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Abstract

Introduction Se-methylselenocysteine (MSC), a naturally
occurring selenium compound, is a promising chemopreventive
agent against in vivo and in vitro models of carcinogen-induced
mouse and rat mammary tumorigenesis. We have demonstrated
previously that MSC induces apoptosis after a cell growth arrest
in S phase in a mouse mammary epithelial tumor cell model
(TM6 cells) in vitro. The present study was designed to examine
the involvement of the phosphatidylinositol 3-kinase (PI3-K)
pathway in TM6 tumor model in vitro after treatment with MSC.

Methods Synchronized TM6 cells treated with MSC and
collected at different time points were examined for PI3-K
activity and Akt phosphorylation along with phosphorylations of
Raf, MAP kinase/ERK kinase (MEK), extracellular signal-related
kinase (ERK) and p38 mitogen-activated protein kinase (MAPK).

The growth inhibition was determined with a [3H]thymidine
incorporation assay. Immunoblotting and a kinase assay were
used to examine the molecules of the survival pathway.

Results PI3-K activity was inhibited by MSC followed by
dephosphorylation of Akt. The phosphorylation of p38 MAPK
was also downregulated after these cells were treated with
MSC. In parallel experiments MSC inhibited the Raf–MEK–ERK
signaling pathway.

Conclusion These studies suggest that MSC blocks multiple
signaling pathways in mouse mammary tumor cells. MSC
inhibits cell growth by inhibiting the activity of PI3-K and its
downstream effector molecules in mouse mammary tumor cells
in vitro.

Introduction
Several organic and inorganic selenium compounds have
been reported to be effective chemopreventive agents against
multiple models of mammary tumorigenesis in both the mouse
and the rat [1-5]. Selenium compounds have been shown to
exert marked stage specificity, especially in preneoplastic
mammary lesions, but neither normal mammary gland develop-
ment nor existing mammary tumor growth was affected by
selenium supplemental status [1,6,7]. Although the precise
mechanisms by which selenium compounds inhibit mammary
tumorigenesis are not well understood, there is evidence that
the inorganic and organic selenium compounds act through
different pathways [8-10]. Selenium compounds have been
reported to affect numerous cellular events and molecular

pathways leading to apoptosis. Molecular targets for various
natural and synthetic organoselenium compounds have been
reviewed [11-15].

Selenite, a widely used inorganic selenium compound, is con-
sidered cytotoxic and causes single-stranded DNA breaks and
also other non-specific effects [16]. In contrast, Se-methylse-
lenocysteine (MSC) is a less toxic organic selenium com-
pound occurring naturally. It is the major form of selenium
compound in selenium-enriched garlic, onions and broccoli
[17]. In the mammary tumor model, MSC is more efficacious
than the most extensively studied selenoamino acids in animal
models [15,18]. Furthermore, MSC inhibits cell growth in sev-
eral mouse mammary tumor cell lines [19,20] and human
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breast cancer cell lines [21]. We and other investigators have
shown that this inhibition of cell growth is mediated through
the induction of apoptosis in vitro [20-22] and in vivo [23-25].
Using a synchronized mouse mammary cell line TM6, we have
shown previously that MSC inhibits DNA synthesis, followed
by the arrest of cells in S phase [19]. This block is associated
with decreased cdk2 kinase activity [19] and altered cdk2
phosphorylation [26]. In addition, treatment of cells with MSC
decreases PKC activity and increases gadd (34, 45 and 153)
gene expression in a time-dependent manner [26]. Further-
more, using the same model system, we also reported
increased caspase-3, caspase-6 and caspase-8 activities,
leading to apoptosis in the MSC-treated TM6 cells in a syn-
chronized model [22].

The effect of MSC on mammary survival pathways is not well
understood. One of the earliest responses of starved cells that
are exposed to extracellular stimulation with growth factors
including serum is the simultaneous activation of both the Raf–
MAP kinase/ERK kinase–extracellular signal-related kinase
(Raf–MEK–ERK) and phosphatidylinositol 3-kinase (PI3-K)–
Akt pathways [27,28]. Activation of Raf can lead to opposing
cellular responses such as proliferation, growth arrest, apop-
tosis or differentiation, depending on the duration and strength
of the external stimulation and on the cell type [29]. There is a
lack of published data on the effect of selenium on Raf in mam-
mary tumors. PI3-K regulates diverse cellular functions such as
growth, survival and malignant transformation through its mul-
tiple enzymatic functions, namely lipid kinase and protein
kinase activities [30,31], and acts either synergistically with
the Raf pathway [32] or in opposition to it [33]. There are few
reports demonstrating effects of selenium on PI3-K, but the
effect of MSC on PI3-K activity has not been reported previ-
ously. One of the possible anti-apoptotic effects of PI3-K is
brought about by the phosphorylation of Akt, which in turn can
cross-talk with Raf by phosphorylating it at a highly conserved
serine residue (Ser259) in its regulatory domain and inhibiting
the activation of the Raf–MEK–ERK pathway. The effects of
selenium on Akt are limited and the results vary depending on
the form (whether inorganic or organic) and on cell type. For
the present investigation we examined the effects of MSC on
the components of the PI3-K–Akt and Raf–MEK–ERK path-
ways to improve our understanding of the mechanisms of
growth inhibition in the synchronized TM6 mouse mammary
tumor cell line.

Materials and methods
Cell culture and treatment with MSC
The TM6 tumor cell line was originally derived from the non-
tumorigenic COMMA-D mouse mammary epithelial cell line
[34]. TM6 tumor cells generate alveolar mammary tumors in
Balb/c mice when injected into the fat pads. These tumors are
p53 mutant and are predicted to be estrogen independent.
TM6 cells were cultured routinely in DMEM/F-12 medium con-
taining growth factors (5 ng/ml epidermal growth factor, 10

µg/ml insulin), serum (2% adult bovine serum) and 1 × antibi-
otic–antimycotic solution (Invitrogen Corporation, Carlsbad,
CA, USA) in the presence of 5% CO2 in air at 37°C [19]. In
brief, the cells were plated at a density of 6.6 × 103 cells/cm2

in either 100 mm dishes or six-well plates. After growth for 48
hours (Fig. 1) the cells were starved in DMEM/F12 medium
without growth factors and serum (minimal medium) for a fur-
ther 48 hours. The cells were then released from starvation
with DMEM/F12 medium containing growth factors and
serum. After a further 6 hours, MSC (Sigma, St Louis, MO,
USA) was added at a final concentration of 100 µM (unless
otherwise mentioned) to one set of cells. Cells were collected
after starvation (0 hours), then at 6 (before the addition of
MSC), 9, 12, 16 and 24 hours. These times reflect the points
at which cells were stimulated with growth factors and serum
after starvation, minus 6 hours of treatment time with MSC as
described previously [19].

MSC pretreatment
To study the effect of MSC on the native and phosphorylated
Akt, Raf and MEK signals that arise immediately after the addi-
tion of medium containing growth factors and serum to starved
cells, the cells were synchronized in minimal medium for at
least 24 hours. MSC was then added (in minimal medium) for
the stipulated time points. The cells were stimulated with fresh
DMEM/F12 medium containing growth factors and serum in
the continued presence of MSC and were harvested 1 hour
later. In these experiments, the time refers to the point at which
the cells were pretreated with MSC before the stimulation.

Figure 1

General scheme for synchronization and treatment of TM6 cells with Se-methylselenocysteine (MSC) including the collection timesGeneral scheme for synchronization and treatment of TM6 cells with 
Se-methylselenocysteine (MSC) including the collection times. The 
TM6 cells were plated at a density of 6.6 × 103 cells/cm2 in either 100 
mm dishes or six-well plates. After 48 hours of growth the cells were 
starved in DMEM/F12 medium without growth factors and serum (mini-
mal medium) for a further 48 hours. The cells were released from star-
vation with DMEM/F12 medium containing growth factors (5 ng/ml 
epidermal growth factor (EGF) and 10 µg/ml insulin) and serum (2% 
adult bovine serum). After a further 6 hours MSC was added at a final 
concentration of 50 to 400 µM (depending upon the experiment) to 
one set of cells. Untreated cells served as controls. The cells were col-
lected after starvation (0 hours), then at 6 (before the addition of MSC), 
9, 12, 16 and 24 hours time-points.
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Incorporation of [3H]thymidine
Synchronized TM6 cells grown in 12-well plates (2.5 × 104

cells per well) were treated with 50 µM MSC for various
durations and pulsed for 1 hour with 1 µCi of [3H]thymidine
(MP Biomedicals, Irvine, CA, USA) per well. After three wash-
ings with Tris-buffered saline, the cells were treated with 10%
trichloroacetic acid for 5 min followed by two washes with
trichloroacetic acid. The incorporation of [3H]thymidine was
determined by counting the vials in a liquid-scintillation coun-
ter. The assay was performed in triplicate for all time points
[19].

Antibodies
Polyclonal anti-(phospho-Akt (Ser473)), anti-Akt, anti-(phos-
pho-Raf), anti-(phospho-MEK), anti-(phospho-ERK (p44/
p42)), anti-(phospho-p38 MAPK) and horseradish peroxidase
(HRP)-conjugated anti-rabbit antibody were purchased from
New England Biolabs (Beverly, MA, USA). Monoclonal anti-
PTEN, anti-actin and HRP-conjugated anti-goat antibody were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Anti-(PI3-K (p85)) antibody was purchased from
Upstate (Lake Placid, NY, USA).

Isolation of protein and immunoblotting
Cell pellets collected after being washed with cold PBS were
lysed for 30 min in a buffer containing 20 mM Tris-HCl (pH
7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-
100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophos-
phate, 1 mM Na3VO4, 1 µg/ml leupeptin and 1 mM phenyl-
methylsulphonyl fluoride on ice. The post-mitochondrial
supernatants were collected after centrifugation at 8,000 g for
10 min and were measured for total protein content with a
BCA™ Protein Assay Kit (Pierce, Rockford, IL, USA). Equal
amounts of protein were loaded for a given western blot anal-
ysis. A range of 20 to 50 µg of protein was loaded in each lane
as indicated in the respective figure legends. Immunoblot anal-
ysis was performed as described previously [19]. The signals
were detected by enhanced chemiluminescence (Amersham
Biosciences Corp, Piscataway, NJ, USA) and quantified with
the ImageQuant software (Molecular Dynamics, Sunnyvale,
CA, USA). The protein loading on gels was normalized to that
of actin.

PI3-K activity
PI3-K activity was measured with the method described by
Truitt and colleagues [35]. The cell pellets were lysed in solu-
bilization buffer containing 50 mM HEPES (pH 7.0), 150 mM
NaCl, 1 mM EGTA, 10 mM NaF, 10 mM sodium pyrophos-
phate, 10% glycerol, 1% Triton X-100, 1 mM Na3VO4, 1 µM
pepstatin, 10 µg/ml aprotinin, 5 mM iodoacetic acid and 2 µg/
ml leupeptin. Cell extracts (500 µg) were then incubated for 2
hours with 4 µl of anti-PI3-K at 4°C and for a further 2 hours
with 50 µl of Protein A–Sepharose beads (Amersham Bio-
sciences Corp). After centrifugation, the immunoprecipitates
were washed sequentially as follows: first, three times with

PBS containing 1% Triton X-100 and 100 µM Na3VO4; sec-
ond, twice with 100 mM Tris-HCl (pH 7.6), 0.5 M LiCl and 100
µM Na3VO4; third, twice with 100 mM Tris-HCl (pH 7.6), 100
mM NaCl, 1 mM EDTA and 100 µM Na3VO4; and fourth, twice
with 20 mM HEPES (pH 7.5), 50 mM NaCl, 1 mM EDTA, 30
mM sodium pyrophosphate, 200 µM Na3VO4, 0.03% Triton X-
100 and 1 mM phenylmethylsulphonyl fluoride.

The washed immunoprecipitates were resuspended in 30 µl of
kinase buffer containing 33.3 mM Tris-HCl (pH 7.6), 125 mM
NaCl, 16.6 mM MgCl2, 164.3 mM adenosine and 16.6 µM
ATP. To this mix, 30 µCi of [γ-32P]ATP (1 mCi/100 µl), 7 µl of
water and 20 µg of phosphatidylinositol 4-monophosphate
prepared in 10 µl of 20 mM HEPES (pH 7.5) was added. The
reaction was performed at room temperature on a rotary mixer
for 30 min. After the addition of 100 µl of 1 M HCl to stop the
reaction, the phosphorylated substrate was extracted with
600 µl of chloroform : methanol (1:1). The organic phase was
then separated by centrifugation at 3,000 r.p.m. for 5 min, re-
extracted with 200 µl of deionized water and dried by centrif-
ugation under vacuum. The lipid was redissolved in 20 µl of
chloroform : methanol (1:1) mixture. The radiolabeled phos-
phatidylinositol phosphate was resolved on silica gel G-60
thin-layer chromatography plates by chromatography for 3
hours in a solvent system of chloroform : methanol : ammonium
hydroxide : water (60:47:2:11.3) and was revealed by
autoradiography.

Results
Treatment with MSC inhibited DNA synthesis in both asyn-
chronous (Fig. 2a) and synchronized (Fig. 2b) TM6 mouse
mammary epithelial tumor cells, as measured by [3H]thymidine
incorporation. The untreated control cells incorporated maxi-
mum [3H]thymidine at 16 hours when most of the cells are in
S phase, as reported previously [19], whereas DNA synthesis
in cells treated with 50 µM MSC was inhibited by 33% at this
time point. The same dose of MSC suppressed [3H]thymidine
incorporation to a greater degree in asynchronous cells; this
was mainly due to the longer treatment period, 48 hours.

MSC induces apoptosis in mammary epithelial tumor cells
[19,20] and we have documented that caspase-3 activity is
enhanced in MSC-treated cells at 24 hours [22]. Because the
activation of caspase-3 is a late event in the progression of
apoptosis, we examined the phosphorylation of Akt, which is
one of the early key signals controlling proliferation and/or
apoptosis. The expression of Akt protein remained unchanged
in MSC-treated and untreated control cells until 24 hours (Fig.
3). However, at 24 hours there was an increase in Akt phos-
phorylation in the control cells, and a 68% decrease in MSC-
treated cells. This decrease in phospho-Akt was not due to a
decline in the native Akt levels.

Since PI3-K is an upstream target of Akt, we wished to deter-
mine whether this decrease in phospho-Akt levels in MSC-
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treated cells was in fact due to a lower PI3-K activity. For
measuring the activity, PI3-K from control and MSC-treated
cells (16 hours and 24 hours) was immunoprecipitated with
anti-p85 antibody and assayed for its ability to phosphorylate
phosphatidylinositol 4-monophosphate. In the TM6 synchro-
nized model, PI3-K activity increased within 1 hour of stimula-
tion with serum (Fig. 4); this was blocked by 1 µM wortmannin
(PI3-K inhibitor). There was a 73% and 84% decrease in PI3-
K activity in MSC-treated cells at 16 and 24 hours, respec-
tively, in comparison with the control cells.

Because PI3-K is inactivated by the lipid phosphatase PTEN
(MMAC1), we further examined whether the decrease in PI3-
K activity was due to an increase in PTEN levels. The levels of
PTEN were determined at different time points by immunoblot-
ting (Fig. 5); no appreciable differences were observed
between MSC-treated and control cells up to 24 hours.

Treatment with MSC of TM6 cells at 24 hours inhibited both
Akt phosphorylation (Fig. 3) and PI3-K activity (Fig. 4). The
lowered PI3-K activity could be due either to an effect of MSC
on the enzyme activity or to the inhibition of an upstream event,
such as Ras activation. To dissect the two possibilities we
examined the two independent downstream parallel pathways
that were activated by Ras: first, the activation of Raf by Ras
and its downstream targets MEK and ERK, and second, the
activation of PI3-K and its downstream targets Akt and p38
mitogen-activated protein kinase (MAPK). We speculated that
if MSC inhibits Ras along with the decrease in phospho-Akt
levels, which we had observed at 24 hours, the phosphoryla-
tion of p38 MAPK or ERK should also decline. Fig. 6 shows
the phosphorylated state of Raf in MSC-treated and untreated
cells at different time points. The levels remained unchanged

Figure 2

[3H]Thymidine incorporation into TM6 cells after Se-methylseleno-cysteine (MSC) treatment[3H]Thymidine incorporation into TM6 cells after Se-methylseleno-
cysteine (MSC) treatment. (a) Asynchronous TM6 cells were grown for 
24 hours and treated with various concentrations of MSC for 48 hours 
to determine the optimum dose for treating synchronized cells. (b) Syn-
chronized TM6 cells were treated with 50 µM MSC at 6 hours and the 
DNA synthesis was measured by [3H]thymidine incorporation at the 
indicated time points as described in the Materials and methods sec-
tion. Data are presented as means ± SEM for three observations at 
each given time point. MSC at 50 µM showed a greater ability to block 
DNA synthesis in asynchronous TM6 cells, mainly because of the 
extended time of treatment.

Figure 3

Effect of Se-methylselenocysteine (MSC) on AktEffect of Se-methylselenocysteine (MSC) on Akt. Synchronized TM6 
cells were treated with 50 µM MSC as described in Fig. 1. For each 
time point three 100 mm dishes were treated with MSC and pooled for 
protein content. Equal amounts of protein lysates were loaded on each 
lane (50 µg) for each time point. (a) Immunoblots were probed with 
anti-Akt, anti-phospho-Akt (Ser473) and anti-actin as described in the 
Materials and methods section. The phosphorylation of Akt occurring at 
24 hours in control cells was inhibited in the MSC-treated cells. (b) The 
levels of phospho-Akt in control and MSC-treated cells were normal-
ized with respective actin contents and plotted against various time 
points.



Available online http://breast-cancer-research.com/content/7/5/R699

R703
in both the samples at 9, 12 and 16 hours. At 24 hours the
phospho-Raf levels were 58% lower in MSC-treated cells. A
similar pattern of decreased phosphorylation was observed for
phospho-Erk (p44/42) when MSC-treated and control cells
were compared at different time points. The phosphorylation
pattern of phospho-p38 MAPK, a downstream target of Akt,
mimicked the pattern of phospho-Akt levels in MSC-treated
versus control cells. There was no difference in the phospho-

p38 MAPK levels in MSC-treated and control cells until 24
hours. However, the levels of phospho-p38 MAPK increased
at 24 hours in control cells and were inhibited more than three-
fold in MSC-treated cells. The levels of native Akt, ERK, p38
MAPK and Raf proteins did not change with treatment with
MSC (data not shown).

To distinguish between the tolerance of MSC concentrations
and their effects in signaling, components of both the Raf and
Akt pathways, namely phosphoprotein levels of Akt, Raf and
MEK, were analyzed in TM6 cells synchronized in minimal
medium for 24 hours and then treated with different doses of
MSC in minimal medium for 16 and 24 hours before stimula-
tion with growth factors and serum. As expected, all three pro-
teins were phosphorylated within 1 hour of stimulation (Fig. 7).
At 16 hours, even at 400 µM MSC, the phosphorylated protein
levels of Akt and Raf were comparable to that of the control.
However, at 24 hours their levels decreased with increasing
concentrations of MSC. The native Akt and MEK levels did not
show an appreciable change at all time points (data not
shown); the native Raf protein expression did not change
either during this experiment. The immunoblot in Fig. 6 also
demonstrates that at 24 hours the levels of these phosphopro-
teins started to increase in the control cells, indicating the start
of a second wave of stimulation.

To examine whether MSC needs to be metabolized to have an
effect on the phosphorylation of Akt, cells were synchronized
with minimal medium for 24 hours and were subsequently
treated with 100 µM MSC for various periods (0 to 24 hours),
stimulated with growth factors and serum for 1 hour and exam-
ined for Akt phosphorylation (Fig. 8a). Pretreatment of the cells
with MSC for 10 hours, equivalent to the cells collected at 16
hours in the previous scheme of experiments (Fig. 1), Akt

Figure 4

Effect of Se-methylselenocysteine (MSC) on phosphatidylinositol 3-kinase (PI3-K) activity in TM6 cellsEffect of Se-methylselenocysteine (MSC) on phosphatidylinositol 3-
kinase (PI3-K) activity in TM6 cells. Synchronized TM6 cells were 
treated with 100 µM MSC at 6 hours as described in Fig. 1. Another 
set of TM6 cells were pretreated with 1 µM wortmannin (WOR) for 30 
min before the 1 hour stimulation with fresh DMEM/F12 medium con-
taining growth factors (5 ng/ml epidermal growth factor and 10 µg/ml 
insulin) and serum (2% adult bovine serum). PI3-K activity was per-
formed on 500 µg of protein lysates as described in the Materials and 
methods section. The kinase activity in the control cells increased 
within 1 hour of stimulation, and was strongly inhibited by WOR. The 
PI3-K activity in MSC-treated cells at 16 and 24 hours were drastically 
lowered compared with that of the control cells. The data are a repre-
sentative of experiments performed in triplicate for each time point.

Figure 5

Effect of Se-methylselenocysteine (MSC) on PTEN levels in TM6 cellsEffect of Se-methylselenocysteine (MSC) on PTEN levels in TM6 cells. 
Synchronized TM6 cells were treated with 50 µM MSC as described in 
Fig. 1. An equal amount of protein lysates (50 µg) was loaded on each 
lane. Immunoblots were probed with anti-PTEN and anti-actin as 
described in the Materials and methods section. The protein levels of 
PTEN in the control cells were not significantly different from that of 
MSC-treated cells at various time points.

Figure 6

Effect of Se-methylselenocysteine (MSC) on phospho-Raf, phospho-ERK, phosphorylated p38 mitogen-activated protein kinase (phospho-p38 MAPK) levels in TM6 cellsEffect of Se-methylselenocysteine (MSC) on phospho-Raf, phospho-
ERK, phosphorylated p38 mitogen-activated protein kinase (phospho-
p38 MAPK) levels in TM6 cells. TM6 cells were synchronized and 
treated with 50 µM MSC as described in Fig. 1. Equal amounts of TM6 
lysates (50 µg of protein) were loaded on each lane. Immunoblots were 
probed with anti-phospho-Raf, anti-phospho-ERK, anti-phospho-p38 
MAPK and anti-actin as described in the Materials and methods sec-
tion. Levels of the phosphoproteins remained unchanged at 9, 12 and 
16 hours but at 24 hours the phosphorylated proteins decreased in 
MSC-treated cells.
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phosphorylation was inhibited by only 26% (Fig. 8b). After 18
and 24 hours' pretreatment of TM6 cells with MSC, the inhibi-
tion in phospho-Akt levels was 49% and 65%, respectively,
and was significant (P<0.05) when compared with untreated
cells.

Discussion
The results presented here demonstrate that MSC inhibits
PI3-K activity and subsequently inactivates Akt in vitro. This is
a significant observation in establishing one of the mecha-
nisms by which MSC inhibits mouse mammary epithelial cell
growth in vitro.

Previously we had reported that TM6 cells treated with MSC
are delayed in S phase at about 24 hours [19,26]. In the
present set of experiments the differences in Akt phosphoryla-
tion between MSC-treated and untreated control cells occur
at about 24 hours. This observation was not clear because Akt
phosphorylation is an immediate event, occurring within 1 hour
of stimulation with growth factors and serum. Various possibil-
ities exist: first, inhibition of Akt phosphorylation in MSC-
treated cells beginning at 24 hours might require the cells to
be delayed in S phase; second, there might be a requirement
for MSC to be metabolized into an active molecule such as
methylselenol [36] that causes inhibition; or third, there might
be a slow diffusion of MSC into the cells. We have shown that
MSC enters the TM6 cells within 30 min of treatment and can
inhibit DNA synthesis in these cells 3 hours later [22], thus
excluding the probability of slower diffusion into the cells.

To address the first two of these alternatives, different strate-
gies were designed in TM6 cells. In the first set of experiments
(scheme outlined in Fig. 1), the cells were allowed to cycle
after stimulation with growth factors and serum, and MSC was
added 6 hours later. In these experiments, events leading to

Akt phosphorylation had already taken place before the addi-
tion of MSC. By 16 hours, although PI3-K activity was inhibited
in the MSC-treated cells, the phospho-Akt levels remained
unchanged in both the control and MSC-treated cells. In the
TM6 synchronization model we noted that the Akt phosphor-
ylation is stimulated again at a later time point in the cell cycle.
The occurrence of this 'second wave of stimulation' is quite
evident from an elevated level of phospho-p38 MAPK at 24
hours in control cells. This stimulation actually appeared at 22
hours (data not shown) in TM6 cells when examined closely.
PI3-K activity was inhibited at about 16 hours, and thus its
effect on Akt phosphorylation occurs only with the second
wave of stimulation. This could explain why phospho-Akt levels
were the same in both MSC-treated and untreated control
cells at 16 hours even though the PI3-K activity was inhibited
in the MSC-treated cells.

Second, the fact that PI3-K activity is inhibited earlier than Akt-
phosphorylation supports the hypothesis that the upstream
target of MSC-induced growth inhibition is PI3-K. When the
cells were pretreated with MSC and then stimulated with
growth factors and serum, there was a gradual inhibition of Akt
phosphorylation. Most of the cells during this synchronization
state would be predicted to be in G1 phase during this time
[19], so the possibility that factors causing a delay in S phase
might result in a decreased phosphorylation of Akt can be
excluded.

The probable reason that the differences in the Akt phosphor-
ylation are not observed until 24 hours is that MSC might need
to be metabolized to methylselenol before it can effectively
inactivate Akt. MSC can be metabolized into methylselenol,
which could be dimethylated and trimethylated to dimethylse-
lenide or trimethylselenonium respectively [37]. Other orga-
noselenium compounds such as dimethylselenoxide and

Figure 7

Effect of Se-methylselenocysteine (MSC) on phospho-Akt, phospho-Raf and phospho-MEK in TM6 cellsEffect of Se-methylselenocysteine (MSC) on phospho-Akt, phospho-Raf and phospho-MEK in TM6 cells. The TM6 cells were synchronized in mini-
mal medium as described in Fig. 1, but only for 24 hours. Then the MSC (100 to 400 µM) was added (in minimal medium) for 16 and 24 hours. The 
cells were stimulated with fresh DMEM/F12 containing growth factors (5 ng/ml epidermal growth factor and 10 µg/ml insulin) and serum (2% adult 
bovine serum) at the indicated time points for 1 hour. Equal amounts of lysates (20 µg of protein) were loaded on each lane for each time point. 
Immunoblots were probed with anti-phospho-Akt, anti-phospho-Raf, anti-phospho-MEK and anti-actin antibodies as described in the Materials and 
methods section. Both the Akt and Raf were phosphorylated within 1 hour of stimulation with growth factor and serum. At 16 hours a dose of 400 
µM MSC failed to inhibit the phosphorylation of Akt or Raf and the downstream effector MEK. However, at 24 hours MSC was able to inhibit phos-
phorylation of all three proteins in a dose-dependent manner.
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selenobetaine methyl ether can be metabolized to dimethylse-
lenide and trimethylselenonium without the formation of meth-
ylselenol and do not have anticancer activity. It has therefore
been suggested that methylselenol is the active proximal
molecule of MSC [37]. MSC is capable of generating methyl-
selenol endogenously through the action of β-lyase or related
lyases [38]. As the cells in culture have low levels of β-lyase, it
leads to the inefficient conversion of MSC to methylselenol
[23,39,40], and so we used higher doses of MSC (100 to 400
µM) in some of our experiments. Several current studies have
looked at an alternative methylselenol generator, methylselen-
inic acid, a compound that represents a simplified version of
MSC without the amino acid moiety, thereby obviating the
need for β-lyase action. There are a few reports indicating the
differential effect of selenium compounds on Akt in vascular

endothelial [41], prostate [42], mammary [43] and oral [44]
cancer cells depending on the form of selenium. On the basis
of our present results the speculated sites of MSC interaction
with components of Ras–PI3-K–Akt pathway and Raf–MEK–
ERK pathway are illustrated in Fig. 9.

Akt interacts with Raf and phosphorylates it at Ser259. Fur-
thermore, phosphorylation of Raf by Akt inhibits activation of
the Raf–MEK–ERK signaling pathway and has been shown to
alter the cellular response in a human breast cancer cell line
from cell cycle arrest to proliferation [29]. Our results indicate
that this cross-talk between Akt and Raf might be altered by
MSC. It has also been reported that Akt is a substrate for cas-
pase and cleaves it into 40 and 44 kDa fragments [45]. We
have recently shown that the activities of caspase-3, caspase-
6 and caspase-8 are increased at 24 hours of treatment with
MSC [22]. The cleaved phospho-Akt proteins were observed
at 24 hours in MSC-treated cells. It is unlikely that the
decrease in Akt phosphorylation at 24 hours was due to
elevated caspase activity because PI3-K was inhibited at 16
hours, before the activation of these caspases could be
detected in the cells.

It was recently demonstrated that certain tumor suppressor
agents downregulate PI3-K by activating the expression of
PTEN/MMAC1, a phosphatase that dephosphorylates phos-
phatidylinositol 3,4,5-trisphosphate [46]. Although MSC

Figure 8

Effect of Se-methylselenocysteine (MSC) on Akt phosphorylationEffect of Se-methylselenocysteine (MSC) on Akt phosphorylation. (a) 
Scheme for pretreatment of TM6 cells with MSC. Cells were synchro-
nized in minimal medium for 24 hours. Cells were then exposed to 100 
µM MSC for 3, 6, 10, 18 and 24 hours in minimal medium before being 
stimulated with fresh DMEM/F12 medium containing growth factors (5 
ng/ml epidermal growth factor and 10 µg/ml insulin) and serum (2% 
adult bovine serum) for 1 hour. (b) Effect of pretreatment of MSC on 
Akt phosphorylation in TM6 cells. Equal amounts of lysates (30 µg of 
protein) were loaded on each lane for each time point. After electro-
phoresis the immunoblots were probed with anti-phospho-Akt (Ser473) 
antibody as described in the Materials and methods section, and the 
levels were measured with Molecular Dynamics software. Each bar rep-
resents levels in TM6 tumor cells treated with MSC in three different 
wells. *P < 0.05 compared with 0 hours.

Figure 9

Possible sites of Se-methylselenocysteine (MSC) interaction with com-ponents of the Ras–phosphatidylinositol 3-kinase–Akt (Ras–PI3-K–Akt) and Raf–MAP kinase/ERK kinase–ERK (Raf–MEK–ERK) pathways in TM6 mouse mammary tumor cellsPossible sites of Se-methylselenocysteine (MSC) interaction with com-
ponents of the Ras–phosphatidylinositol 3-kinase–Akt (Ras–PI3-K–
Akt) and Raf–MAP kinase/ERK kinase–ERK (Raf–MEK–ERK) pathways 
in TM6 mouse mammary tumor cells. MAPK, mitogen-activated protein 
kinase.
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could inhibit PI3-K activity in the present study this inhibition
was not due to elevated levels of PTEN.

PI3-K is a heterodimer with a catalytic and a regulatory subu-
nit. The catalytic subunit possesses both lipid kinase and ser-
ine–threonine protein kinase activities. PI3-K is activated by
the binding of either receptor or non-receptor tyrosine kinases
to the regulatory subunit; this complex is directed to the mem-
brane and associates with its phospholipid substrate [47].
Because the lipid kinase activity of PI3-K is inhibited on treat-
ment with MSC before any effect on the phosphorylation of
Akt, it would be interesting to examine whether MSC could
block the integration of PI3-K to the membrane; this is part of
an investigation currently in progress. Another important sce-
nario might be if MSC were shown to interfere with the activity
of Ras, because both phospho-Raf and phospho-Akt levels
are lowered during treatment with MSC. To perform its func-
tion, the active form of Ras (GTP-Ras) must also be anchored
to the cellular membrane through a post-translationally added
lipophilic (iso) prenyl group [48]. Further studies are required
to investigate whether MSC alters the anchoring of Ras and
PI3-K into the cell membrane.

Conclusion
The present studies show that MSC blocks multiple pathways
in mouse mammary tumor cells in vitro. Decreased PI3-K activ-
ity in addition to dephosphorylation of Akt by MSC contributes
to the growth inhibition of TM6 mouse mammary epithelial
cells. This information, along with the possibility that p38
MAPK is a target for the action of MSC on mammary cells, will
provide further evidence of its mechanistic inhibition of mam-
mary growth. These experiments need to be translated into
human cell lines and xenograft model systems before this com-
pound can be promoted for clinical trials in humans for breast
cancer prevention.
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