined using clinically relevant drug
concentrations (namely plasma concentrations achieved in
patients administered the clinically recommended dose). The
following drugs with HER-2 kinase inhibitory activity were
evaluated: canertinib (pan-HER irreversible inhibitor), EKB-569
(EGFR, HER-2 irreversible inhibitor), lapatinib (EGFR, HER-2
reversible inhibitor), and gefitinib and erlotinib (mono-EGFR
reversible inhibitors). Of the 20 drugs evaluated, lapatinib
was the most specific inhibitor, binding its intended targets
(EGFR and HER-2) with high affinity and an additional two
kinases (STK10 and SLK) with markedly lower affinities. In
contrast, EKB-569 was found to be a rather promiscuous
kinase inhibitor, binding 56 of the 113 kinases tested, as well
as binding several non-HER kinases at similar affinities to its
target EGFR. CI-1033 (canertinib), which is purportedly a
specific inhibitor of EGFR, HER-2 and HER-4, is also
promiscuous, binding 36 of the 113 kinases tested.

The promiscuous nature of these drugs has the potential to
contribute to increased toxicity. In addition, not all HER
receptors are necessarily desirable targets in breast cancer.
For example, HER-4 is associated with a more differentiated,
less aggressive breast cancer and is a favorable prognostic
factor in breast cancer, and therefore it may not be a
desirable therapeutic target in breast cancer [28].

Table 1

Tyrosine kinase inhibitors that block HER-2 kinase that are in clinical development

Compound Profile Reversible or irreversible Phase of clinical development

Lapatinib EGFR, HER-2 Reversible Phase III

CI-1033 (canertinib) Pan-HER Irreversible Phase II

HKI-272 Pan-HER Irreversible Phase II

AEE-788 EGFR, HER-2 Reversible Phase I

BIBW-2992 EGFR, HER-2 Irreversible Phase I

TAK165 HER-2 Irreversible Phase I

BMS-599626 Pan-HER Not reported Phase I

EGFR, epidermal growth factor receptor; HER, human epidermal growth factor receptor.

Figure 1

HER-2 containing heterodimers and their downstream signaling
effects. Shown are distinct HER-2 containing heterodimers, ligands
that activate respective receptor complexes, downstream linked
signaling pathways, and their putative functional effects in HER-2
overexpressing breast cancers. AR, amphiregulin; BTC, betacellulin;
EGFR, epidermal growth factor receptor; EPR, epiregulin; HB-EGF,
heparin-binding epidermal-like growth factor; HER, human epidermal
growth factor receptor; MAPK, mitogen-activated protein kinase; NRG,
neuregulin; PI3K, phosphatidylinositol-3 kinase; TGF, transforming
growth factor.
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Most of the small molecule HER kinase inhibitors share
similar pharmacokinetic profiles. They tend to exhibit
prolonged plasma half-lives (> 24 hours), to exhibit dose-
proportional kinetics, to be highly protein bound, and to be
metabolized rather than undergo renal excretion [29,30].

Biologic activity of HER-2 kinase inhibitors in
preclinical and clinical studies
Small molecule HER-2 kinase inhibitors are typically potent,
with a 50% inhibitory concentration against HER-2 in the low
nanomolar range, based on in vitro kinase assays [26,31,32].
Inhibition of HER-2 autophosphorylation triggers a cascade
of events that block signaling via the MAPK-Erk1/2 and PI3K-
Akt signaling networks in HER-2 overexpressing tumor cell
lines and breast cancer xenografts [25,26,31,33]. In contrast
to antibody-based therapies, small molecule HER-2 kinase
inhibitors reduce phosphorylated but not total HER-2
expression [25,26,31,33].

Inhibition of HER-2 autophosphorylation and downstream
signaling pathways in preclinical models is important, but
ideally one would wish to demonstrate these effects in the
clinic. Skin, an easily accessible EGFR expressing tissue,
served as a surrogate to determine the effects of erlotinib and
gefitinib on EGFR phosphorylation, and on the MAPK-Erk1/2
and PI3K-Akt pathways [34,35]. Unfortunately, biologic
effects in skin do not necessarily correlate with clinical
response [34].

Studies have attempted to evaluate the biologic activity of
HER-2 kinase inhibitors in tumor biopsies obtained from
patients on clinical trials. For example, a phase Ib study of
lapatinib monotherapy in 67 patients [36], 50% of whom had
breast cancer, showed that lapatinib inhibited HER-2 and
EGFR phosphorylation at day 28 of therapy, with consequent
reduction in the expression of phospho-Erk1/2, phospho-Akt,
and cyclin D1; importantly, it also increased tumor cell
apoptosis (by terminal dUTP nick-end labeling [TUNEL]).
Biologic responses were often associated with partial
responses and prolonged stable disease. A panel of
candidate tumor biomarkers was identified that predicted
response to lapatinib monotherapy in women with breast
cancer, which included overexpression of HER-2, expression
of phosphorylated HER-2, and baseline TUNEL score greater
than 0 (evidence of spontaneous tumor cell apoptosis).
Although inhibition of HER-2 phosphorylation, phospho-Erk1/2,
and phospho-Akt may be necessary for clinical response to
lapatinib, they are not sufficient. Downregulation of survivin, a
member of the IAP (inhibitor of apoptosis protein) family and a
predictor of adverse clinical outcome in breast cancer, appears
to represent a more robust correlate of clinical response
associated with inhibition of HER-2 autokinase activity by
lapatinib in HER-2 overexpressing breast cancers [37].

In addition to lapatinib, sequential tumor biopsies were
obtained during a phase I study (n = 53) conducted in

patients with solid tumors treated with canertinib [38]. The
biologic effects of canertinib on its intended targets (namely
phospho-EGFR and phospho-HER-2), cell proliferation
(Ki67), and expression of the cyclin-dependent kinase
inhibitor p27 were assessed. Immunoprecipitation and
Western blot analysis conducted in nine tumor biopsies
showed a median reduction in phospho-EGFR protein levels
of 44%, a 26% reduction in Ki67, and a 56% increase in p27
steady-state protein expression at day 15 of therapy
compared with baseline (pretreatment) biopsies.

Safety and tolerability
Cardiotoxicity is a significant concern among patients treated
with trastuzumab who were previously treated with
anthracyclines [39]. In first-line treatment of advanced stage
breast cancer, trastuzumab in combination with anthracycline
and cyclophosphamide (AC; n = 143) resulted in 27% and
16% incidences of any cardiac dysfunction and New York
Heart Association class III-IV heart failure, respectively, as
compared with 7% and 5% with trastuzumab alone, and 7%
and 3% with anthracycline and cyclophosphamide alone [8].
Although the precise mechanism of trastuzumab-induced
cardiotoxicity is unknown, HER-2 appears to serve as a
survival factor for cardiac myocytes [40]. Recently, an
increased incidence of cardiotoxicity was demonstrated in
patients receiving imatinib [41], which targets members of
the abl kinase family, raising questions as to whether small
molecule TKIs, particularly those targeting HER-2, might also
have cardiotoxic effects. Lapatinib appears to carry lower risk
for cardiotoxicity compared with trastuzumab [42]. For
example, in a randomized phase III clinical trial comparing the
combination of lapatinib plus capecitabine with capecitabine
alone in women with relapsed HER-2 positive breast cancer
previously treated with an anthracycline and trastuzumab
[43], there were four asymptomatic cardiac events in the
lapatinib/capecitabine arm (n = 163). All lapatinib trials
excluded patients with left ventricular ejection fraction of 50%
or less, or below the lower limit of institutional normal levels,
potentially biasing the data by selecting those individuals who
are at lower risk for developing cardiotoxicity.

Because dual EGFR/HER-2 and pan-HER inhibitors are
potent inhibitors of EGFR signaling, it is not surprising that
their major toxicity is EGFR related, including skin rash and
diarrhea, the latter representing the dose-limiting toxicity for
most of these compounds [30,44]. In addition, caneritinib use
was associated with thrombocytopenia [30].

Clinical data in breast cancer
Lapatinib
Lapatinib, a dual EGFR/HER-2 TKI, is the most clinically
advanced of the HER-2 kinase inhibitors in breast cancer.
The initial suggestion of clinical activity in breast cancer was
demonstrated in a phase Ib dose-ranging study in which 30
heavily pretreated breast cancer patients received lapatinib
monotherapy [44]; of these patients, four experienced
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confirmed partial responses and 10 others had prolonged
stable disease. The four partial responses were all in patients
with HER-2 overexpressing breast cancers [36,44].
Interestingly, four out of five patients with inflammatory breast
cancer (IBC) treated in phase I lapatinib trials (monotherapy
and combination studies) achieved a partial response; of
these two received lapatinib monotherapy and one each on
lapatinib and paclitaxel, and lapatinib and capecitabine
combination studies [44-46]. All of these IBC responders
overexpressed HER-2.

This encouraging activity led to a phase II trial of lapatinib
monotherapy in patients with recurrent/anthracycline-
refractory IBC. Patients were assigned to one of two cohorts
depending on whether their tumor overexpressed HER-2 or
did not overexpress HER-2 but expressed EGFR. The
preliminary data were recently reported at the 31st Annual
Meeting of the European Society of Medical Oncology [47].
Patients received oral lapatinib (1500 mg/day) monotherapy
on a continuous basis. Approximately 50% (16 out of 30) of
the patients in the HER-2 overexpressing cohort achieved a
complete or partial response in skin/chest wall lesions and/or
RECIST target lesions, as compared with only about 7% (1
out of 15) of patients in the EGFR expressing, HER-2 non-
overexpressing cohort. These results are encouraging in light
of the heavily pretreated nature of these patients with
aggressive IBC, and they further highlight the significance of
HER-2 overexpression as a predictor of response to lapatinib
monotherapy in breast cancer. Further studies investigating
the use of lapatinib in IBC, both as a monotherapy and in
combination with other agents, are currently underway.

Two large phase II clinical trials in which heavily pretreated
patients with HER-2 overexpressing breast cancer received
lapatinib monotherapy demonstrated marginal clinical activity,
with seven of the initial 81 evaluable patients achieving an
objective response [48]. Targeted therapies such as lapatinib
will probably be more effective in the setting of earlier
disease, especially when they are used as monotherapy. In
this context, a phase II clinical trial of lapatinib monotherapy
was conducted in chemotherapy-naïve patients with
metastatic HER-2 overexpressing (positive by fluorescent in
situ hybridization) breast cancer. An interim analysis of the
first 40 patients [49] identified a response rate of approxi-
mately 30%, with a similar percentage of patients experi-
encing stable disease.

The treatment of most cancers relies on the use of
combinations of non-cross-resistant drugs. In this context, a
multicenter, open-label, randomized phase III clinical trial
comparing lapatinib and capecitabine versus capecitabine
alone [43] was conducted in patients with HER-2 over-
expressing (3+ by immunohistochemistry or positive by
fluorescent in situ hybridization) metastatic or locally
advanced breast cancer. Eligibility required documented
progression on prior anthracycline, taxane, and trastuzumab

therapy. The primary clinical end-point was time to
progression in the intention-to-treat patient population.
Overall survival, response rate, and progression-free survival
were secondary end-points. Based on an interim analysis
conducted by an independent safety review board in 321
patients (160 in the lapatinib plus capecitabine arm, and 161
in the capecitabine monotherapy arm), there was a
statistically significant improvement in median time to
progression in the lapatinib plus capecitabine arm
(36.9 weeks) as compared with the capecitabine mono-
therapy arm (19.7 weeks; P = 0.00016). Similarly, there was
a statistically significant increase in progression-free survival,
with median progression-free survival in the combination arm
being 36.9 weeks as compared with 17.9 weeks in the
capecitabine monotherapy arm (P = 0.000045). There did
not appear to be statistically significant differences in
response rate between groups, although there was a trend in
favor of the combination arm. The study was terminated early
because of superiority, based on the recommendation of the
independent safety review board, making it difficult to
determine whether there was a difference in overall survival
between the two arms.

Additional lapatinib combination studies in various settings of
breast cancer are currently ongoing, including combinations
with taxanes, trastuzumab, aromatase inhibitors, and anti-
estrogens.

Canertinib (CI-1033)
Early phase clinical trials conducted in patients with breast
cancer suggested that this pan-HER irreversible TKI has
clinical activity in this setting. Results from a phase II trial of
canertinib monotherapy in advanced stage breast cancer
(n = 32), which has completed accrual, are pending. In
addition to the typical EGFR-related toxicity, there is a 28%
incidence of thrombocytopenia associated with canertinib,
which might complicate its combination with myelosuppres-
sive cytotoxic agents [30].

HKI-272
HKI-272 is a dual EGFR, HER-2 irreversible TKI that is
currently in early phase clinical development. Recently
presented preliminary phase I data from 51 patients with
solid tumors, 23 of whom had advanced stage breast
cancer, indicate that there were two confirmed and two
unconfirmed partial responses in breast cancer [50]. The
encouraging response rate in this phase I, heavily pretreated
patient population led to the initiation of a phase II clinical
trial of HKI-272 monotherapy in patients with advanced
stage breast cancer.

Other HER-2 tyrosine kinase inhibitors
BIBW 2992 is an irreversible inhibitor of HER-2 and EGFR
tyrosine kinases. Phase I studies investigating different
dosing schedules (14-day treatment/28-day cycle and 21-
day treatment/28-day cycle) have been undertaken in 22
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patients with solid tumors. Prolonged stable disease rather
than complete or partial response have been observed in
these phase I studies [51]. BMS-599626 is an oral pan-HER
receptor kinase inhibitor that is currently in phase I clinical
trials. TAK 165 is a selective irreversible inhibitor of HER-2
kinase, which has demonstrated activity against HER-2
overexpressing breast cancer cell lines. It is also worth noting
that EGFR mono-inhibitors, such as gefitinib and erlotinib,
have exhibited very limited clinical activity when used as
monotherapy in the setting of advanced stage breast cancer.
Their use in combination with antiestrogens to prevent the
development of tamoxifen resistance continues to be an
intriguing application pursued in the clinic [52,53].

Potential advantages of small molecule
HER-2 kinase inhibitors over antibody
therapies
In addition to the convenience of an oral drug compared with
an antibody requiring weekly intravenous infusions, there
appears to be reduced risk for cardiotoxicity with lapatinib
compared with trastuzumab; the reasons for this difference
are probably inherent to the disparate biologic effects of
lapatinib and trastuzumab. Drugs with reduced risk for
cardiotoxicity may be particularly desirable in the adjuvant
setting, in which the long-term effects of cardiotoxicity are
less acceptable.

As patients with HER-2 overexpressing breast cancers live
longer on trastuzumab-based therapies, the incidence of
central nervous system (CNS) metastasis increases. Large
molecular weight molecules (for instance, trastuzumab) do
not effectively cross the blood-brain barrier. Small molecule
HER-2 kinase inhibitors have the advantage that they are able
to cross into the CNS. A pilot study of lapatinib monotherapy
in breast cancer patients with brain metastases demonstrated
that lapatinib crosses the blood-brain barrier, has a biologic
effect in brain tumors (as determined by changes in
fluorodeoxyglucose positron emission tomography), and
exhibits clinical activity [54]. In addition, in a randomized
phase III clinical trial comparing lapatinib plus capecitabine
(n = 163) with capecitabine monotherapy (n = 161) in
relapsed breas cancer [43], there were fewer CNS relapses
in the combination arm (four CNS relapses) than in
capecitabine monotherapy arm (12 CNS relapses).
Additional studies are in progress to expand upon these initial
observations.

Finally, three proposed mechanisms that mediate resistance
to trastuzumab do not appear to be relevant to HER kinase
inhibitors such as lapatinib. First, expression of IGF receptor
1 in HER-2 overexpressing breast cancers, which confers
resistance to trastuzumab, does not preclude response to
lapatinib and may predict a more favorable clinical outcome
[36,47,49,55]. Second, PTEN deficiency, which purportedly
mediates trastuzumab resistance [15], does not appear to
affect response to lapatinib [47,56]. Finally, the presence of

p95HER-2 (the truncated HER-2 receptor that lacks the
extracellular domain), which exhibits increased expression
with disease progression and confers resistance to
trastuzumab, remains sensitive to lapatinib in preclinical
models [33].

Although infrequent, activating mutations in the HER-2 kinase
domain are present in certain epithelial tumors [57]. Recently,
Arteaga and coworkers [58] showed that lapatinib and
caneritinib, but not mono-EGFR inhibitors, were active
against cells expressing these mutations. Thus, in the future,
the specific HER-2 mutation identified could be used to
direct choices regarding the optimal HER targeted therapy.

Combination strategies with HER-2 kinase
inhibitors in breast cancer
HER-2 targeted therapies are more effective when they are
combined with other agents, as indicated by the enhanced
clinical efficacy of trastuzumab when it is used in combination
with cytotoxics as compared with trastuzumab monotherapy.
Is there a rationale for selecting drugs that are more likely to
enhance the efficacy of HER-2 kinase inhibitors? The answer
is ‘yes’. There may be a biologic explanation for why the
combination of lapatinib and capecitabine is effective, which
includes lapatinib-mediated downregulation of thymidine
synthase, an enzyme associated with resistance to 5-
fluorouracil [59]. Whether HER-2 kinase inhibitors will exhibit
enhanced efficacy in combination with other classes of
cytotoxic agents remains to be determined.

We have an opportunity to combine HER-2 kinase inhibitors
with other targeted therapies. Preclinical studies have
demonstrated enhanced antitumor activity and inhibition of
survivin in HER-2 overexpressing breast cancer cell lines in
response to combined trastuzumab and lapatinib therapy as
compared with either agent as monotherapy [60]. Further-
more, a recent phase I trial of trastuzumab and lapatinib [61]
identified a 23% response rate in advanced stage, heavily
pretreated breast cancers. These results triggered an
ongoing phase III randomized clinical trial of trastuzumab and
lapatinib.

Crosstalk between estrogen and HER receptors provides a
rationale for combining antiestrogens with HER targeted
therapies. We established a model of autoresistance to
lapatinib in which resistance was mediated in part through
the upregulation of estrogen receptor signaling [62].
Combining specific antiestrogens with lapatinib prevented
the onset of lapatinib autoresistance. These preclinical
studies provided a rationale for subsequent phase II/III clinical
trials combining lapatinib with various antiestrogen therapies.

In light of the crosstalk between IGF receptor 1 and HER
receptors, combining therapies targeting both pathways
makes sense scientifically. Recently, Esteva and colleagues
[55] reported enhanced antitumor effects of combined
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lapatinib with IGF receptor 1 specific antibodies in breast
cancer cells. Similarly, the crosstalk between the vascular
endothelial growth factor (VEGF) receptors and HER
receptors provides a rationale for combining HER-2 kinase
inhibitors with anti-VEGF antibodies (for example,
bevacizumab) or small molecule VEGF receptor TKIs [63,64].
Clinical trials investigating these combinations in breast
cancer are currently underway, with interesting preliminary
responses recently reported. Additional combinations include
the combination of HER-2 kinase inhibitors with hsp90
antagonists, the latter inducing proteolysis of HER-2, and
combination with inhibitors of the PI3K-Akt-mTOR
(mammalian target of rapamycin) pathway, especially in
tumors where there is evidence of pathway deregulation (for
example, PI3KCA mutation).

Conclusion
In light of its role in promoting tumor cell proliferation and
survival in breast cancer, HER-2 is an attractive target.
Trastuzumab validated HER-2 as a therapeutic target by
changing the natural history of HER-2 overexpressing breast
cancers by extending survival. One alternative approach to
targeting HER-2 is via small molecule HER-2 kinase
inhibitors, currently developed in the clinic. Lapatinib, the
most advanced of these compounds, recently exhibited
clinical efficacy when combined with capecitabine in a
randomized phase III trial of patients with HER-2 over-
expressing breast cancer. Lapatinib has also shown clinical
activity as a monotherapy in women with heavily pretreated
HER-2 overexpressing IBC. A number of other small molecule
inhibitors with differing activity profiles are under develop-
ment. Small molecule HER-2 kinase inhibitors have several
potential advantages over trastuzumab, not the least of which
is the possibility of reduced risk for cardiotoxicity and efficacy
in settings of trastuzumab resistance. The use of oral small
molecule HER-2 kinase inhibitors in combination with
conventional cytotoxics and other targeted therapies based
on scientific rationale represents the future for this important
class of therapeutics.
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