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BM = basement membrane; DCIS = ductal carcinoma in situ; Dsc = desmocollin; Dsg = desmoglein; ECM = extracellular matrix; ER = estrogen
receptor; HGF = hepatocyte growth factor; MMP = matrix metalloproteinase; MMTV = mouse mammary tumor virus; PTHrP = parathyroid hormone-
related peptide; TEB = terminal end bud.
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Abstract
The mammary gland consists of an extensively branched ductal
network contained within a distinctive basement membrane and
encompassed by a stromal compartment. During lactation,
production of milk depends on the action of the two epithelial cell
types that make up the ductal network: luminal cells, which secrete
the milk components into the ductal lumen; and myoepithelial cells,
which contract to aid in the ejection of milk. There is increasing
evidence that the myoepithelial cells also play a key role in the
organizational development of the mammary gland, and that the
loss and/or change of myoepithelial cell function is a key step in
the development of breast cancer. In this review we briefly address
the characteristics of breast myoepithelial cells from human breast
and mouse mammary gland, how they function in normal mammary
gland development, and their recently appreciated role in tumor
suppression.

Introduction
The mammary ductal tree is a bilayered structure that
consists of an iterative repetition of basic functional elements.
However, when comparing the mouse and human mammary
glands, differences emerge. In the mouse the mammary
epithelial cells are encased by a periductal stroma that is
surrounded by fat tissue, whereas human breast epithelial
cells are directly encompassed by highly vascularized
intralobular loose connective tissue, and are separated from
the adipose tissue by dense interlobular fibrous connective
tissue [1]. Moreover, in the mouse, branching ducts terminate
in end buds that differentiate during pregnancy and lactation
into lobular acini (for review [2]), whereas the human breast
exhibits a higher level of differentiation, with terminal ductal
lobular units present in the resting state; these lobular acini
differentiate further during pregnancy and lactation to secrete
milk (for review [1]).

The ductal network in both mouse and human is comprised of
two epithelial cell types: luminal epithelial and myoepithelial

cells. Ductal myoepithelial cells are spindle shaped and
oriented parallel to the long axis such that they form a
continuous layer around the luminal cells, especially in the
ducts (Fig. 1); upon contraction the myoepithelial cells
decrease the length and increase the diameter of the ducts to
eject the milk [3]. In contrast, acinar myoepithelial cells are
stellate shaped, forming a discontinuous basket-like network
around the luminal cells, although during pregnancy and
lactation the myoepithelial cell body and processes extend to
fully encompass the expanded alveolar epithelial cells [3].
Functionally, myoepithelial cells are a hybrid of both smooth
muscle (‘myo’) and epithelial cells (Table 1). Like muscle
cells, myoepithelial cells express filamentous smooth muscle
actin and smooth muscle myosin, and exhibit contractile
properties; like epithelial cells, myoepithelial cells express
intermediate filaments (the epithelial keratins) [4-6] and have
cadherin-mediated cell–cell junctions [1,4,7,8]. Structurally,
myoepithelial cells form distinct desmosomes with both
luminal cells and other myoepithelial cells, generate gap
junctions and cadherin–cadherin interactions with other
myoepithelial cells, and adhere to the basement membrane
(BM) via hemidesmosomes [9-12].

The structural and functional elements of myoepithelial cells
are inextricably linked. During lactation, myoepithelial cells
contract in response to oxytocin and move milk into the ducts
(for review [13]), and gap junctions and cadherin-based
interactions connecting myoepithelial cells function to
coordinate the ejection of milk smoothly (for review [14]).
During development, myoepithelial cells also act to induce
luminal cell polarity [5,15] and to regulate ductal morpho-
genesis [16]; here, connection to the BM and the desmo-
somal interactions with the luminal epithelial cells facilitate
paracrine regulatory mechanisms. Proper coordination of all
of these activities is necessary to maintain normal breast
function; accordingly, it is unsurprising that the loss of
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myoepithelial function is almost universally associated with
breast cancer [1,15,17].

Myoepithelial function in normal breast
The functional interactions that define the bilayered acinus
have been explored using three-dimensional culture systems.
When phenotypically normal human or rodent luminal cells are
grown in laminin-rich extracellular matrix (lrECM) gels, they
recreate the structure and function of the acinus found in vivo
even in the absence of myoepithelial cells [6,18]. We believe
that this is possible, in part, because cultured luminal cells
express a number of proteins that are characteristic of
myoepithelial cells in vivo (e.g. β4 integrin [10], epidermal
growth factor receptor [19], vimentin [20], maspin [21], and
others; for review [1]). It may be that luminal cells can form
acinar structures in culture because of this ability to become
luminal/myoepithelial ‘hybrids’. The possibility that expression
of specific myoepithelial proteins confers distinctive signaling
cues that promote cell survival and proper apicobasal polarity
is an active area of investigation in our laboratory and those of
our collaborators [15,18,22,23].

Of the molecules produced by myoepithelial cells to regulate
luminal cell function, laminin-1 and desmosomal proteins have
emerged as key mediators. Laminin-1 is a heterotrimer of α1,
β1 and γ1 chains, and is a major component of BM (for
review [24]). Embryos derived from murine embryonic stem
cells null for the laminin-1 β1 and γ1 chains are embryonically

lethal at day 5.5 and lack BM [25,26]. Interestingly, embryos
derived from murine embryonic stem cells null for the laminin-1
α1 chain or the α1 LG4-5 domains are also embryonically
lethal; however, these null embryos do form an embryonic
BM, possibly because of compensation by the α5 chain from
laminin-10 (α5β1γ1) [26-28].

Cell/laminin-1 interactions were previously implicated in
tissue morphogenesis and maintenance of polarity in kidney,
salivary gland, and intestine and mammary epithelial cells [29-
32], and we showed that interactions with laminin-1 are
important for the functional mammary cell differentiation to
produce the milk protein β-casein [33]. Disruption of
signaling by β1 integrin inhibitory antibodies or by the E-3
fragment of laminin-1 inhibits the expression of β-casein
[33,34], and subsequent experiments have suggested that
organized polymerization of laminin-1 is required for
functional mammary differentiation [35-37]. We previously
showed that human breast luminal cells, when grown in three-
dimensional type I collagen as opposed to laminin-rich gels,
form structures with altered integrins [38] that have reversed
polarity and lack central lumina [15]; however, if these same
cells are cocultured with myoepithelial cells in collagen I gels

Figure 1

Cross-section of a bilayered duct. Secretory luminal cells (LEPs) are
apically located to contractile myoepithelial cells (MEPs) and the
basement membrane (BM). Milk proteins and cleaved Muc1 are
secreted into the luminal space during lactation. Desmosomes
containing desmoglein (Dsg)2 and desmocollin (Dsc)2 form between
adjacent luminal cells and between adjacent LEPs and MEPs.
Desmosomes between MEPs contain Dsg3 and Dsc3. MEPs as
contractile cells contain smooth muscle actin and adhere to the BM via
hemidesmosomes.

Table 1

Phenotypic traits of normal human breast myoepithelial cells

Myoepithelial markers Ref.

CK5 [75]

CK14 [85]

CK17 [77]

BG3C8 [86]

Vimentin [20]

GFA [87]

α-Smooth muscle actin [88]

Smooth muscle–MHC [89]

Calponin [89]

CALLA [90]

Thy-1 [15]

P-cadherin [91]

α1 Integrin [89]

α6 integrin [92]

β4 integrin [93]

Connexin-43 [94]

bFGF [55]

Laminin [95]

Maspin [68]

Methallothionein [96]

Adapted from Ronnov-Jessen and coworkers [1].
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they exhibit correct apicobasal polarity, as they do when
cultured in lrECM gel [15] (for review [39]). It was revealed
that the myoepithelial cells are the only epithelial cells in the
breast that produce the α1 chain of laminin-1, and thus they
are a key determinant for correct luminal cell polarization in
three-dimensional collagen [15]. Although the experiments
described above demonstrated that laminin-1 could direct the
formation of acinar structures in three-dimensional cultures, it
was not clear whether laminin-1 was the molecule that
directed this morphogenic process in vivo or whether other
molecules are also involved.

Parallel studies by others using a rotary culture system have
suggested an alternative solution in which cell–cell adhesion
may be the ultimate regulator for establishment of the acinar
structure (Fig. 2). Runswick and coworkers found that
inhibition of myoepithelial-specific desmosomal cadherins,
desmocollin 3 (Dsc 3) desmoglein 3 (Dsg 3), prevented
morphogenesis of the bilayered acinus structure and
disrupted the basal positioning of myoepithelial cells [5,39].
These experiments suggested that functional desmosomes
between adjacent myoepithelial cells and epithelial cells are
involved in the formation of acinar-like structures. It remains to
be shown whether laminin or desmosomal proteins are
sufficient for polarity or whether both are required; this
question is under investigation in our laboratory.

Several transgenic mouse models have provided further
insight into the role played by myoepithelial cells during

mammary gland morphogenesis. The cell adhesion receptor
P-cadherin is localized to myoepithelial cells; among mice
that are homozygous null for P-cadherin, virgin mice exhibit
precocious mammary gland development similar to the
differentiation that is normally present in early pregnant
animals [40]. These findings suggest that myoepithelial
expression of P-cadherin may provide an inhibitory signal for
luminal cell growth [41]. The parathyroid hormone-related
peptide (PTHrP) has been implicated in epithelial–stromal
interactions during mammary gland development [42]. In the
K14-PTHrP transgenic model, overexpression of the peptide
hormone PTHrP in myoepithelial cells inhibits side branching,
and ductal elongation is stunted compared with wild-type
mice, suggesting that perturbing myoepithelial–stromal inter-
actions affects growth and differentiation of luminal cells [43].

These studies provide insight into specific processes by
which myoepithelial cells transmit information for apicobasal
polarity and branching morphogenesis; future studies will
need to focus on the molecular mechanisms by which these
factors interact to establish the acinar structure and the
hierarchical nature of their activities.

Paracrine regulator during morphogenesis
Ductal elongation requires the production and organization of
new BM, and myoepithelial cells play a key role in these
processes as well. Myoepithelial cells synthesize BM
components such as collagen IV, laminin-1, laminin-5, and
fibronectin that regulate ductal growth [44], and facilitate the

Figure 2

Three-dimensional culture method versus rotary culture. The methods shown utilize isolated purified human breast luminal and myoepithelial cells
from reduction mammoplasty. In the three-dimensional culture method, coculture of purified luminal and myoepithelial cells in collagen I gel results
in the formation of two different types of structures. The majority are (a) a single layer of cells that form acinar structures in which the secretion of
laminin-1 by surrounding myoepithelial cells signals to luminal cells to polarize correctly, and the minority are (b) double layer acinar structures that
are more reflective of the acinus in vivo. Gudjonsson and coworkers [15] showed that myoepithelial cells were able to induce correct luminal
polarity via the synthesis of the basement membrane (BM) component laminin-1. In contrast, in the (c) rotary culture method, purified luminal and
myoepithelial cells are grown in suspension. Acinar structures form, albeit at a smaller size compared with the three-dimensional method. Runswick
and coworkers [5] showed that blocking desmosome adhesion via blocking peptides inhibited acinar formation.
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sculpting of new BM through the production of matrix
metalloproteinases (MMPs), including MMP2 and MMP3
[45]. Myoepithelial cells also express morphogens and
growth factors that are activated in a coordinated manner
during morphogenesis. Neogenin, a receptor initially
identified to act in short and long range neuronal guidance
(for review [46]), is expressed by myoepithelial cells and cap
cells in terminal end buds (TEBs), a specialized structure at
the end of growing ducts [47]. In the mouse, the neogenin
knockout is perinatally lethal; however, transplantation studies
have shown that mammary glands null for neogenin exhibit
altered TEBs that appear disorganized, display breaks in the
BM, and contain aberrant subcapsular spaces [47]. It is
thought that neogenin may mediate netrin-dependent cell
clustering, which is required for the proper formation of the
TEB structure [47]. Similarly, the ephrin receptor ephB4 is
selectively expressed in myoepithelial cells [48], and mouse
mammary tumor virus (MMTV)-ephB4 transgenic mice exhibit
defects in mammary gland development with delayed
maturation, decreased branching, and decreased alveolar
development [49]. Myoepithelial cells also express the
heparin-binding growth factor pleiotrophin (also known as
HARP), which is active during growth and development [50],
and epimorphin, a morphogen that is required for mouse
mammary gland branching in three-dimensional culture
assays [51]. Over-expression of epimorphin disrupts the
organization of the ductal tree in transgenic mice [52].
Furthermore, myoepithelial cells synthesize and secrete basic
fibroblast growth factor (bFGF) [53-55] and hepatocyte
growth factor (HGF/SF), which function during tubular
morphogenesis [56]. (In culture assays HGF is believed to be
sufficient to mediate branching [57]; however, we previously
showed that it does so only if epimorphin is also expressed
[51].) Also, myoepithelial cells may modulate HGF-stimulated
branching by expression of activin Ba, a member of the
transforming growth factor-β superfamily [58]. Sophisticated
branching morphogenesis assays utilizing isolated luminal
and myoepithelial cells will be necessary to dissect how
these interactions control mammary gland branching.

Myoepithelial cells act in tumor suppression
The majority of breast cancer studies have focused on luminal
cells, because these are known to be the source of most
carcinomas of the breast (for review [1]). However,
progression to carcinoma involves alteration of the entire
organized structure of the breast; depending on tumor grade,
the changes can include the loss of apicobasal polarity,
collapse of the glandular structure, disappearance of normal
myoepithelial cells, and disruption of the BM at the
epithelial–stromal junction [1]. The mechanisms responsible
for the loss of the myoepithelial layer and BM in invasive
cancer are unknown. Man and Sang [59] proposed that loss
of myoepithelial cells in cancer is due to localized death of
these cells; however, this is not proven, and the potential
factors responsible for selective cell death are not known.
How myoepithelial cells may act to suppress tumor progres-

sion in vivo and how these functions are compromised during
cancer development remain major unanswered questions.

It is generally believed that myoepithelial cells rarely become
malignant (for review [60]). Recently, Angele and coworkers
[61] found that human luminal and myoepithelial cells differ in
their DNA repair capacity, and this may contribute to the
lower rate of transformation in myoepithelial cells.
Additionally, when they do undergo transformation, they
usually form benign or low-grade neoplasms. Myoepithelial
cells express many ECM structural proteins, proteinase
inhibitors and angiogenic inhibitors, and accumulate ECM
rather than degrade it, which may explain in part why these
lesions are not invasive [62,63].

In addition, myoepithelial cells express a number of type II
tumor suppressor genes, defined as factors that affect
phenotype through changes in expression rather than through
genetic mutation (Table 2) [64,65]. Barsky and coworkers
[62,66] were the first to use functional assays to show that
myoepithelial cells exhibit many antitumorigenic properties,
such as the ability to inhibit tumor cell invasion and angio-
genesis. Subsequent studies revealed that myoepithelial-
conditioned media inhibited the growth of breast cancer cell
lines and induced a G2/M cell cycle arrest [67]. The ability of
myoepithelial cells to inhibit breast cancer cell growth and
invasion may in part be attributed to their expression of
maspin, a member of the serpin family of serine protease
inhibitors. Over-expression of maspin in the breast cancer cell
line MDA-MB-435 resulted in inhibition of tumor functions
such as growth, angiogenesis, and invasion [68]. In addition,
Jones and coworkers [69] showed that myoepithelial cells
inhibit invasion through downregulation of MMP expression
by tumor cells and fibroblasts. These data suggest that
normal myoepithelial cells inhibit tumor cell function through a
combined suppression of tumor cell growth, invasion, and
angiogenesis.

Do cancer myoepithelial cells have altered
function?
The myoepithelial layer appears to remains intact in ductal
carcinoma in situ (DCIS); despite this, the myoepithelial cells
appear to be aberrant because they differ from normal
myoepithelial cells in gene expression, and secrete many
chemokines and other factors [70]. This indicates that
although myoepithelial cells are present, they no longer send
the correct signals to luminal cells. This observation raises
the question of whether there are differences between normal
myoepithelial cells and those myoepithelial cells that are
present in DCIS. Gudjonsson and coworkers [15] found that
20% of carcinomas in which myoepithelial cells were present
expressed little or no laminin-1, and that purified cancer
myoepithelial cells were unable, for the most part, to ‘polarize’
luminal cells in three-dimensional collagen assays. These data
suggested that cancer myoepithelial cells might be unable to
transmit the necessary cues to induce correct luminal cell

Available online http://breast-cancer-research.com/contents/7/5/190
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polarity, at least in part due to their inability to produce
laminin-1.

In another study, Allinen and coworkers [70] used SAGE
(serial analysis of gene expression) to identify gene
expression differences between myoepithelial cells isolated
from normal and DCIS samples (Fig. 3). Moreover, those
investigators found that cancer myoepithelial cells exhibited
the greatest changes in gene expression, and that the
chemokine CXCL14 was expressed at higher levels in the
DCIS myoepithelial cells than in normal myoepithelial cells.
Recently, the chemokine CXCL12/SDF-1 and its receptor
CXCR4 were implicated in the induction of tumor cell growth
and metastasis [71-73]. Thus, cancer myoepithelial cells,
rather than being tumor suppressors, may act to induce
growth, migration, and invasion of breast cancer cells, and to
undermine the integrity of BM.

Partial myoepithelial differentiation in
invasive cancer
Myoepithelial cells and myoepithelial differentiation are largely
absent in breast cancer (for review [74]), although there are
exceptions to this rule [75-77]. In the microarray analysis
performed by Perou and coworkers [78], the 15% (6/40
cases) of tested breast cancer cases that exhibited partial
myoepithelial differentiation were also estrogen receptor (ER)
negative, and Keese-Adu and colleagues [79] found that
29% (22/77 cases) of tested ER-negative breast cancer
samples also exhibited a partial myoepithelial phenotype.
These observations suggest a relationship between the loss
of ER expression and acquisition of myoepithelial character-
istics in breast cancer cells. The expression of the myo-
epithelial proteins keratin 14, α6β4 integrin, and Dsg 3 in
breast cancer cell lines has been shown to correlate with a
more aggressive phenotype in cell culture assays [80]. The
role played by myoepithelial cells in normal breast as
mediators of cell–ECM survival signaling and controllers of

morphogenesis may provide insight into why the loss of
myoepithelial cells in tumors appears to be linked to
expression of myoepithelial characteristics in some breast
cancer cells; expression of myoepithelial proteins such as
α6β4 integrin may promote tumor cell survival and metastasis
in the absence of tumor suppressive functions of normal
myoepithelial cells [22].

Conclusion
A key unknown player is the nature of the myoepithelial
precursor cell, identification of which may help to define the
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Table 2

Type II tumor suppressor genes expressed by myoepithelial cells

Myoepithelial tumor suppressor genes Function Reference

α-Smooth muscle actin Cytoskeletal structure; suppress cell growth and motility [97,98]

Cytokeratin-5 Cytoskeletal structure; regulates cell growth [99]

α6 integrin ECM receptor [100]

Caveolin-1 Regulation of cell growth [101]

Connexin-43 Gap junction protein [102]

Maspin Protease inhibitor [68]

TIMP-1 Protease inhibitor [17]

Relaxin Hormone-regulation, cell growth [103]

Activin Hormone regulation [58]

Adapted from Bissell and Radisky [65].

Figure 3

DCIS myoepithelial cells exhibit an altered gene expression. In the
normal breast myoepithelial cells (MEPs) are located between the
luminal cells and the basement membrane. By their location they might
act as a barrier to tumor invasion. In ductal carcinoma in situ (DCIS)
the myoepithelial layer is still present; however, Allinen and coworkers
[70] recently showed that there appears to be molecular differences
between MEPs present in normal breast versus DCIS lesions.
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pathways that stimulate myoepithelial differentiation and how
these pathways are disrupted during tumorigenesis. We and
others have shown that a bipotential progenitor cell may
reside in the luminal cell compartment; in cell culture
suprabasal luminal cells (MUC1–/ESA+) are able to generate
both luminal and myoepithelial cells [81,82]. If myoepithelial
cells are derived from a bipotential cell, then what pathways
stimulate myoepithelial fate? Using the mammosphere culture
system, Dontu and coworkers [83] showed that Notch
signaling stimulates multipotential progenitor cells to adopt a
myoepithelial lineage specific commitment. The Wnt signaling
pathway has also been implicated in myoepithelial
differentiation. Lie and coworkers [84] found that mammary
gland hyperplasias and tumors from Wnt-1 transgenic mice
contained a population of cells that expressed progenitor cell
markers Keratin-6 and Sca-1 [84]. Interestingly, the Wnt-1
tumors stained positive for both luminal and myoepithelial cell
markers, and similar results were found with the MMTV–β-
catenin and MMTV–c-myc transgenic mouse models. Loss of
heterozygosity for PTEN was detected in both the luminal and
myoepithelial cells, suggesting a common origin [84].

Clearly, the function of myoepithelial cells in the breast is
more than just contractility, and myoepithelial cells are more
than a fence between the milk-producing luminal cells and the
surrounding stroma. It is clear that much remains to be
learned about the physiological role of these cells in the
normal breast and the functional differences between normal
and cancer myoepithelial cells.
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