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Abstract

Introduction It has been suggested that individuals with
reduced DNA repair capacities might have increased
susceptibility to environmentally induced cancer. In this study,
we evaluated if polymorphisms in DNA repair genes XRCC1
(Arg280His, Arg399Gln) and XPD (Lys751Gln) modify
individual breast cancer risk, with emphasis on tobacco
smoking.

Methods The study population consisted of 483 incident breast
cancer cases and 482 population controls of Finnish Caucasian
origin. The genotypes were determined by PCR-RFLP-based
methods. Odds ratio (OR) and confidence intervals (CIs) were
calculated by unconditional logistic regression analyses.

Results No statistically significant overall effect in the breast
cancer risk was seen for any of the studied polymorphisms.
However, a significant increase in breast cancer risk was seen
among ever smoking women if they carried at least one XRCC1-

399 Gln allele (OR 2.33, 95% CI 1.30–4.19, pint 0.025) or XPD-
751 Gln/Gln genotype (OR 2.52, 95% CI 1.27–5.03, pint
0.011) compared to smoking women not carrying these
genotypes. The risks were found to be confined to women
smoking at least five pack-years; the respective ORs were 4.14
(95% CI 1.66–10.3) and 4.41 (95% CI 1.62–12.0). Moreover,
a significant trend of increasing risk with increasing number of
the putative at-risk genotypes (p for trend 0.042) was seen.
Women with at least two at-risk genotypes had an OR of 1.54
(95% CI 1.00–2.41) compared to women with no at-risk
genotypes. Even higher estimates were seen for ever actively
smoking women with at least two at-risk genotypes.

Conclusion Our results do not indicate a major role for XRCC1
and XPD polymorphisms in breast cancer susceptibility, but
suggest that they may modify the risk especially among smoking
women.

Introduction
Breast cancer is the most common female cancer among
western societies and its incidence increases constantly. Hor-
monal factors like early age at menarche, later age at meno-
pause, later age at first full term pregnancy, and hormone
replacement therapy are known to be the main risk factors for
sporadic breast cancer [1,2]. Also, alcohol appears to contrib-
ute to the increased risk for this malignancy, whereas the

results concerning smoking are inconsistent [3-6]. The incon-
sistencies might be due to several factors. For instance, ciga-
rette smoke increases the production of reactive oxygen
species (ROS) and contains chemical carcinogens capable of
forming DNA adducts [7], both implicated in carcinogenesis.
On the other hand, tobacco smoke has been suggested to
have an anti-estrogenic and, therefore, anti-carcinogenic
effect [8]. It has also been suggested that the genetic back-
ground might modify the association between tobacco smoke
and breast cancer [4].
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Unrepaired or misrepaired DNA damage can lead to gene
mutations, chromosomal alterations, and genomic instability,
known to have a role in cancer initiation. Accordingly, individu-
als with reduced DNA repair capacities might have an altered
cancer risk [9-11]. During recent years, several polymor-
phisms in the genes encoding the DNA repair enzymes have
been found and studied in relation to cancer proneness
[12,13].

XRCC1 (X-ray repair cross-complementing group 1) is known
to participate in base excision repair (BER) of small lesions
such as oxidized or reduced bases, fragmented or nonbulky
adducts, and lesions caused by methylating agents [14]. The
XRCC1 is a multidomain protein that has no known catalytic
activity itself but it recruits DNA polymerase β, DNA ligase III
and poly(ADP-ribose) polymerase (PARP) that are needed at
the site of DNA damage [15].

Three gene polymorphisms resulting in non-conservative
amino acid substitutions (Arg194Trp, Arg280His and
Arg399Gln) have been identified in the XRCC1 gene [12].
Two of these (Arg280His and Arg399Gln) were recently pre-
dicted to be likely to affect the function of the protein based on
the conservation of the amino acids among protein family
members [16]. The XRCC1 Arg280His polymorphism lies in
between the DNA polymerase β and PARP binding areas [17].
The 280His variant allele has been suggested to confer
increased mutagen sensitivity [18] and breast cancer risk [19],
although contrasting results exist [20-22].

The XRCC1 Arg399Gln polymorphism is located in the area
coding for a PARP binding site. PARP is a zinc-finger contain-
ing enzyme that detects DNA strand breaks [23]. Carriers of
the XRCC1-399 Gln variant allele have been shown to have
higher levels of DNA adducts [20] and to be at greater risk for
ionizing radiation sensitivity [24] and tobacco-related DNA
damage [25-27]. A positive association between the 399Gln
variant allele and breast cancer risk has been seen in some
studies [21,22,28,29] while no overall association has been
seen in others [19,29-36].

The nucleotide excision repair (NER) pathway repairs a wide
variety of DNA damage, including cross-links, oxidative dam-
age and bulky adducts (such as polycyclic aromatic hydrocar-
bon (PAH)-DNA adducts). The XPD (XP complementation
group D) gene encodes a helicase involved in transcription
and in the NER pathway by unwinding of double helix at the
site of deleterious DNA lesions [37]. Several single nucleotide
polymorphisms (SNPs) have been described in the XPD gene.
Two of these SNPs lead to amino acid change, Asp312Asn in
exon 10 and Lys751Gln in exon 23, and are in strong linkage
disequilibrium with each other [12,38]. The XPD-751 Gln var-
iant allele has been associated with increased DNA adduct
levels [39,40] and suboptimal DNA repair [11,38], but con-
trasting results also exist [41]. It has recently been associated

with increased risk of smoking-related cancers, such as lung
cancer [42] and squamous cell carcinoma of head and neck
[43], and recently a significant effect was also seen for breast
cancer [44]. Contrasting results also exist [11,40,45-47].

In this study, we evaluated the role of XRCC1 Arg280His,
XRCC1 Arg399Gln, and XPD Lys751Gln polymorphisms in
breast cancer susceptibility in our Finnish Caucasian study
population. We especially aimed at examining the genotype
effects in relation to smoking, which is known to cause DNA
damage repaired by DNA repair enzymes of the BER and NER
pathways. The role of alcohol was also evaluated in this
context.

Materials and methods
Study population
Breast cancer cases had been referred by a physician to the
Kuopio University Hospital (Finland) during the recruiting
period from 1990 to 1995 because of a suspect breast sign
or symptom. Women were asked to participate in the study
and were interviewed by a trained study nurse before any diag-
nostic procedures. The study was approved by the Joint Com-
mittee of the University of Kuopio and Kuopio University
Hospital. Participation was based on written consent.

A total of 516 out of 1,919 women were eventually diagnosed
with histologically confirmed breast cancer. The details of the
study population and recruitment have been described earlier
[48]. The contact rate for the cases, calculated as described
in [49], was 86%, the cooperation rate was 98%, and the
overall response rate 84%.

Healthy population controls living in the same area as the
cases were a randomly selected group of subjects drawn from
the Finnish National Population register. They were initially
contacted by a letter explaining the study protocol, and subse-
quently called up and invited to the hospital to be interviewed.
In all, 514 controls were interviewed in parallel with the cases,
all of whom agreed to participate in a genetic study. The coop-
eration rate for the controls was 72%.

Blood samples were collected at the time of the interview.
Lymphocyte DNA was available for 483 breast cancer patients
and 488 controls. Six subjects among controls were excluded,
four because of earlier breast cancer diagnosis and two
because of non-Finnish origin. The final case group included
483 cases (mean age 58.9 years, range 44.3 to 91.6) and 482
controls (mean age 53.5 years, range 37.5 to 77.2), all of Finn-
ish Caucasian origin.

Detailed data on smoking habits included the amount of ciga-
rettes with or without filter/day, years of smoking, time since
quitting smoking, and time (in years) of passive smoking at
home and/or at work.
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Genotyping analyses
Lymphocyte DNA (100 ng) extracted by standard methods
was used as a template in PCR-based restriction fragment
length polymorphism (RFLP) assays. For the XRCC1
Arg280His genotype determination, a 282 base pair (bp) frag-
ment was amplified using the primers described earlier [18].
After digestion of the PCR product with 3 U of RsaI, the
280Arg wild-type allele was revealed by two 141 bp frag-
ments, while an intact 282 bp fragment indicated the presence
of the 280His variant allele.

In the XRCC1 Arg399Gln genotype analysis, a 615 bp frag-
ment amplified using the primers described in [20] was
digested with 3 U of MspI restriction enzyme; the XRCC1-399
Arg wild-type allele was revealed by the presence of 221 bp
and 374 bp fragments while the 399Gln variant allele
remained intact (615 bp).

The XPD Lys751Gln genotypes were determined by amplify-
ing a 324 bp fragment with the primers described in [50]. The
resulting fragment was digested with 3 U of PstI; the amplicon
from the 751Lys wild-type allele was cut into 220 bp and 104
bp fragments while the amplicon from the 751Gln variant
allele was cut into 157 bp, 104 bp and 63 bp fragments.

The genotype analyses were performed unaware of the case-
control status. Two positive controls with known genotype and
two negative controls were used within each PCR amplifica-
tion batch, and two independent researchers interpreted the
gel images to ensure the validity of genotyping for each poly-
morphism. The PCR for samples with divergent results was
repeated and an additional 10% of all samples were reana-
lysed for each polymorphism for quality control. No discrepan-
cies were found in the replicate tests. The XRCC1 Arg280His
genotype could not be determined for three cases and three
controls, the Arg399Gln genotype for four cases and four con-
trols, and the XPD Lys751Gln genotype for two cases and
two controls.

Statistical analyses
Association between genotypes and risk of breast cancer
were evaluated by unconditional logistic regression to calcu-
late multivariate adjusted odds ratios (ORs) and 95% confi-
dence intervals (CIs) using SPSS version 11.5 (SPSS Inc.,
Chicago, Illinois, USA). Calendar age, age at menarche, age at
first full term pregnancy, number of children, history of benign
breast diseases, first degree (mother, sister, daughter) family
history of breast cancer, waist-to-hip ratio and use of alcohol
and smoking were used as adjusting variables in all analyses.
Subjects with missing values in any of the adjusting variables
were excluded from the analysis. When the adjusted ORs dif-
fered significantly from the unadjusted ORs, both are shown.

Women who had smoked daily for longer than three months
were considered as smokers. Never smokers were catego-

Table 1

Selected characteristics of the study subjects

Characteristic Case/controla ORb (95% CI)

Age at menarche

≤12 98/101 1.0

13–14 219/251 0.82 (0.59–1.16)

≥15 150/127 0.99 (0.68–1.46)

Age at first full-term pregnancy

Nulliparous 102/57 1.0

≤25 237/263 0.55 (0.38–0.81)

26–30 94/122 0.44 (0.29–0.69)

≥31 47/40 0.64 (0.36–1.12)

Number of full-term pregnancies

Nulliparous 102/57 1.0

1 68/64 0.59 (0.36–0.98)

2 141/181 0.50 (0.33–0.76)

3+ 171/180 0.54 (0.36–0.80)

Waist-to-hip ratio

≤0.91 187/236 1.0

>0.91 291/243 1.38 (1.06–1.81)

First-degree family history of 
breast cancer

No 424/459 1.0

Yes 54/22 2.53 (1.48–4.31)

History of benign breast disease

No 296/313 1.0

Yes 180/167 1.33 (1.01–1.75)

Current alcohol intake

Never 271/206 1.0

Once a month or less 134/187 0.74 (0.54–1.01)

Daily-weekly 75/89 0.87 (0.59–1.29)

Smoking habits

Never active or passive 210/182 1.0

Passive only 153/169 0.78 (0.58–1.06)

Ever active 112/130 0.91 (0.65–1.28)

<5 pack-years 45/63 0.75 (0.48–1.16)

≥5 pack-years 67/67 1.08 (0.72–1.62)

a Total number of cases and controls does not correspond because 
of missing values.
b Adjusted for age. CI, confidence interval; OR, odds ratio.
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rized as those who had never been exposed to either passive
or active smoking, and as those exposed to passive smoking
only. Ever smokers were further categorized according to the
approximate median smoking years (15 years), daily consump-
tion (10 cigarettes) and pack-years of smoking (5 pack-years)
in the control population. Pack-years of cigarettes were calcu-
lated as the number of packs (20 cigarettes/pack) smoked per
day multiplied by years of smoking.

Based on the prior knowledge of the functional significance or
epidemiological evidence, the XRCC1-280 Arg/Arg and
XRCC1-399 Arg/Arg genotypes were used as reference cat-
egories for all separate analyses. As the frequency of the
XRCC1-280 His variant allele was low, the ORs were calcu-
lated for the combined XRCC1-280 His allele containing gen-
otypes in all analyses. Similarly, in the stratified analyses, the
XRCC1-399 Gln allele containing genotypes were combined
to increase statistical power. In contrast, a recessive model
was used for the XPD Lys751Gln polymorphism based on the
observed genotype distributions and some earlier publications
[42,51]. Therefore, the heterozygous XPD-751 Lys/Gln geno-
type was combined with the wild-type Lys/Lys genotype to
serve as a reference category. Possible gene environment
interactions were assessed using stratified analyses and inter-
action terms. Variables of interest were smoking and use of
alcohol. Tests for interactions were assessed by the likelihood
ratio test to compare goodness of fit of the model with the
interaction term, to the reduced model including the main
effect variable (genotype) and the main adjusting variables. All
reported p-values are two-sided. No attempt was made to
adjust for multiple comparisons.

Results
Characteristics of the study population are shown in Table 1.
Parity was associated with decreased risk of breast cancer
while higher waist-to-hip ratio, first degree family history of
breast cancer and history of benign breast disease were asso-
ciated with increased risk. No significant associations were
seen between breast cancer risk and smoking habits. Neither
were any statistically significant differences seen in the mean
number of cigarettes smoked per day (mean 11.2, SD 9.2, and
mean 9.5, SD 6.7, for cases and controls, respectively, p =
0.10), or in smoking years (16.1, SD 10.8, and 14.5, SD 10.8,
for cases and controls, respectively, p = 0.25).

The frequencies of the XRCC1-280 His, XRCC1-399 Gln,
and XPD-751 Gln variant alleles in controls were 0.08, 0.27,
and 0.43, respectively. All the genotype distributions in the
control population conformed to Hardy-Weinberg equilibrium
(p = 0.993, p = 0.657, and p = 0.876 for XRCC1-280,
XRCC1-399, and XPD-751 locuses, respectively). No statis-
tically significant differences were seen in the frequency of
these genotypes between cases and controls (Table 2). Nei-
ther was any significant difference seen for the polymorphisms
when stratified by menopausal status or age (data not shown).

When subjects were studied by the stage of the disease at the
time of diagnosis, a significant increase for advanced stage (III
or IV) breast cancer was seen for women with the XRCC1-
399 Gln/Gln genotype (OR 2.86, 95% CI 1.05–7.81) com-
pared to those with the Arg/Arg genotype. No increase in risk
was seen for lower stage (I or II) breast cancer (OR 1.33, 95%
CI 0.79–2.26). A similar tendency of increased risk for
advanced stage cancer was seen for subjects with the
XRCC1-280 Arg/His or His/His genotype (OR 1.99, 95% CI
0.90–4.42) compared to subjects with the Arg/Arg genotype.
Similarly, women with the XRCC1-399 Gln/Gln genotype pre-
sented with a significantly increased risk for grade II and grade
III tumours (OR 1.80, 95% CI 1.06–3.07) when compared to
those with the Arg/Arg genotype, while no increase was seen
for grade I tumours (OR 1.10, 95% CI 0.75–1.62). Moreover,
women who carried the XRCC1-399 Gln/Gln genotype and
were diagnosed with early stage (I or II) breast cancer had
tumours of higher grade (II or III) marginally (p = 0.065, one-
sided) more often than those with the Arg/Arg genotype,
86.1% (31/36) versus 72.5 % (137/189), respectively.

When the association between XRCC1-399 genotypes and
breast cancer risk was studied according to smoking habits,
increased breast cancer risk with dose-response was seen
among women who had ever smoked actively and carried
either one (OR 2.14, 95% CI 1.15–3.97) or two (OR 3.27,

Table 2

Association between XRCC1 and XPD polymorphisms and 
breast cancer risk

Genotype Cases (%) Controls (%) OR (95% CI)a

XRCC1-280

Arg/Arg 399 (83.1) 406 (84.8) 1.0

Arg/His 78 (16.3) 70 (14.6)

His/His 3 (0.6) 3 (0.6) 1.15 (0.80–1.66)b

XRCC1-399

Arg/Arg 237 (49.5) 256 (53.6) 1.0

Arg/Gln 196 (40.9) 185 (38.7) 1.24 (0.93–1.65)

Gln/Gln 46 (9.6) 37 (7.7) 1.39 (0.84–2.29)c

Arg/Gln + Gln/Gln 242 (50.5) 222 (46.4) 1.26 (0.96–1.66)

XPD-751

Lys/Lys 147 (30.6) 155 (32.3) 1.0

Lys/Gln 238 (49.5) 237 (49.4) 1.03 (0.76–1.40)

Gln/Gln 96 (20.0) 88 (18.3) 1.10 (0.74–1.63)

Lys/Lys+Lys/Gln 385 (80.0) 325 (81.7) 1.0

Gln/Gln 96 (20.0) 88 (18.3) 1.08 (0.77–1.53)

aOdds ratios (ORs) and confidence intervals (CIs) adjusted for age, 
age at menarche, age at first full term pregnancy, number of 
pregnancies, history of benign breast disease, first degree family 
history of breast cancer, weist-to-hip ratio, smoking and use of 
alcohol. bOR for Arg/His and His/His genotypes combined. c p for 
trend = 0.105.
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95% CI 1.25–8.58, p for trend = 0.003) XRCC1-399 Gln var-
iant alleles compared to those carrying the Arg/Arg genotype
(p for interaction between smoking habits and XRCC1-399
genotype 0.025) (Table 3). A similar increase in risk was seen
for ever smoking women with the XPD-751 Gln/Gln genotype
compared to ever smoking women without this genotype (OR
2.52, 95% CI 1.27–5.03, p for interaction 0.011).

When ever smoking women were further stratified by pack-
years smoked (<5, ≥5 pack-years), the increase in risk was
seen to be confined to those who had smoked over five pack-
years and carried at least one XRCC1-399 Gln allele (OR
4.14, 95% CI 1.66–10.3), or the XPD-751 Gln/Gln genotype
(OR 4.41, 95 % CI 1.62–12.0) compared to similarly smoking
women without these genotypes (Table 4). Similar effects
were seen for the XRCC1 Arg399Gln genotypes when smok-
ers were stratified by daily tobacco consumption (<10, ≥10
cigarettes/day) or by smoking years (<15, ≥15 years). The
ORs were 5.32 (95% CI 1.97–14.4) for women smoking ≥10
cigarettes/day and carrying at least one XRCC1-399 Gln
allele, and 4.03 (95% CI 1.40–11.6) for women who had
smoked ≥15 years and carried at least one XRCC1-399 Gln
allele, compared to women with similar smoking habits but
with the XRCC1-399 Arg/Arg genotype. For the carriers of the
XPD-751 Gln/Gln genotype, a similar increase in the risk of
breast cancer was seen for women smoking ≥10 cigarettes/
day (OR 4.78, 95% CI 1.50–15.2) while no statistically signif-
icant increase was seen by smoking years (OR 2.25, 95% CI

0.85–5.96 for women smoking ≥15 years), compared to
women smoking the same amount, but not carrying the
homozygous variant XPD-751 Gln/Gln genotype.

When stratified by current use of alcohol, women who
reported using alcohol weekly to daily and carried the XPD-
751 Gln/Gln genotype were at 3.18-fold (95% CI 1.34–7.57)
increased risk of breast cancer compared to similarly drinking
women carrying the other genotypes (p for interaction 0.026).
No interaction was found between XRCC1-280 or XRCC1-
399 genotypes and current use of alcohol (data not shown).

When the joint effect of the XRCC1-280, XRCC1-399, and
XPD-751 genotypes was studied, a statistically significant
increase in the risk of breast cancer was seen for subjects car-
rying two at-risk genotypes of these genes (OR 1.54, 95% CI
1.00–2.37) compared to subjects with the wild-type geno-
types for all three polymorphic sites (Table 5). This increase
was mainly due to the combined effect of XRCC1-399 and
XPD-751 genotypes (OR 1.80, 95% CI 1.05–3.08, p for
gene-gene interaction 0.043). A trend of increasing risk with
increasing number of at-risk genotypes was seen (p for trend
0.042). However, this estimate did not reach statistical signif-
icance (OR 4.76, 95% CI 0.48–47.8), possibly due to the low
number of subjects with all the three at-risk genotypes (four
cases and one control). When the combined effects were
studied among ever active smokers, women who carried any
two at-risk genotypes were at remarkably increased risk of

Table 3

Association between XRCC1 and XPD genotypes and breast cancer risk according to smoking habits

Genotype Never active or passive smoking Only passive smoking Active smoking

Cases (%) Controls 
(%)

OR (95% CI)a Cases (%) Controls 
(%)

OR (95% CI)a Cases 
(%)

Controls 
(%)

OR (95% CI)a

XRCC1-280

Arg/Arg 177 (84.7) 154 (84.6) 1.0 120 (79.5) 140 (83.8) 1.0 94 (83.9) 111 (86.0) 1.0

Arg/His+His/His 32 (15.3) 28 (15.4) 1.09 (0.60–1.99) 31 (20.5) 27 (16.2) 1.11 (0.59–2.08) 18 (16.1) 18 (14.0) 1.41 (0.65–3.08)

XRCC1-399

Arg/Arg 118 (56.5) 89 (48.9) 1.0 72 (47.7) 91 (54.5) 1.0 45 (40.5) 75 (58.6) 1.0

Arg/Gln 76 (36.4) 76 (41.8) 0.83 (0.53–1.31) 67 (44.4) 66 (39.5) 1.40 (0.84–2.32) 49 (44.2) 43 (33.6) 2.14 (1.15–3.97)

Gln/Gln 15 (7.2) 17 (9.3) 0.73 (0.33–1.64) 12 (7.9) 10 (6.0) 1.61 (0.61–4.23) 17 (15.3) 10 (7.8) 3.27 (1.25–8.58)b

Arg/Gln+Gln/Gln 91 (43.5) 93 (51.1) 0.81 (0.53–1.25) 79 (52.3) 76 (45.5) 1.42 (0.87–2.32) 66 (59.5) 53 (41.4) 2.33 (1.30–4.19)c

XPD-751

Lys/Lys 66 (31.6) 58 (31.9) 1.0 40 (26.3) 56 (33.3) 1.0 40 (35.7) 40 (31.0) 1.0

Lys/Gln 109 (52.2) 91 (50.0) 1.03 (0.63–1.66) 83 (54.6) 77 (45.8) 1.35 (0.78–2.34) 40 (35.7) 77 (45.8) 0.68 (0.35–1.33)

Gln/Gln 34 (16.3) 33 (18.1) 0.78 (0.40–1.49) 29 (19.1) 35 (20.8) 0.84 (0.41–1.69) 32 (28.6) 35 (20.8) 1.96 (0.89–4.32)

Lys/Lys+Lys/Gln 175 (83.7) 149 (81.9) 1.0 123 (80.9) 133 (79.2) 1.0 80 (71.4) 109 (84.5) 1.0

Gln/Gln 34 (16.3) 33 (18.1) 0.77 (0.43–1.39) 29 (19.1) 35 (20.8) 0.70 (0.38–1.29) 32 (28.6) 20 (15.5) 2.52 (1.27–5.03)d

aOdds ratios (ORs) and confidence intervals (CIs) adjusted for age, age at menarche, age at first full term pregnancy, number of pregnancies, 
history of benign breast disease, first degree family history of breast cancer, weist-to-hip ratio and use of alcohol. bp for trend = 0.003. cInteraction 
between smoking habits and XRCC1-399 genotype (p = 0.025). dInteraction between smoking habits and XPD-751 genotype (p = 0.011).
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breast cancer; the adjusted OR was 10.7 (95% CI 3.62–
31.6) compared to those without these genotypes (Table 5).
This effect was mainly confined to combination of XRCC1-
399 and XPD-751 at-risk genotypes (OR 12.1, 95% CI 3.52–
41.5). When the combined effect was calculated for the
number of at risk alleles (XRCC1-280 His, XRCC1-399 Gln
and XPD-751 Gln), a similar increase in the risk was seen;
subjects with three at-risk alleles had an OR of 1.72 (95% CI
1.03–2.87; p for trend 0.069) among all women, and OR 4.62
(95% CI 1.56–13.7; p for trend 0.01) among ever actively
smoking women compared to women with no at-risk alleles.
Only four cases and one control carried simultaneously four at-
risk alleles, and none more than four (of the six).

Discussion
In this study, we examined the role of XRCC1 Arg280His,
XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms in
relation to breast cancer risk in a Finnish study population. As
the products of these genes act in BER and NER pathways,
and as some evidence exists on the association of these poly-
morphisms with smoking-related cancers [13,42,43,52], our
special interest was to study the role of these DNA repair
enzymes among smoking women. The hypothesis was also
supported by a recent finding of an association between the
XPD-751 Gln/Gln genotype and breast cancer risk in smoking
women [44].

The two polymorphisms Arg280His and Arg399Gln in the
coding region of the XRCC1 gene were recently predicted to
be 'possibly damaging' to XRCC1 function based on the con-
servation of the sequences in mammalian orthologues [16]. In
agreement with this, the frequency of the variant XRCC1-399
Gln allele was somewhat higher among the present cases
compared to controls, leading to a tendency of increased
breast cancer risk. A similar effect has been reported in stud-
ies among Korean [28], US radiologic technologists [21],
Indian [22], and African-American [29] women. No increased
risk was found for white American women [29], in agreement
with three other studies performed among American women
[30-33]. Moreover, no association was seen in studies among
Chinese [35], French [19], Canadian [34], Turkish [36] and
Danish [46] women.

In contrast to the XRCC1 Arg399Gln polymorphisms, the
Arg280His polymorphism did not significantly modify breast
cancer risk in the present study. Similarly, no association was
seen for Indian women [22] or for US radiologic technologists
[21]. On the other hand, our findings are in contrast to a
French study showing a 1.8-fold (95% CI 1.04–3.08) increase
in breast cancer risk for the XRCC1-280 Arg/His genotype
[19]. One reason for this divergence could be the lack of
power; the frequency of the 280His allele is low (0.08) among
Caucasians, including Finns. Consequently, even though hav-
ing almost twice the size of the French study, the power of our
study to detect an OR of 1.5 at a 0.05 significance level was

Table 4

The association between XRCC1 and XPD genotypes and breast cancer risk according to pack-years smoked

<5 pack-years >5 pack-years

Cases n (%) Controls n (%) OR (95% CI)a Cases n (%) Controls n (%) OR (95% CI)a

XRCC1-280

Arg/Arg 37 (82.2) 51 (82.3) 1.0 57 (85.1) 60 (89.6) 1.0

Arg/His+His/His 8 (17.8) 11 (17.7) 0.91 (0.28–2.95) 10 (14.9) 7 (10.4) 1.99 (0.57–7.02)

XRCC1-399

Arg/Arg 20 (44.4) 35 (57.4) 1.0 25 (37.9) 40 (59.7) 1.0

Arg/Gln 18 (40.0) 22 (36.1) 1.21 (0.46–3.18) 31 (47.0) 21 (31.3) 4.31 (1.66–11.2)

Gln/Gln 7 (15.6) 4 (6.6) 3.99 (0.82–19.4) 10 (15.2) 6 (9.0) 3.55 (0.81–15.6)

Arg/Gln+Gln/Gln 25 (55.6) 26 (42.6) 1.61 (0.64–4.06) 41 (62.1) 27 (40.3) 4.14 (1.66–10.3)

XPD-751

Lys/Lys 18 (40.0) 20 (32.3) 1.0 22 (32.8) 20 (29.9) 1.0

Lys/Gln 18 (40.0) 31 (50.0) 1.01 (0.37–2.77) 22 (32.8) 38 (56.7) 0.40 (0.14–1.12)

Gln/Gln 9 (20.0) 11 (17.7) 1.59 (0.44–5.74) 23 (34.3) 9 (13.4) 2.77 (0.90–8.59)

Lys/Lys+Lys/Gln 36 (80.0) 51 (82.3) 1.0 44 (65.7) 58 (86.6) 1.0

Gln/Gln 9 (20.0) 11 (17.7) 1.45 (0.46–4.56) 23 (34.3) 9 (13.4) 4.41 (1.62–12.0)

aOdds ratios (ORs) and confidence intervals (CIs) adjusted for age, age at menarche, age at first full term pregnancy, number of pregnancies, 
history of benign breast disease, first degree family history of breast cancer, weist-to-hip ratio and use of alcohol.
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only 67% for the XRCC1-280 His allele containing geno-
types. As the XRCC1-194 Trp variant allele is even less fre-
quent among Finns (approximately 0.03) [45] compared to
other Caucasians, and as the amino acid change has not been
shown to affect protein function [16], we decided not to
include this polymorphism in our study.

The XPD Lys751Gln polymorphism has been suggested to be
the most important functional polymorphism in the gene due to
major change in the electronic configuration of the respective
amino acid in an important interaction domain of the protein
[53]. However, no significant overall association with breast
cancer was seen in our study for the XPD Lys751Gln geno-
types. This was in agreement with the other five studies on the
XPD Lys751Gln polymorphism and breast cancer risk includ-
ing one in Finnish [45], one in Danish [46], one in German
[47], and two in US Caucasian women [11,40]. In contrast, a
significant association between the XPD-751 Gln allele and
breast cancer risk was seen in a recent study among American
women [44]. Moreover, the XPD Asp312Asn polymorphism
was recently shown to be associated with breast cancer risk
in a German population [47]. We decided not to analyse the
XPD Asp312Asn polymorphism as it has been shown to be
strictly linked with the Lys751Gln polymorphism [12,38].

When the present study subjects were stratified by stage of
disease, the XRCC1-399 Gln allele posed an elevated risk for
more advanced stage breast cancer. A similar tendency of

increased risk for more advanced stage breast cancer was
also seen for the Arg280His polymorphism. It can be hypoth-
esized that defective DNA repair leads to more aggressive
and, therefore, more advanced tumours at the time of diagno-
sis. This was also supported by the association of the XRCC1-
399 Gln allele with higher grade tumours. However, as earlier
studies on breast cancer have not evaluated the genotype
effects by the stage of the disease or tumour grade, these find-
ings remain to be confirmed in future studies.

Smoking alone did not significantly affect breast cancer risk in
the present study. This is in agreement with the majority of epi-
demiological studies on smoking and breast cancer risk, as
well as with a recent report of the Collaborative Group on
Hormonal Factors in Breast cancer, which concluded that cig-
arette smoking has little or no effect on the risk of developing
breast cancer [3]. There are, however, some studies reporting
increased risk in special subgroups, such as women who
started to smoke at an early age or before first pregnancy,
women smoking high intensity or long duration, passively
smoking women, and women with specific genotypes
(reviewed in [4]). In our study, a significant interaction was
seen between smoking habits and the XRCC1 Arg399Gln (p
= 0.025) or XPD Lys751Gln (p = 0.011) genotypes. Subjects
with the variant Gln/Gln genotypes were at increased risk of
developing breast cancer if they had ever smoked. Further-
more, a gene-dosage effect was seen for the XRCC1
Arg399Gln genotype; the increased risk was higher for sub-

Table 5

Combined XRCC1 and XPD genotypes and breast cancer risk among all and ever smoking women

All women Ever actively smoking women

No of at risk 
genotypes

XRCC1-280 XRCC1-399 XPD-751 Case/
Control

Unadjusted OR 
(95% CI)

Adjusted OR (95% 
CI)a

Case/
Control

Unadjusted OR 
(95% CI)

Adjusted OR 
(95% CI)a

0 Arg/Arg Arg/Arg Lys/Lys+ Lys/
Gln

145/159 1.0 1.0 23/46 1.0 1.0

1 Arg/Arg Arg/Arg Gln/Gln 32/44 0.80 (0.48–1.33) 0.72 (0.42–1.25) 8/12 1.33 (0.48–3.72) 1.20 (0.37–3.86)

1 Arg/Arg Arg/Gln+ Gln/
Gln

Lys/Lys+ Lys/
Gln

172/170 1.11 (0.81–1.51) 1.15 (0.83–1.60) 43/48 1.79 (0.94–3.43) 1.93 (0.93–4.05)

1 Arg/His+His/
His

Arg/Arg Lys/Lys+ Lys/
Gln

45/44 1.12 (0.70–1.80) 1.19 (0.72–1.97) 11/15 1.47 (0.58–3.70) 1.94 (0.69–5.44)

1 (any one at risk 
genotype)

- - - 249/258 1.06 (0.80–1.41) 1.09 (0.81–1.47) 62/75 1.65 (0.91–3.02) 1.80 (0.91–3.56)

2 Arg/Arg Arg/Gln+ Gln/
Gln

Gln/Gln 46/32 1.58 (0.95–2.61) 1.80 (1.05–3.08) 19/5 7.60 (2.52–22.0) 12.1 (3.52–41.5)

2 Arg/His+ His/
His

Arg/Gln+ Gln/
Gln

Lys/Lys+ Lys/
Gln

19/18 1.16 (0.59–2.29) 1.28 (0.62–2.64) 3/0 - -

2 Arg/His+ His/
His

Arg/Arg Gln/Gln 13/9 1.58 (0.66–3.82) 1.36 (0.52–3.59) 3/2 3.00 (0.47–19.2) 3.47 (0.44–27.1)

2 (any two at risk 
genotypes)

- - - 78/59 1.45 (0.97–2.18) 1.54 (1.00–2.37) 25/7 7.14 (2.69–19.0) 10.7 (3.62–31.6)

3 Arg/His+His/
His

Arg/Gln+ Gln/
Gln

Gln/Gln 4/1 4.39 (0.49–39.7) 4.76 (0.48–47.8)b 1/0 - -

aOdds ratios (ORs) and confidence intervals (CIs) adjusted for age, first degree family history of breast cancer, age at menarche, number of 
children, age at first full term pregnancy, history of benign breast disease, weist-to-hip ratio and use of alcohol. bp for trend of having 1, 2 or 3 at-risk 
genotypes 0.042.
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jects carrying two XRCC1-399 Gln alleles. In contrast, the
effect of the XPD-751 Gln allele seemed to be recessive.
When ever smokers were further stratified by the amount of
smoking, the risk estimates remained statistically significant
among those who reported having smoked more than five
pack-years.

The associations found between the XRCC1 Arg399Gln and/
or XPD Lys751Gln genotypes, smoking, and breast cancer
risk are biologically plausible. Cigarette smoke is a rich source
of chemical carcinogens and ROS [7]. ROS can initiate lipid
peroxidation, oxidize proteins, and cause base damage and
DNA single strand breaks that are repaired through BER.
Accordingly, the XRCC1-399 Gln/Gln genotype has been
found to be related to increased sister chromatid exchange
frequencies among smokers [25]. Similarly, a higher frequency
of sister chromatid exchange has been reported for carriers of
the 399Gln allele who have smoked ≥10 cigarettes/day [27],
and higher levels of tobacco-specific nicotine-derived nitro-
samino ketone-induced sister chromatid exchange in cells
with the XRCC1-399 Gln allele containing genotypes com-
pared to cells homozygous for the Arg allele [26]. It can thus
be hypothesized that the XRCC1-399 Gln allele is associated
with increased risk of smoking-dependent cancers. In agree-
ment with this, a higher risk of lung cancer has been reported
for the carriers of the XRCC1 Gln/Gln genotype [52],
although negative studies also exist [54,55]. Breast cancer is
not generally regarded as a smoking-dependent cancer. In a
recent study on breast cancer, the XRCC1-399 Gln allele was
significantly associated with detectable PAH-adducts only in
never smokers [33]. They speculated that smoking might stim-
ulate DNA repair and thus the effect seen would be due to
other sources of PAHs. Only one earlier study on breast can-
cer risk has reported a positive association between XRCC1-
399 polymorphism and smoking, but in contrast to our study,
the highest risk was seen for subjects who were homozygous
for the XRCC1-399 Arg allele [29]. Unfortunately, the possi-
ble association with smoking has not been reported in all stud-
ies on the XRCC1-399 genotypes [19,22,30,31,36].

In addition to ROS, tobacco smoke includes chemical carcin-
ogens, such as polycyclic aromatic hydrocarbons, aromatic
amines and tobacco-specific nitrosamines, that can produce
bulky DNA adducts, which are repaired through the NER path-
way. There is evidence that tobacco smoke constituents can
reach breast tissue [7], and higher levels of the tobacco
smoke derived 4-aminobiphenyl adducts [56] and PAH-DNA
adducts have been found in breast tissue of breast cancer
cases [57-59]. Mammary epithelial cells are capable of metab-
olising and activating these compounds. Therefore, the
hypothesis is that breast cancer cases with suboptimal DNA
repair capacity would have less efficient removal of these
adducts, thus making them more vulnerable to the hazardous
effects of these compounds. Accordingly, the XPD-751 Gln
allele has been associated with increased DNA adduct levels

in never smokers [39] and in tumour tissue from breast cancer
cases [40], as well as with suboptimal DNA repair [11,38]. A
recent meta-analysis showed an association between the
XPD-751 Gln/Gln genotype and increased lung cancer risk
[42]. This was not, however, confirmed by another recent
meta-analysis [60]. In accordance with our results, a similar
increased breast cancer risk was recently seen among cur-
rently smoking American women with the XPD-751 Gln/Gln
genotype [44]. Similarly to our study, no clear pattern with
duration of smoking was seen. This could partly be due to low
numbers in these strata, or it can be hypothesized that a higher
intensity of smoking is needed to see the difference between
these genotypes, while in subjects with lower intensity but
longer duration the repair system is capable of overcoming the
harmful effects.

Alcohol is a known risk factor for breast cancer; increased
estrogen and androgen levels have been observed in alcohol
consuming women [61]. Alcohol consumption is also believed
to contribute to oxidative stress [62]. We therefore analysed
the results also stratified by the use of alcohol. A significantly
increased three-fold risk of breast cancer was seen for women
who carried the XPD-751 Gln/Gln genotype and used alcohol
weekly or daily. No earlier studies on the XPD genotype and
breast cancer have reported an association with the use of
alcohol. However, a 2.59-fold (95% CI 1.25–5.34) risk was
seen for squamous cell carcinoma of head and neck among
current drinkers carrying the XPD-751 Gln/Gln genotype
compared to those drinking the same amount but with the
other genotypes [43].

When the gene-gene interactions were studied, clear com-
bined effects were seen, especially among ever smoking
women; smoking women with any two at-risk genotypes were
at remarkably increased risk of breast cancer (OR 10.7, 95%
CI 3.62–31.6) compared to smoking women without these
genotypes. These effects were mainly due to XRCC1-399 and
XPD-751 genotypes while the XRCC1-280 genotype was a
minor contributor, possibly partly due to the very low frequency
of the XRCC1-280His variant alleles. When the combined
effect was studied according to the number of at-risk alleles,
subjects with any three variant alleles were found to be at
increased risk. There was no subject who simultaneously car-
ried more than four at-risk alleles in these three polymorphic
sites.

It should be noted that even if our study involved a reasonable
number of study subjects, the numbers in some subgroup
analyses were small, and the statistical power to detect signif-
icant point-estimates is, therefore, low. Furthermore, due to
multiple comparisons performed in the study, the possibility of
chance findings should be borne in mind. However, in addition
to the plausibility of the findings, the dose-response seen by
the number of at-risk alleles or genotypes and amounts
smoked support the causality of the findings.
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In case-control studies, the possibility of selection and recall
bias should be considered. However, the detailed data about
smoking habits and other life style factors were collected prior
to diagnosis, and the exposure to passive smoking, quite often
disregarded, was taken into account. It is also unlikely that
selection would be related to an individual's genotype. As the
statistical analyses were performed within exposure groups
and not between them, the possibility of biased estimates is
further reduced.

Even though the present findings are biologically plausible, the
possibility of the association with another gene polymorphism
in the same region should be considered. Accordingly, it was
recently reported that three markers, RAI, ASE-1 and ERCC1,
in the same chromosomal region 19q13.2-3 define a high-risk
haplotype that poses women under 55 years to a significantly
increased breast cancer risk [46]. In that study, no association
was seen with the XRCC1 or XPD genotypes but the effects
were not studied by smoking habits. In our study, no difference
in the risk estimates was seen by age.

Finally, it should be noted that not all the known polymor-
phisms in the BER and NER pathways were analysed in this
study. For the XRCC1 Arg194Trp polymorphism, association
has been seen with increased mutagen sensitivity [63], risk of
developing an adverse response to radiotherapy [19], as well
as interaction with high intake of fruits and vegetables [33],
and it could thus be hypothesized to affect breast cancer risk
in population where it exists in higher frequency. Similarly, pol-
ymorphism has been detected in another gene, OGG1,
encoding an enzyme important in the BER pathway, as well as
numerous other genes encoding for possibly important repair
enzymes in the NER pathway, namely XPA, XPC, XPF and
XPG.

Conclusion
We found a statistically significant association between the
XRCC1 and XPD genotypes and breast cancer risk in Finnish
smoking women, especially when enzymes in both DNA repair
pathways were defective. This finding is of particular interest
as smoking, being the main preventable risk factor for cancer,
is constantly increasing among female adolescents in many
countries, including Finland. However, it should be borne in
mind that the two studied DNA repair genes account for only
a small part of the known genetic variations in these pathways
and, therefore, most probably do not explain the whole picture,
but should be considered in the context of other possible
genes. These results, together with our earlier results concern-
ing polymorphisms in estrogen metabolizing enzymes [64],
support the view that it is crucial to study simultaneously the
effect of environmental exposures and genotypes in order to
better understand and reveal the complex associations
between genetic factors, life style and cancer.
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