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Abstract

Introduction Bisphosphonates are inhibitors of osteoclast-
mediated tumor-stimulated osteolysis, and they have become
standard therapy for the management of bone metastases from
breast cancer. These drugs can also directly induce growth
inhibition and apoptosis of osteotropic cancer cells, including
estrogen receptor-positive (ER+) breast cancer cells.

Methods We examined the anti-proliferative properties of
ibandronate on two ER+ breast cancer cell lines (MCF-7 and
IBEP-2), and on one ER negative (ER-) cell line (MDA-MB-231).
Experiments were performed in steroid-free medium to assess
ER regulation and the effect of ibandronate in combination with
estrogen or antiestrogens.

Results Ibandronate inhibited cancer cell growth in a dose- and
time-dependent manner (approximate IC50: 10-4 M for MCF-7

and IBEP-2 cells; 3 × 10-4 M for MDA-MB-231 cells), partly
through apoptosis induction. It completely abolished the
mitogenic effect induced by 17β-estradiol in ER+ breast cancer
cells, but affected neither ER regulation nor estrogen-induced
progesterone receptor expression, as documented in MCF-7
cells. Moreover, ibandronate enhanced the growth inhibitory
action of partial (4-hydroxytamoxifen) and pure (ICI 182,780,
now called fluvestrant or Faslodex™) antiestrogens in estrogen-
sensitive breast cancer cells. Combination analysis identified
additive interactions between ibandronate and ER antagonists.

Conclusion These data constitute the first in vitro evidence for
additive effects between ibandronate and antiestrogens,
supporting their combined use for the treatment of bone
metastases from breast cancer.

Introduction
Over 80% of women suffering from advanced breast cancer
ultimately develop bone metastases [1,2]. As revealed by
observations published more than a decade ago [3], patients
with estrogen receptor (ER)-positive neoplasms are more
prone to develop skeletal secondaries. Metastatic breast can-
cer cells stimulate osteoclast-mediated bone resorption,
inducing a marked osteolysis that is responsible for consider-
able morbidity [4,5].

Bisphosphonates are potent inhibitors of osteoclast-mediated
osteolysis [6] and have, therefore, emerged as a rational
approach for the management of bone metastases [7,8].
These drugs are synthetic analogs of pyrophosphate. They
show high affinity for bone mineral and preferentially accumu-
late at sites of active bone remodeling. The most potent
bisphosphonates are nitrogen-containing compounds (e.g.
ibandronate, zoledronic acid) that interfere with the meval-
onate pathway, leading to inhibition of the post-translational
prenylation of proteins [9,10]. From cell culture studies, it is
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known that they inhibit the resorptive activity and induce the
apoptosis of mature osteoclasts [10,11].

Moreover, there is now compelling in vitro evidence that
bisphosphonates may also act directly on tumor cells. They
inhibit proliferation and induce apoptosis in cell lines derived
from various neoplasms, such as breast [12,13] and prostate
carcinomas [14,15]. Bisphosphonates may also antagonize
the growth stimulation induced by bone-derived growth fac-
tors on human breast cancer cells [16]. Furthermore, recent
animal data indicate that bisphosphonates inhibit bone metas-
tasis growth through promotion of apoptosis in cancer cells
[17,18]. Bisphosphonates also reduce tumor cell invasiveness
[19] and cell adhesion to bone [20].

In the clinical setting, bisphosphonates are often combined
with conventional endocrine agents for the treatment of
patients with metastatic bone disease, especially as endocrine
therapy is often preferred to chemotherapy for patients with
soft tissue and bone metastases [21]. The extent to which
such bisphosphonate and antiestrogen combination affects
tumor cell growth has not yet been examined, however, and it
is unknown which interactions are operating. The triphenyleth-
ylene antiestrogen tamoxifen is the classic hormonal treatment
for the management of breast cancers expressing ERs [22].
On the other hand, ICI 182,780 [23] (now called fulvestrant or
Faslodex™) is the only steroidal antiestrogen that has reached
clinical development [24]. Both compounds are competitive
inhibitors for the binding of 17β-estradiol (E2) to ER, but their
mechanisms of action are quite different [25]. Tamoxifen, a
partial ER antagonist, inhibits the activation function-2 (AF-2)-
mediated transactivation, probably via the recruitment of core-
pressors [26,27]. Yet this type of antagonist does not interfere
with AF-1-mediated transactivation. Tamoxifen, as well as its
active metabolite 4-hydroxytamoxifen, has also been shown to
cause ER nuclear accumulation [28]. By contrast, ICI
182,780, a pure ER antagonist, suppresses both AF-1 and
AF-2 ER transactivation functions, and prevents nuclear trans-
port of the receptor [29]. In addition, such pure antagonists
reduce the half-life of ER protein, leading to a decrease in
receptor content (down-regulation) [30].

In the present study, we assessed the anti-proliferative proper-
ties of ibandronate, a newly developed nitrogen-containing
bisphosphonate, on ER-positive breast cancer cells. These in
vitro experiments were conducted in steroid-free medium
(SFM) to allow for the assessment of estrogenic responses
and for the measurement of ER content and activity. Besides,
it is known that ER antagonists exert a growth-inhibitory effect
on MCF-7 cells even in the absence of estrogenic stimulation
[31-34]. We thus tested ibandronate in combination with anti-
estrogens in order to identify possible additive or synergistic
interactions.

Materials and methods
Cell culture conditions
The ER-positive MCF-7 breast cancer cell line (ATCC HTB-
22) was initially obtained in 1977 from the Michigan Cancer
Foundation (Detroit, MI, USA). The IBEP-2 cell line was previ-
ously established in our laboratory from a pleural effusion due
to metastatic breast carcinoma [35] and also expresses func-
tional ER. MDA-MB-231 breast carcinoma cells (ATCC HTB-
26) lack ER expression.

All experiments were performed in plastic flasks, dishes and
multi-well plates obtained from Nunc (Naperville, IL, USA).
Cells were cultured at 37°C in a humidified 95% air and 5%
CO2 atmosphere. For routine maintenance, cells were cul-
tured in 75 cm2 flasks containing RPMI medium 1640 (Gibco
BRL, Life Technologies, Merelbeke, Belgium) with Phenol
Red, supplemented with 10% (v/v) heat-inactivated FCS, and
containing standard concentrations of L-glutamine, penicillin
and streptomycin (Gibco BRL). Cells were harverested by
trypsinization (0.05% (w/v) trypsin, 0.53 mM EDTA.4Na) twice
a week. For experiments, cells were plated in SFM made up of
RPMI medium 1640 without Phenol Red supplemented with
10% (v/v) FCS stripped of endogenous estrogens by a dex-
tran-coated charcoal treatment as previously described [36].
One day later, the seeding medium was replaced by fresh
SFM containing ibandronate (gift from Hoffmann-LaRoche
(Basel, Switzerland), E2 (Sigma, St Louis, MO, USA), 4-
hydroxytamoxifen (Sigma), ICI 182,780 (Tocris, Bristol, UK) or
vehicle for 1 to 6 days.

Crystal violet staining
Cell number was assessed indirectly by staining with crystal
violet dye as previously described [37]. Briefly, cancer cells
were seeded in 96-well plates (density 5,000 cells/well) in
SFM, and cultured for 24 h. Cells were then exposed to com-
pounds or vehicle at various concentrations and time incuba-
tions as described in Results. Medium was removed, cells
were gently washed with PBS, fixed with 1% (v/v) glutaralde-
hyde/PBS for 15 minutes and stained with 0.1% crystal violet
(w/v in ddH2O) for 30 minutes. Cells were destained under
running tap water for 15 minutes and subsequently lysed with
0.2% Triton X-100 (v/v in ddH2O). The absorbance was meas-
ured at 550 nm using a Microplate Autoreader EL309 (BIO-
TEK Instruments, Winooski, VT, USA). Blank wells lacked cells
and drugs. The IC50 value refers to drug concentrations pro-
ducing 50% inhibition of growth.

Cell count
Cell growth was also assessed by cell count. Cells were
plated in 12-well dishes at a density of 104 cells/cm2 in SFM.
At day 1, the seeding medium was replaced by fresh SFM con-
taining 10-4 M ibandronate and/or 10-8 M E2. After three days
of incubation, cells were dislodged from the vessel bottom by
treatment with a trypsin-EDTA solution. After vigorous pipet-
ting, concentrations of cells in suspension were determined in
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an electronic cell counter (model Z1 Coulter counter, Beck-
man Coulter, Fullerton, CA, USA).

Apoptosis determination
Apoptotic cell death was assessed using annexin-V fluores-
cein isothiocyanate (FITC) and propidium iodide double stain-
ing (ApoTarget™, Annexin-V FITC Apoptosis Kit, BioSource
Europe, Nivelles, Belgium), according to the manufacturer's
recommendations. This method is based on apoptosis-related
cell membrane modifications and relies on selective binding of
annexin-V to phosphatidylserine expressed in the outer mem-
brane leaflet during the early stages of apoptosis. Propidium
iodide staining reveals cell surface membrane permeability
associated with necrosis or late stage of apoptosis. Briefly,
MCF-7 cells were seeded in 6-well plates (density 50,000
cells/well) in SFM, and cultured for 24 h. Cells were then

exposed to compounds or vehicle for 3 to 6 days at concen-
trations as described in Results. Medium was renewed at day
3. Cells were washed twice in PBS, harvested by treatment
with a trypsin-EDTA solution, centrifuged and resuspended in
100 µl annexin-V binding buffer. Cell suspensions received 5
µl of FITC-labeled annexin-V and 10 µl of propidium iodide
buffer, were incubated for 15 minutes at room temperature in
darkness, and, finally, were diluted with 400 µl annexin-V bind-
ing buffer. Cells were then analyzed by using a flow cytometrer
(FACSCalibur, Becton Dickinson, Franklin Lakes, NJ, USA).
Data are presented as dot plots showing fluorescence inten-
sity of annexin-V FITC versus propidium iodide. Percentages
of apoptotic cells are percentages of annexin-V positive and
propidium iodide negative cells.

Western blot analysis
ER and progesterone receptor (PgR) amounts were deter-
mined by western blotting. Cells were plated in 60 cm2 petri
dishes (density 10,000 cells/cm2) in SFM, cultured for 24 h
and then incubated with compounds or vehicle as specified in
Results. Cell monolayers were harvested and lysed using
detergent cocktail, as previously described [37]. Solubilized
proteins were subjected to western blotting using polyclonal
rabbit anti-human ERα antibody (HC-20, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) diluted 1:5,000, or monoclonal
mouse anti-human PgR (A/B isoforms) antibody (NCL-PGR-
AB, Novocastra Laboratories, Newcastle upon Tyne, UK)
diluted 1:500. Peroxidase-labeled donkey anti-rabbit IgG anti-
body (1:5,000) or peroxidase-labeled sheep anti-mouse IgG
antibody (1:5,000) (Amersham Pharmacia Biotech, Roosend-
aal, The Netherlands) were used depending on the primary
antibody. The bound peroxidase activity was revealed using
the Lumi-Light Western Blotting Substrate (Roche, Man-
nheim, Germany). The immunoreactive band intensity was esti-
mated using a computer-assisted gel scanning densitometer
(GS-710 Callibrated Imaging Densitometer) and Quantity
One software, both from Bio-Rad (Hercules, CA, USA).

Figure 1

Dose-response analyses of ibandronate on MCF-7, IBEP-2 and MDA-MB-231 cellsDose-response analyses of ibandronate on MCF-7, IBEP-2 and MDA-
MB-231 cells. Breast cancer cells were cultured for three days in ster-
oid-free medium containing ibandronate (Iban) or vehicle (control). Cell 
proliferation was determined by crystal violet staining assay. Data are 
presented as percentages of control values (mean ± SD). Experiments 
were performed four times in replicate. Asterisks indicate ANOVA p < 
0.01 versus control, Dunnett post hoc test.

Table 1

Cell growth determination

Experimental conditionsa Meanb Standard deviation

Control 100.0 10.4

Iban 10-4 M 59.3c 13.1

E2 10-8 M 316.8c 65.4

E2 + Iban 44.4c,d 14.7

Cell growth was determined by cell count, as detailed in Materials 
and methods. aExposure to ibandronate (Iban) and/or 17β-estradiol 
(E2) for 72 hours. bMean percentages of control values (mean ± SD) 
from three separate experiments. cStatistical analysis (ANOVA, p < 
0.01 versus control) on log transformed data, Tukey post hoc test. 
dNo significant difference compared with Iban and significantly 
different from E2.
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Protein determination
Protein concentrations of total cell lysates were determined by
the BCA Protein Assay (Pierce, Rockford, IL, USA) using
bovine serum albumin as standard.

Combination index calculations
The cytotoxic effects obtained with the different combinations
of ibandronate and 4-hydroxytamoxifen or ICI 182,780 were
evaluated according to the method of Chou and Talalay [38]
on Calcusyn software (Biosoft, Cambridge, UK). This method
allows the identification of interactions between two drugs,
regardless of the mechanism of action of the individual drugs.
Cells were incubated with increasing concentrations of iband-
ronate (10-6 to 10-3 M) alone and in combination with increas-
ing concentrations of 4-hydroxytamoxifen (10-10 to 10-7 M) or
ICI 182,780 (10-10 to 10-7 M) for 72 h. Interaction between the
double combinations was assessed by means of an automati-
cally computed combination index (CI). CI was determined at
50% and 75% cell growth, and was defined as follows:

CIA+B = [(DA/A+B)/DA] + [(DB/A+B)/DB] + [α(DA/A+AB × DB/A+B)/
DADB]

where CIA+B = CI for a fixed effect (F) for the combination of
cytotoxic A and cytotoxic B; DA/A+B = concentration of cyto-
toxic A in the combination A + B giving an effect F; DB/A+B =
concentration of cytotoxic B in the combination A + B giving
an effect F; DA = concentration of cytotoxic A alone giving an
effect F; DB = concentration of cytotoxic B alone giving an
effect F; α = parameter with value 0 when A and B are mutually
exclusive and 1 when A and B are mutually non-exclusive.

The CI indicates synergism for values lower than 0.8, additivity
for values included between 0.8 and 1.2, and antagonism for
values higher than 1.2. Values of 0.8 and 1.2 suggest slight
synergistic and additive cytotoxic activities, respectively.

Statistical analysis
Data are reported as means ± standard deviation (SD). Statis-
tical analysis was performed by analysis of variance (ANOVA)
which assumes a similar SD in different groups. Thus, a loga-
rithmic transformation was applied before ANOVA when SD
values were found to differ statistically. Dunnett post hoc test
was used to compare treated conditions to the untreated con-
dition (control) and Turkey post hoc test was performed for
multiple comparisons between groups. The level of statistical
significance was arbitrarily set at 0.01. All analyses used
SPSS software (Paris, France).

Results
Effects of ibandronate on breast cancer cell growth in 
steroid-free medium
MCF-7 cells were plated in RPMI 1640 medium supple-
mented with charcoal-stripped fetal bovine serum (SFM), and
cultured for 24 h before exposure for 72 h to ibandronate at

concentrations ranging from 10-6 to 10-3 M. In these condi-
tions, ibandronate inhibited cell growth in a concentration-
dependent manner, as assessed by photometry after crystal
violet staining (approximate IC50 10-4 M) (Fig. 1, upper panel).
Electronic cell count after trypsinization gave quite similar
results on hormone-deprived MCF-7 cells when the effect of
10-4 M ibandronate was evaluated after 3 days of treatment
(Table 1). IBEP-2 cells exhibited a similar dose-response curve
to ibandronate as assessed by crystal violet staining (approxi-
mate IC50 10-4 M), while MDA-MD-231 cells were slightly less
sensitive to the bisphosphonate (approximate IC50 3 × 10-4 M)
(Fig. 1, middle and lower panels).

As shown by time-course experiments over 6 days, ibandro-
nate at 10-5 M only produced a weak inhibition of MCF-7 cell
growth, detectable from day 4. By contrast, higher drug con-
centrations drastically affected cell growth kinetics: 10-4 M
ibandronate induced rapid cytostatic effects up to day 6,
whereas 10-3 M ibandronate clearly exerted cytotoxic effects
(Fig. 2).

Moreover, high ibandronate concentrations induced apoptotic
cell death, as documented by the detection of annexin-positive
and propidium iodide-negative MCF-7 cells (Fig. 3a). The per-
centages of annexin-positive cells after 5 days of incubation
with 10-4 M and 10-3 M ibandronate were 23.5 ± 2.4 (mean ±
SD) and 50.0 ± 8.7, respectively, indicating that the inhibition
of cell growth was caused, at least in part, by cell apoptosis
(Fig. 3b). Of note, 10-4 M ibandronate did not induce signifi-
cant apoptosis at day 3. No significant cell death was
observed using 10-5 M bisphosphonate.

The influence of increasing treatment duration on cell growth
estimated at 72 h is illustrated by pulse exposure studies in
Fig. 4. A 2 h exposure to ibandronate did not significantly
affect cell proliferation, whereas bisphosphonate exposure for

Figure 2

Time-course experiments of ibandronate (Iban) on MCF-7 cellsTime-course experiments of ibandronate (Iban) on MCF-7 cells. Cells 
were cultured for up to six days in steroid-free medium containing Iban 
or vehicle (control). Cell growth was determined as described in Fig. 1. 
Statistical analysis on log transformed data; asterisks indicate ANOVA 
p < 0.01 versus control at the same day, Dunnett post hoc test.
Page 4 of 10
(page number not for citation purposes)



Available online http://breast-cancer-research.com/content/8/1/R2
4 h resulted in a significant decrease in cell growth by 21%. In
addition, a 45% inhibition of cell growth was already seen after
a 24 h treatment and the effect was not significantly greater
when the incubation with ibandronate was prolonged up to 48
or 72 h (43% and 53% growth inhibition, respectively). This
suggests that the growth inhibition recorded after a 24 h expo-
sure is already irreversible and that 24 to 72 h exposure does
not augment inhibitory efficacy.

Influence of ibandronate on the mitogenic effect of E2, 
and on estrogen receptor regulation and activity in MCF-
7 cells
As previously reported [39], 10-8 M E2 stimulated the prolifer-
ation of MCF-7 cells in SFM (Fig. 5, upper panel; Table 1). In

this context, 10-6 M ibandronate, which failed to change basal
cell proliferation, did not affect the growth stimulation induced
by E2. By contrast, 10-4 M ibandronate completely abolished
the mitogenic effect induced by estrogenic stimulation, and
the growth inhibitory effects of ibandronate were unaffected
by the presence of E2. Closely similar findings were obtained
using IBEP-2 cells, which have been recently reported as
estrogen-responsive cells resembling MCF-7 cells [39] (Fig.
5, lower panel), indicating that the inhibition by ibandronate of
the mitogenic stimulation induced by E2 was not restricted to
MCF-7 cells.

ER expression and activity were examined in the same culture
conditions by western blot analysis. Ibandronate alone had no
effect on ER content whereas E2 induced a marked receptor
down-regulation reflected by a 63% decline in ER steady-state
level after 24 h (Fig. 6a). Ibandronate did not affect ER
decrease induced by E2. The expression of PgR was also
investigated as it is estrogen-inducible and viewed as a classic
marker of ER activation [40]. Thus, the effect of ibandronate on
PgR expression was assessed by western blot analysis using
an antibody raised against the A/B isoforms of PgR. Exposure
of MCF-7 cells for 72 h to 10-9 M E2 increased by more than
three-fold the level of PgR B isoform (Fig. 6b). Ibandronate
modified neither PgR baseline level nor the increase in PgR
level induced by E2. As previously reported [39], the A isoform
of PgR was not detectable in untreated MCF-7 cells and only
a small amount of this isoform was observed after E2 stimula-
tion.

Overall, these data indicate that ibandronate completely
blocks the proliferative response induced by E2, without affect-
ing ER regulation and activity. From these results, it can be
inferred that ibandronate does not directly act on the ER path-
way but interferes with E2-induced mitogenicity at steps down-
stream or independent of ER-mediated signaling. Indeed, in

Figure 3

Ibandronate-induced apoptosis in MCF-7 cells assessed by annexin-V fluorescein isothiocyanate and propidium iodide double staining (An/PI)Ibandronate-induced apoptosis in MCF-7 cells assessed by annexin-V 
fluorescein isothiocyanate and propidium iodide double staining (An/
PI). Cancer cells were cultured for three to six days in steroid-free 
medium containing ibandronate (Iban) or vehicle (control). Apoptotic 
cells were detected as An+/PI- cells, while viable cells were An-/PI- 
cells and necrotic cells were PI+. (a) Representative dot plots after five 
days of Iban exposure. (b) The percentage of An+/PI- cells was deter-
mined from three experiments (mean ± SD). Statistical analysis on log 
transformed data; asterisks indicate ANOVA p < 0.01 versus corre-
sponding control, Dunnett post hoc test.

Figure 4

Effects of various durations of exposure of MCF-7 cells to ibandronateEffects of various durations of exposure of MCF-7 cells to ibandronate. 
Cells were cultured in steroid-free medium and exposed to 10-4 M iban-
dronate or vehicle (control) for 1 to 72 h (pulse exposures). Cell growth 
measurements were performed after 72 h as described in Fig. 1. Aster-
isks indicate ANOVA p < 0.01 versus control, Tukey post hoc test. NS, 
not significant.
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MCF-7 cells exposed to ibandronate, ER kept its transactiva-
tion ability.

Combination of ibandronate and antiestrogens
We assessed the effects of ibandronate in combination with
antiestrogens. Data shown above indeed suggest that
bisphosphonate-treated MCF-7 cells keep a functional form of
ER, which should be able to promote the anti-proliferative
action of ER antagonists. Two well-known antiestrogens were
used for this study: an active metabolite of the partial anties-
trogen 4-hydroxytamoxifen and the pure antiestrogen ICI
182,780. In preliminary studies, these drugs alone or in com-
bination with ibandronate were tested at fixed concentrations
with regard to their inhibitory effects on MCF-7 growth in ster-
oid-free conditions. Antiestrogens alone (10-7 M) significantly
decreased cell growth by 14% and 35% for 4-hydroxyta-
moxifen and ICI 182,780, respectively (Fig. 7, upper panels).
Importantly, the growth inhibitory action induced by both anti-
estrogens was significantly enhanced by ibandronate. Thus,
when using combined treatments, 4-hydroxytamoxifen plus
ibandronate decreased cell growth by 51%, and ICI 182,780
plus ibandronate inhibited cell proliferation by 58%. Similarly,
the growth of the ER-positive IBEP-2 cells was also inhibited
by both antiestrogens, and growth inhibition was again

significantly higher when ER antagonists were combined with
ibandronate (Fig. 7, middle panel). By contrast, antiestrogens
did not affect the proliferation of the ER-negative MDA-MB-
231 cells, and they did not change the growth inhibitory effect
of ibandronate (Fig. 7, lower panel). These data indicate that
antiestrogen response in sensitive breast cancer cells may be
enhanced by ibandronate.

To better characterize the interactions between ibandronate
and ER antagonists in MCF-7 cells, drug combinations were
evaluated over a wide range of concentrations (from 10-6 to
10-3 M for ibandronate and from 10-10 to 10-7 M for the anties-
trogens). Dose-response curves are illustrated in Fig. 8. These
data were submitted to isobolographic analysis to calculate
the CIs at 50% and 75% inhibition of cell growth, according
to the analytical procedure developed by Chou and Talalay
[38]. Results are summarized in Table 2. According to the CI
values, the effects of ibandronate and antiestrogen were addi-
tive, suggesting that these compounds act through distinct
mechanisms.

Discussion
Bisphosphonates, including ibandronate, are widely used for
the treatment of bone diseases involving enhanced osteoclast-
mediated bone resorption, such as osteoporosis, tumor-

Figure 5

Effects of ibandronate (Iban) on the stimulation of MCF-7 and IBEP-2 cell growth induced by 17β-estradiol (E2)Effects of ibandronate (Iban) on the stimulation of MCF-7 and IBEP-2 
cell growth induced by 17β-estradiol (E2). Cells were incubated with 
10-4 M Iban and/or 10-8 M E2 or vehicle (control) for 3 days. Cell growth 
determination was performed after three days as described in Fig. 1. 
Asterisks indicate ANOVA p < 0.01 versus control, Tukey post hoc 
test. NS, not significant.

Figure 6

Estrogen receptor (ER) and progesterone receptor (PgR) expression in MCF-7 cells exposed to ibandronate (Iban) and/or 17β-estradiol (E2) as assessed by western blotEstrogen receptor (ER) and progesterone receptor (PgR) expression in 
MCF-7 cells exposed to ibandronate (Iban) and/or 17β-estradiol (E2) as 
assessed by western blot. (a) For ER determination, MCF-7 cells were 
incubated for 24 hours with 10-4 M Iban and/or 10-9 M E2 or vehicle 
(control) in steroid-free medium. Equal quantities of proteins (20 µg) 
were subjected to SDS-PAGE and electrotransferred onto nitrocellu-
lose membranes. Immunodetection was performed with anti-human ER 
antibody raised against its F domain. (b) For PgR measurement, cells 
were incubated for 72 hours in the same experimental conditions. Equal 
amounts of proteins (40 µg) were loaded onto SDS-PAGE and immu-
noblot was revealed using anti-human PgR antibody raised against A/B 
isoforms of the receptor. Blots show representative experiments per-
formed at least twice. Data were obtained from densitometric analyses 
and are presented as mean percentages of control values. Asterisks 
indicate ANOVA p < 0.01 versus control, Tukey post hoc test. NS, not 
significant.
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induced hypercalcemia and, most importantly, cancer-induced
bone disease [7,41]. Bisphosphonates thus constitute a major
advance in the supportive care of cancer patients who develop
skeletal metastases [42]. They exert a clinically significant
analgesic activity and reduce by up to 40% the frequency of
cancer-induced bone complications in patients with bone
metastasis from breast cancer [43]. The beneficial effects of
ibandronate, a new and potent bisphosphonate, in patients
sufffering from breast cancer-induced osteolysis have recently
been reported [44-46]. A substantial morbidity nevertheless
persists even with the use of such new potent agents, indicat-
ing that bisphosphonates are not fully effective in blocking
tumor-induced osteolysis. More studies are needed, notably to
better understand the activity of bisphosphonates on tumor
cells.

Recent data from in vitro work on breast cancer-derived cell
lines indicate that nitrogen-containing bisphosphonates can
directly inhibit tumor cell growth, primarily by inducing apopto-
sis [12,13,47-49]. However, these studies were performed in
medium supplemented with whole serum, where the presence
of steroids does not allow the evaluation of possible interac-
tions of bisphosphonates with ER-mediated signaling. In the
present study, we investigated the effects of ibandronate on
the growth of MCF-7, IBEP-2 and MDA-MB-231 cells in
medium supplemented with charcoal-stripped serum, provid-
ing a steroid-free environment suitable for the assessment of
estrogenic responses. In fact, these experimental conditions
may reflect more accurately the clinical situation because the
vast majority of patients suffering from breast cancer are post-
menopausal women with low circulating estrogen levels.

In the first part of this work, we showed that ibandronate (a
nitrogen-containing bisphosphonate) induced a dose-depend-
ent decrease in the growth of the three tested breast cancer
cells cultured in SFM. These results were consistent with pre-
vious reports using steroid-containing medium (complete
medium) [12,13,47], but contrast with our recent data
showing that clodronate (a non-nitrogen-containing bisphos-
phonate) can stimulate the proliferation of MCF-7 cells in SFM
[37]. In fact, this mitogenic effect of clodronate appears to be
mediated by the activation of ERs and is completely

Figure 7

Effect of combined treatment of MCF-7, IBEP-2 and MDA-MB-231 cells with ibandronate (Iban) and 4-hydroxytamoxifen (TAM) or ICI 182,780 (ICI)Effect of combined treatment of MCF-7, IBEP-2 and MDA-MB-231 
cells with ibandronate (Iban) and 4-hydroxytamoxifen (TAM) or ICI 
182,780 (ICI). Cells were incubated with 10-4 M Iban in the presence or 
absence of 10-7 M TAM or ICI for 72 hours. Cell proliferation was deter-
mined as described in Fig. 1. ANOVA, p < 0.01: a, significantly different 
from control; b, significantly different from Iban alone; c, significantly dif-
ferent from TAM alone; d, significantly different from ICI alone; Tukey 
post hoc test.

Figure 8

Dose-response curves of ibandronate (Iban from 10-6 to 10-3 M) in com-bination with increasing concentrations of 4-hydroxytamoxifen (TAM from 10-10 to 10-7 M) or ICI 182,780 (ICI from 10-10 to 10-7 M)Dose-response curves of ibandronate (Iban from 10-6 to 10-3 M) in com-
bination with increasing concentrations of 4-hydroxytamoxifen (TAM 
from 10-10 to 10-7 M) or ICI 182,780 (ICI from 10-10 to 10-7 M). MCF-7 
cells were incubated for 72 hours. Cell proliferation was determined by 
crystal violet staining assay. Data are presented as percentages of con-
trol values (mean) and were used for combination index calculations 
(see Table 2). Experiments were performed three times in replicate.
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suppressed by antiestrogens. Moreover, focusing on MCF-7
cells, we showed that 10-3 M ibandronate exerted strong cyto-
toxicity partly through apoptosis induction. A lower concentra-
tion (10-4 M) of ibandronate exerted cytostatic effects
associated with moderate apoptosis induction, suggesting
that cell proliferation was exactly balanced by cell death. Of
note, significant apoptosis was only observed after four days
of incubation with 10-4 M ibandronate. Hence, at day 3, cell
growth inhibition could be explained by cell cycle arrest, this
step preceding apoptosis induction. Furthermore, in our exper-
imental conditions, short-term exposures (four hours) of cells
to 10-4 M ibandronate were sufficient to induce a significant
inhibition of MCF-7 cell proliferation. In addition, the presence
of ibandronate for only 24 hours led to an irreversible loss of
cell proliferative capacity, as shown by measurement two days
later, and growth inhibition was comparable to a full-time expo-
sure. This is consistent with the observations of Jagdev et al.
[47] showing that incubation of MCF-7 cells with zoledronic
acid, even for a short period of time, results in a significant
reduction in cell number and a sizeable increase in apoptosis.
These results might be important insofar as serum ibandronate
concentrations are maintained for only a few hours after oral
bisphosphonate administration [50] and raise the exciting pos-
sibility of short-term effects of bisphosphonates in non-
osseous sites. On the other hand, in the particular microenvi-
ronment of bone metastases, bisphosphonates accumulate at
the surface of bone resorption sites. This creates a compart-
ment where cells undergo prolonged exposure to high drug
concentrations. In vivo data revealed that effective local
concentrations of bisphosphonates at sites of active bone
resorption are much higher than serum levels, and may reach
up to 10-3 M in the resorption lacunae [51].

In the second part of our study, we examined the effects of
ibandronate on estrogenic stimulation of MCF-7 and IBEP-2
cells. Interestingly, our experiments conducted in SFM
showed that, at a concentration affecting cell proliferation (10-

4 M) but not at a lower concentration (10-6 M), ibandronate
suppressed the mitogenic effect induced by E2 and inhibited
cell growth regardless of the presence of estrogen. As the

nitrogen-containing bisphosphonate ibandronate is known to
act through the inhibition of the mevalonate pathway and sub-
sequent protein prenylation [9], the estrogenic stimulation of
cell proliferation might require some prenylated proteins.
Indeed, it has recently been reported that prenylated proteins
play a role in estradiol-induced stimulation of cell proliferation
through activation of the Src/Ras/Erk pathway [52]. Neverthe-
less, as shown by the current observations using MCF-7 cells,
ibandronate had no direct effect on ER expression and did not
affect E2-induced receptor down-regulation. Similarly, ibandr-
onate did not affect the baseline level of progesterone recep-
tor and did not interfere with E2-induced expression of this
receptor. Altogether, these data indicate that ibandronate did
not alter the regulation and the activity of ERs in MCF-7 cells,
while it could totally prevent estrogen-induced cell
proliferation in ER-positive breast cancer cells, suggesting
that it acts downstream of ER-mediated gene transactivation.

Cancer therapy mostly relies on the use of drug combinations,
which generally improve the therapeutic index, that is, give bet-
ter responses with less toxicity. In this setting, bisphospho-
nates are most often used concomitantly with endocrine
therapy. The presence of functional ERs in MCF-7 cells
exposed to ibandronate suggests that these cells should
remain sensitive to antiestrogenic agents. In the third part of
our work, we thus tested the effects of ibandronate, antiestro-
gens (4-hydroxytamoxifen and ICI 182,780) and combinations
thereof on MCF-7, IBEP-2 and MDA-MB-231 cell growth. Of
note, our data show that antiestrogens alone inhibited the
proliferation of MCF-7 and IBEP-2 cells in SFM. Used as a
negative control, MDA-MB-231 cell growth was not affected
by antiestrogens. These results confirm previous studies
showing that ER antagonists are able to reduce the growth of
ER-positive breast cancer cells, even in the absence of estro-
genic stimulation [53]. It is conceivable that ER in estrogen-
deprived MCF-7 cells is activated by phosphorylation due to
cross-talk with other signaling pathways [54,55]. Thus, anties-
trogens would completely abolish this activation. Moreover,
when ER-positive breast cancer cells were exposed to iband-
ronate and antiestrogens, we observed additive inhibition of
cell proliferation. The mechanism by which this occurred has
not been fully elucidated but inhibition of the mevalonate
pathway and subsequent protein prenylation due to ibandro-
nate treatment, and prevention of cell proliferation by antiestro-
gens might result in this additive effect. Indeed, nitrogen-
containing bisphosphonates are known to act as analogs of
isoprenoid diphosphate lipids and to inhibit farnesyl pyrophos-
phate synthase, an enzyme of the mevalonate pathway
[56,57]. This inhibition results in decreased isoprenoid lipid
production (farnesyl pyrophosphate and geranylgeranyl pyro-
phosphate) and prevents protein prenylation [58]. On the
other hand, antiestrogens are reported to cause the arrest of
MCF-7 cells in the G1 phase of the cell cycle, resulting in a
lower proportion of cells in S phase [59,60]. Moreover, cells
treated with partial and pure antiestrogens show a significant

Table 2

Correspondence of combination index values to combined 
drug effects in the MCF-7 cell line

Drug associationa Iban + TAM Iban + ICI

50% CI, mean (SD) 1.0 (0.1) 0.9 (0.2)

Combination effect Additive Additive

75% CI, mean (SD) 1.1 (0.1) 1.0 (0.3)

Combination effect Additive Additive

The 50% and 75% combination index values corresponding to drug 
concentrations leading to 50% and 75% cell growth, respectively, 
were determined by crystal violet staining assay, as detailed in 
Materials and methods. aExposure to ibandronate (Iban) and/or 4-
hydroxytamoxifen (TAM) or ICI 182,780 (ICI) for 72 hours in three 
separate experiments. SD, standard deviation.
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decrease in cyclin D1 mRNA, which suggests that cyclin may
be a target of antiestrogens, thus blocking entry into S phase
[61]. Because of these different mechanisms of action, it is not
a surprise that we found additive growth inhibitory effects
when ibandronate and antiestrogens were added concomi-
tantly. The mechanisms involved in the additive effect of iban-
dronate and antiestrogens are still elusive, however, and
require further investigations.

Interestingly, in accordance with our results, recent data indi-
cate that tamoxifen and the farnesyl transferase inhibitor FTI-
277, acting through distinct pathways, exert an additive effect
on MCF-7 cells, inhibiting cell cycle progression and cell pro-
liferation [62]. Of note, farnesyl transferase functions closely
downstream of farnesyl pyrophosphate synthase (the target
for nitrogen-containing bisphosphonates) as it catalyzes the
covalent attachment of farnesyl groups to prenylated proteins.

Conclusion
Our results indicate that ibandronate inhibits breast cancer
cell growth, both in the presence and absence of estrogenic
stimulation. Moreover, the growth inhibition induced by classic
antiestrogens, such as 4-hydroxytamoxifen and ICI 182,780, is
larger on cancer cells expressing ERs when they are
combined with ibandronate. These data suggest for the first
time the existence of additive interactions between bisphos-
phonates and antiestrogens. Thus, our in vitro data provide a
rationale for the combined use of ibandronate and antiestro-
gens in breast cancer patients suffering from bone
metastases.
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