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AI = aromatase inhibitor; ER = oestrogen receptor; LTED = long-term oestrogen deprivation; PgR = progesterone receptor; SERD = selective
oestrogen receptor downregulator; SERM = selective oestrogen receptor modulator.
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Abstract
Although tamoxifen has been an effective treatment for breast
cancer, several novel anti-oestrogen compounds have been
developed with a reduced agonist profile on breast and
gynaecological tissues. These include selective oestrogen receptor
modulators (SERMs; both ‘tamoxifen-like’ and ‘fixed-ring’ SERMs)
and selective oestrogen receptor downregulators (SERDs),
although none has proved superior in efficacy to tamoxifen in
various advanced breast cancer trials. Thus, many have questioned
whether a need for SERMs in breast cancer still exists, although
chemoprevention remains a possible niche setting. In contrast,
SERDs may have useful efficacy following aromatase inhibitors
because of their unique mechanism of action, and clinical trials to
determine their optimal use or sequence are ongoing.

Introduction
Oestrogen has important physiological effects on the growth
and function of hormone-dependent tissues, including breast
epithelium, uterus, vagina and ovaries. In addition, oestrogen
preserves bone mineral density and reduces the risk for
osteoporosis, protects the cardiovascular system by reducing
cholesterol levels, and modulates cognitive function and
behaviour. Tamoxifen is a nonsteroidal anti-oestrogen that
antagonizes the action of oestrogen and is effective in both
the treatment [1,2] and prevention of breast cancer [3].
Although concerns were raised regarding the potential anti-
oestrogenic effects on normal tissues, paradoxically tamoxifen
acts as an oestrogen on bone, blood lipids and the
endometrium [4]. In the adjuvant and prevention settings, this
may increase the risk for endometrial cancer in women taking
tamoxifen, although the risk has been perceived to be small in
relation to the substantial benefit from reduction in breast
cancer related events [5]. Likewise, breast epithelial cells and
established carcinomas adapt to chronic anti-oestrogen
exposure and develop resistance to tamoxifen, which may

also result from the drug’s partial agonistic activity stimulating
tumour regrowth [6].

The term ‘selective oestrogen receptor modulator’ (SERM)
refers to the capacity of separate anti-oestrogens to exert
alternative effects on various oestrogen regulated targets.
Over the past 10–15 years several strategies were employed
to improve or alter the agonist/antagonist profile of tamoxifen.
An understanding of structure–function relationships led to
chemical modifications of tamoxifen, either by altering the
side chains to produce new tamoxifen analogues such as
toremifene, idoxifene, droloxifene, lasofoxifene and TAT-59; or
by altering the nonsteroidal triphenylethylene ring structure of
tamoxifen to produce a nonsteroidal ‘fixed ring’ structure such
as the benzothiophene derivatives raloxifene and arzoxifene,
the benzopyran derivative acolbifene, and the indole ERA-
923. All of these nonsteroidal anti-oestrogens have been
classified as SERMs because they exhibit mixed tissue
dependent agonist/antagonist activity.

At the same time the search for a ‘pure anti-oestrogen’ with
no agonist activity and increased antagonist potency
compared with tamoxifen led to the discovery of the selective
oestrogen receptor downregulators (SERDs; e.g. fulvestrant).
Experimental models have shown that the novel steroidal anti-
oestrogen fulvestrant, which is devoid of agonist effects, can
antagonize tamoxifen-stimulated growth, and as a treatment
for hormone sensitive tumours it may delay the emergence of
resistance. This led to the hope that these different structural
classes of anti-oestrogens (Fig. 1) with an altered agonist/
antagonist profile may overcome this form of resistance and
improve further on the efficacy of tamoxifen in treating breast
cancer. Central to this approach, however, is an under-
standing of the molecular biology of the oestrogen receptor
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(ER) and the differential effects of various SERMs and
SERDs in effectively antagonizing the action of ER.

Molecular biology of the eostrogen receptor:
differential effects of SERMs and SERDs
Progress in our molecular understanding of ER function has
provided insights into the differential effects of various ER
ligands, including oestrogen and tamoxifen in different tissues
(for review [7]). Oestrogen influences gene expression and
cellular phenotype by diffusing into the cell and binding
nuclear ER, which in turn activates receptor dimerization;
association with various coactivator and corepressor proteins
to a greater or lesser extent, respectively; and subsequent
DNA binding of liganded ER within promoter regions of DNA
upstream of oestrogen regulated target genes. Gene
transcription is activated through two separate transactivation
domains within ER, termed AF-1 in the amino-terminal A/B
region and AF-2 in the carboxyl-terminal E region [8]. At its
simplest level tamoxifen functions as a competitive anti-
oestrogen to inhibit the action of oestrogen. Tamoxifen-bound
ER still dimerizes and binds DNA, but the downstream effects
are different as a result of the altered conformational shape of
the tamoxifen–ER complex as compared with oestradiol. This
results in a change in the receptor bound balance of
coactivators and corepressors, such that tamoxifen-liganded
ER may block gene transcription through the AF-2 domain
while AF-1 mediated gene transcription may still occur [9].
This may explain the partial agonist activity of tamoxifen in
addition to its ability to antagonize oestrogen regulated gene
transcription (Fig. 2).

It has become clear that the molecular biology of ER is
complex, and that other aspects of its function may mediate
the differential ligand effects seen in response to oestrogen
or tamoxifen. In addition to classical ER (now called ER-α), a
second ER was cloned (ER-β), which shares sequence
homology within the DNA binding domain [10] but which
differs in that AF-1 activity is considerably less than with ER-α
[11]. Equally ER-β lacks much of the carboxyl-terminal F
domain of ER-α, which may be an important region in
determining an agonist response to tamoxifen [12]. The
distribution in normal tissues of ER-β is different from that of
ER-α, which implies a distinct physiological role, and some
evidence has implicated increased ER-β expression as a
mechanism for tamoxifen resistance in breast cancer [13]. It
has also been established that, in addition to the classical
model of liganded ER that binds DNA at defined oestrogen
response elements, other response pathways can become
activated by ER. For example, AP-1 response elements
regulate genes involved in cell proliferation, motility and
apoptosis, and liganded ER may indirectly regulate AP-1
gene transcription through direct protein–protein interaction
with AP-1 transcription factors (c-fos and c-jun). Tamoxifen
was shown to be an agonist on AP-1 regulated genes with
either ER-α or ER-β [14], whereas oestrogen liganded with
ER-β inhibited AP-1 gene transcription [15]. Enhanced
activation of AP-1 by tamoxifen may also be associated with
tamoxifen resistance in models of breast cancer [16], and in
tumours from breast cancer patients relapsing on tamoxifen
[17]. Finally, the relative balance in a given cell type of
coactivator and corepressor proteins may also determine the

Figure 1

Chemical structures of anti-oestrogen compounds. Shown are the chemical structures of tamoxifen, the ‘tamoxifen-like’ selective oestrogen
receptor modulator (SERM) toremifene, the ‘fixed-ring’ SERM raloxifene, and the selective oestrogen receptor downregulator (SERD) fulvestrant.
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given response of ER to a particular ligand. For example,
overexpression of the coactivator SRC-1 has been shown to
enhance the agonist response to tamoxifen [18], whereas a
reduction in the level of the corepressor N-CoR was
associated with development of tamoxifen resistance in
breast cancer xenografts [19]. Thus, changes in expression of
ER-β relative to ER-α, enhancement of the AP-1 pathway, or
a change in the balance of coactivator/corepressor proteins
could all account for differential agonist/antagonist responses
to anti-oestrogens both in different target tissues and human
breast carcinomas.

The development of SERMs, which are structurally different
from tamoxifen, has provided further insight into the biology of
ER action, and created a new understanding of how
modulating the structure–function interaction of ligand with
ER could alter the biological effect. A crucial aspect of
oestrogen–ER interaction is the complete envelopment of the
steroid in a hydrophobic pocket within the ligand binding
domain due to the critical positioning of a ‘lid’ formed by helix
12 of the ER. The position of this helix is also critical for the
correct recruitment of coactivators to the AF-2 transactivation
site, which allows subsequent initiation of RNA polymerase
activity (Fig. 2). Occupation of the ligand-binding domain by
tamoxifen, SERMs, or SERDs may result in a qualitatively
different conformational shape of the liganded receptor, due
to the alkylaminoethoxy side chain of the tamoxifen-like
triphenylethylenes (i.e. toremifene), the different structure of
the fixed ring benzothiophenes (i.e. raloxifene), or the long
side chain of steroidal anti-oestrogens (i.e. fulvestrant; Fig. 1).
This imparts a different positioning of the helix 12 ‘lid’, the
exact nature of which depends on the conformational shape
that each anti-oestrogen imparts to the ligand ER complex
[20]. As a result, the relative positioning of helix 12 may

influence the likelihood of coactivator/corepressor binding,
and as such determine the transcriptional response to
liganded ER for a given gene. Likewise, in the endometrium
tamoxifen, but not raloxifene, may have oestogenic-like effects
due to recruitment or coactivators to a subset of genes, and
this aspect may vary in different tissues depending on the
background level of expression of coactivators such as SRC-1
[21].

These data provided a foundation for new hypotheses based
on the chemical structure and structure–function relationship
for each of the different SERMs/SERDs, along with the cell
type and promoter specific differences in coregulator
recruitment, which together may explain their differential
antagonist/agonist profile observed in different tissues.
Based on these characteristics, which seem to differentiate
these new compounds from tamoxifen, several of the SERMs
were developed for breast cancer with the expectation that
they would have an improved preclinical and clinical profile
(Table 1).

‘Tamoxifen-like’ triphenylethylene SERMs
For each of the triphenylethylene derivatives preclinical data
suggested an improved antagonist/agonist profile compared
with tamoxifen. This led to their clinical development in the
hope that these may prove safer or more effective anti-
oestrogens for the treatment of breast cancer compared with
tamoxifen. The preclinical and clinical data were reviewed in
detail elsewhere [22], but key aspects of each compound are
highlighted below.

Toremifene
Toremifene’s only structural difference compared with
tamoxifen relates to a single chlorine atom at position 4
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Figure 2

Molecular effects of oestradiol and anti-oestrogen compounds. Shown are the molecular effects of (a) oestradiol, (b) the selective oestrogen
receptor modulator (SERM) tamoxifen and (c) the selective oestrogen receptor downregulator (SERD) fulvestrant on oestrogen receptor (ER)
dimerization, conformational shape and DNA binding by liganded receptor, AF1/AF2 activation, coactivator recruitment, and subsequent
transcriptional activation of type I and type II ER-regulated genes. As shown in panel a, oestradiol binding to ER leads to loss of heat shock
proteins (HSPs), dimerization and phosphorylation of receptors, with conformational change leading to coactivator activation at both AF1 and AF2
sites; a full agonist effect is seen. In panel b, SERM (tamoxifen) binding to ER leads to loss of HSPs, dimerization and phosphorylation of receptors,
but with different specific conformational change leading to coactivator activation at AF1 only, and not at AF2 sites; therefore, a partial agonist
effect is seen. As shown in panel c, SERD (fulvestrant) binding to ER leads to loss of HSPs, but lack of receptor dimerization because of altered
conformational change. Thus, receptor degradation is enhanced with no activation at AF1 or AF2 sites; no agonist effect is seen. AF, activating
function; E, oestradiol; ERE, oestrogen response element; F, fulvestrant; RNA Pol II, ribonucleic acid polymerase II; T, tamoxifen.
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(Fig. 1), and as such the pharmacological profiles of these
drugs are very similar. Unlike tamoxifen, toremifene was found
not to be hepato-carcinogenic in preclinical models, which in
part may relate to an inability of toremifene compared with
tamoxifen to induce DNA adducts in rat liver [23]. Toremifene
had a similar relative binding affinity for ER to tamoxifen and
inhibited the growth of ER-positive breast cancer cells in vitro
and in vivo [24]. However, toremifene had oestrogenic
effects on endometrial cells, similar to tamoxifen [25],
although it had a reduced oestrogenic effect on bone [26].

In terms of clinical efficacy, toremifene was no different to
tamoxifen as first-line endocrine therapy in five large phase III
randomized controlled trials (Table 2) [27–31]. A meta-
analysis of these trials [32] showed an overall similar
response rate for toremifene compared with tamoxifen (24%
versus 25.3%), with no significant difference in time to
disease progression or overall survival. Any potential difference
in carcinogenicity, which was identified in preclinical studies,
was not evaluated in any of these advanced breast cancer
studies. Two adjuvant trials were initiated to compare efficacy
and in particular long-term tolerability and safety in early
breast cancer patients. After a median follow up of 4.4 years
in the largest of these studies (1480 postmenopausal node-
positive patients) [33] there were no significant differences in
relapse-free survival or tolerability, and in particular the
number of subsequent second cancers was similar.

Droloxifene
Droloxifene (or 3-hydroxytamoxifen) had a 10-fold higher
relative binding affinity for ER compared with tamoxifen, a
shorter half-life, greater growth inhibition of breast cancer
cells in vitro, reduced oestrogenicity in the rat uterus, and
absence of DNA adduct formation [34]. However, like
tamoxifen it also behaved as an oestrogen in bone, preserving
bone mineral density [35]. Despite promising phase II data, in
which objective responses were seen in both tamoxifen
refractory and naïve settings (for review [22]), droloxifene was
inferior to tamoxifen in the phase III setting and its develop-
ment was stopped.

Idoxifene
Idoxifene is metabolically more stable than tamoxifen as a
result of a pyrrolidino side chain, with increased binding
affinity for ER due to substitution of an iodine atom at the 4
position. Preclinically, idoxifene exhibited reduced stimulation
of uterine weight in various uterotrophic assays compared
with tamoxifen [36], with a delay in MCF-7 xenograft
outgrowth in vivo compared with tamoxifen [37]. Thus,
idoxifene was developed in the hope that its reduced agonist
profile in breast and gynaecologocal tissues would be an
advantage over tamoxifen for breast cancer patients. How-
ever, in a randomized phase II study [38], and in two
international phase III studies of idoxifene versus tamoxifen as
first-line therapy in advanced breast cancer [39,40], no
improvements in efficacy or safety profile over tamoxifen were
demonstrated, and development of idoxifene was stopped in
2001 (Table 3).

Other tamoxifen-like derivatives
Other structural analogues of tamoxifen were synthesized,
including TAT-59, which has a 10-fold higher affinity for ER
than tamoxifen and was more effective at inhibiting human
breast cancer xenograft growth in vivo [41]; GW5638, a
carboxylic derivative, which demonstrated reduced agonist
activity on the uterus in ovariectomized rats [42]; and
lasofoxifene, a derivative of tetrahydronapthalene, which
maintained bone mineral density in animal models [43]. None
of these were developed for use in breast cancer.

‘Fixed ring’ SERMS
Greater optimism surrounded the profile of second- and third-
generation SERMs, in particular because these drugs
appeared devoid of any agonist activity in the endometrium
while behaving as potent anti-oestrogens in the breast that
retained agonist activity in bone. The benzothiophene
raloxifene is the most extensively studied SERM in this class
(Fig. 1).

Raloxifene
The binding affinity of raloxifene for ER is similar to that of
tamoxifen, and most of the pharmacological data showed
similar activity in terms of inhibiting breast cancer cells in vitro
and in vivo [44]. In preclinical models the drug maintained
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Table 1

The ideal profile of a novel SERM in comparison with tamoxifen

Profile Details

Preclinical Greater binding affinity for ER

Ability to antagonize oestrogen dependent growth of 
breast cancer cells in vitro

Equal or greater inhibition of hormone-dependent 
xenograft growth in vivo

Activity against tamoxifen dependent (resistant) 
tumours

Delayed emergence of anti-oestrogen resistance in vivo

Reduced agonist effects in uterotrophic assays

Lack of stimulation of endometrial cancer cells in vitro/
in vivo

Lack of DNA adduct formation

Prevention of bone loss in ovariectomized animals

Clinical Activity in hormone sensitive breast cancer, at least 
equivalent to tamoxifen

Increase in time to disease progression compared with 
tamoxifen

Activity in tamoxifen resistant breast cancer

Improved side effect profile (i.e. less hot flushes)

No endometrial thickening/hyperplasia/cancer risk

Preservation of bone mineral density

Reduction in serum cholesterol

ER, oestrogen receptor; SERM, selective oestrogen receptor modulator.
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bone mineral density but had significantly less oestrogenic
activity on endometrial cells than did tamoxifen and could
inhibit tamoxifen-stimulated endometrial cancer growth in vivo
[45]. Raloxifene was not developed as an anti-oestrogen for
breast cancer, and few data exist on the activity of raloxifene
in patients with advanced disease (for review [22]). However,
during the development of raloxifene for use in osteoporosis it
was found to reduce significantly the incidence of breast
cancer (in particular ER-positive tumours) in postmenopausal
women by 76% (95% confidence interval 56–87%), without
any increase in endometrial thickening or risk to the
gynaecological tract [46]. This suggested that raloxifene
could represent a safer SERM for use in chemoprevention –
a theme that has been developed further (see below).

Arzoxifene
Arzoxifene is a benzothiophene analogue; it is a more potent
anti-oestrogen, with an improved SERM profile and greater
anticancer efficacy as compared with raloxifene [47–49].
Clinical efficacy was reported in a phase II study in hormone-

sensitive advanced breast cancer [50]. A second phase II trial
compared two doses in 63 tamoxifen-resistant patients, and
separately in 49 patients with hormone-sensitive disease
[51]. Response rates were low in the tamoxifen-resistant
patients (10% for 20 mg, 3% for 50 mg). In contrast, a
response rate of 30% was seen with 20 mg arzoxifene in the
hormone-sensitive group, with a further 17% having stable
disease. The response rate for the 50 mg dose was some-
what lower (8%), and 20 mg dose arzoxifene was taken
forward into a large multicentre phase III trial against
tamoxifen as first-line therapy.

Acolbifene
EM-800 (SCH-57050) is an orally active prodrug of the
active benzopyrene derivative acolbifene (EM-652), a so-
called ‘pure’ nonsteroidal anti-oestrogen [52]. Preclinically, the
binding affinity of acolbifene for ER was significantly greater
than that of oestradiol, tamoxifen, raloxifene, or fulvestrant,
and in vitro acolbifene was more effective than 4-hydroxy-
tamoxifen or fulvestrant at inhibiting oestradiol induced breast
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Table 2

Clinical efficacy of toremifene versus tamoxifen

Toremifene Tamoxifen

Study [ref.] n ORR TTP (months) n ORR TTP (months)

Hayes et al. [28] 221 21% 5.6 215 19% 5.8

Pyrhonen et al. [29] 214 31% 7.3 201 37% 10.2

Gershanovich et al. [30] 157 21% 4.9 149 21% 5.0

Nomura et al. [27] 62 24% 5.1 60 27% 5.1

Milla-Santos et al. [31] 106 38% 11.9 111 32% 9.2

Meta-analysisa [32] 725 24.0% 4.9 696 25.3% 5.3

Shown is a summary of clinical efficacy data from the randomised phase III trials of toremifene (40–60 mg/day) versus tamoxifen (20–40 mg/day)
as first-line endocrine treatment of advanced breast cancer in postmenopausal women (oestrogen receptor status positive or unknown). aThe meta-
analysis [32] was published in 1999 and included data from the first four trials [27–30], together with an unpublished small German study, but it
did not include the Spanish study [31], which was published in 2001. ORR, objective response rate, including complete response and partial
response; TTP, median time to disease progression.

Table 3

Clinical efficacy of idoxifene versus tamoxifen

US phase III trial [39] European phase III trial [40]

Efficacy measure Tamoxifen (n = 111) Idoxifene (n = 108) Tamoxifen (n = 108) Idoxifene (n = 112)

ORR 9% 13% 19% 20%

CBR 39% 34% 48% 38%

TTP 166 days 140 days 181 days 127 days

Shown is a summary of efficacy data from two randomized double-blind phase III trials of idoxifene (40 mg/day) versus tamoxifen (20 mg/day) as
first-line therapy in advanced/metasatic breast cancer. CBR, percentage of patients with either objective response or stable disease for 6 months
or longer; ORR, percentage of patients with an objective response, including complete response and partial response; TTP, median time to disease
progression.
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cancer cell proliferation [53]. In vivo, acolbifene was devoid
of any agonist activity in an immature rat uterotrophic assay
and on mouse endometrial tissues [54,55]. In an in vivo ZR-
75-1 breast cancer xenograft model in ovariectomized mice
acolbifene had no agonist effects on tumour growth, and was
more effective at inhibiting oestrone-stimulated tumour growth
than were five other tested anti-oestrogens (tamoxifen,
toremifene, idoxifene, GW-5638 and raloxifene), with
complete regressions seen in 65% of acolbifene treated
tumours [56]. Likewise EM-800 (the oral precursor of the
active metabolite acolbifene) was 30-fold more potent than
tamoxifen at inhibiting uterine weight and reducing uterine/
vaginal ER expression [57]. In addition, studies have shown
that EM-800 can prevent bone loss in the ovariectomized rat
and lower serum cholesterol levels [58].

In terms of clinical development, a phase II study of EM-800
(20 mg or 40 mg) was undertaken in 43 postmenopausal
women who had progressed on tamoxifen either in the
metastatic or adjuvant setting [59]. There was one complete
response and four partial responses (response rate 12%),
with a median duration of response of 8 months. An
additional seven (16%) patients had stable disease for longer
than 6 months. These results in patients with defined
tamoxifen-resistant disease are in contrast to those observed
with other SERMs described above, for which partial cross-
resistance with tamoxifen occurred, and a randomized phase
III study in patients who had failed tamoxifen was initiated that
will compare the efficacy of EM-800 with the aromatase
inhibitor (AI) anastrozole. These data imply that as a ‘pure’
anti-oestrogen devoid of agonist activity, EM-800 may have
an important different mechanism of action to that of other
SERMs, and indeed may possess greater similarities to the
steroidal anti-oestrogen fulvestrant (see below) than to the
other SERMs described above.

ERA-923
The anti-oestrogen zindoxifene (D16726) is a 2-phenylindole
structure that was previously shown to have oestrogenic
activity in the uterus [60] but was inactive in a breast cancer
trial [61]. By making rigid the alkylamino side chain, similar to
the structure of raloxifene and EM-800, a new indole SERM
called ERA-923 was created that was devoid of uterotrophic
activity in immature rats when compared with raloxifene and
ZK119010 [62]. ERA-923 had an improved preclinical profile
in breast cancer experimental models compared with tamoxifen
and raloxifene, and MCF-7 cells that are resistant to tamoxifen
retain complete sensitivity to ERA-923 both in vitro and in
vivo [63]. Unlike tamoxifen, droloxifene and raloxifene, ERA-
923 was not uterotrophic in immature rats or ovariectomized
mice. Following initial safety studies in healthy volunteers
[64], clinical trials of ERA-923 as second-line therapy were
initiated in 100 ER-positive patients with tamoxifen resistant
metastatic breast cancer, together with proposals for trials in
ER-positive hormone sensitive metastatic breast cancer as
first-line therapy.

Role of SERMs in chemoprevention:
biomarker studies
Although none of the SERMs outlined above has proved
superior in efficacy to tamoxifen in the treatment of
established breast cancer, the ability of SERMs to prevent
the development of ER-positive breast cancer perhaps
remains the greatest opportunity for these drugs to have a
major impact on the disease. The evidence that both
tamoxifen and raloxifene can prevent the development of
breast cancer has provided ‘proof of principle’ for endocrine
intervention as an important manipulation for women at risk
for developing breast cancer [3,46,65]. However, important
questions remain in the prevention setting, namely the
identification of those women who are most likely to benefit
from such an intervention, the most appropriate risk
parameters to be used and, in particular, the safest and most
effective SERM to utilize in this setting. Tamoxifen may
reduce breast cancer incidence by 48% in an at-risk
population, but it is associated with an increased risk for
endometrial cancer and thrombotic events [3]. In contrast,
raloxifene yielded an apparent greater risk reduction in breast
cancer incidence with a reduced risk for endometrial cancer,
albeit in a different population of women who were at risk for
osteoporosis [46,65]. The current Study of Tamoxifen And
Raloxifene (STAR) chemoprevention trial is comparing the
effects of raloxifene with those of tamoxifen with the
anticipation that efficacy in risk reduction may be somewhat
similar, but that the toxicity profile in terms of gynaecological
problems may be better for raloxifene than for tamoxifen [66].

The development of SERMs as chemoprevention agents with
an even better efficacy and improved toxicity profile over
tamoxifen or raloxifene remains an important goal. However,
conducting large prevention studies in 20,000 women or
more over 10–15 years in order to generate results is
increasingly expensive and inefficient. An alternative approach
to identify novel SERM candidates for chemoprevention is to
conduct short-term phase IA/IB preoperative biomarker
modulation studies in women with newly diagnosed primary
breast cancer. Changes in the proportion of proliferating
tumour cells (as indicated by Ki-67) in ER-positive primary
breast cancer has been shown to correlate with clinical
response following treatment with tamoxifen [67], and more
recently a greater reduction in Ki-67 after 2 weeks was
observed in patients treated with the AI anastrazole than with
tamoxifen [68], which is analogous to the improved outcome
seen in the large scale Arimidex, Tamoxifen, Alone or in
Combination (ATAC) adjuvant trial [69]. This has also been
studied in randomized controlled trials in primary breast
cancer with different doses of tamoxifen [70], and with the
tamoxifen-like SERM idoxifene [71], raloxifene [72] and more
recently arzoxifene [73]. In the placebo-controlled studies of
idoxifene and raloxifene, short-term treatment for 2 weeks
was associated with mean 35% and 21% reductions in Ki-
67, respectively, as compared with a 6–7% mean increase
for placebo. In the recent study with arzoxifene, changes in
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proliferation indices in 58 women were not statistically
different from placebo control because of the confounding
factor of stopping hormone replacement therapy before study
entry, which was not allowed in the other studies. Similar
clinical studies may be warranted with the two new SERMs
acolbofene and lasofoxifene, given that they appear to be
potent anti-oestrogens in the breast, pro-oestrogenic in the
bone, and devoid of the unwanted uterotrophoic effects seen
with tamoxifen. In addition, experimental studies in carcinogen-
induced mammary carcinoma in rats have shown that novel
SERMs such as acolbifene [74] and arzoxifene [75] can both
effectively prevent mammary cancer development.

Such biomarker data strongly support the further clinical
development in the chemoprevention setting of these novel
SERMs that have antiproliferative effects on breast tissue and
reduced agonist effects on the gynaecological tract, but that
remain protective of bone mass. Many may feel that the
existing experimental and early clinical studies provide
sufficient supportive data to merit clinical trials in the
chemoprevention setting, albeit that such studies remain
large scale, time consuming and expensive. The next step will
be to develop risk algorithms to identify those women who
have the most to gain from such an intervention, at whom the
next generation of chemoprevention trials with a novel SERM
that is safer than tamoxifen could be specifically targeted.

SERDs
Mechanism of action
SERDs are distinguishable from tamoxifen and other SERMs,
both pharmacologically and in terms of their molecular
activity. Although both classes of agent mediate their effects
through the ER, they differ significantly in their interaction with
ER and the subsequent downstream effects. The steroidal
anti-oestrogens bind to the ER but, because of their long
bulky side chains at the 7α and 11β positions, receptor
dimerization appears to be sterically hindered [76]. There is
evidence that ER turnover is increased and nuclear
localization is disrupted, with a concomitant reduction in the
number of detectable ER molecules in the cell both in vitro
and in vivo. This is in marked contrast to the stable or
increased levels of ER expression associated with tamoxifen
and other related SERMs [77]. Experimental studies suggest
that, as a consequence of ER downregulation, ER-mediated
transcription is completely attenuated due to inactivation of
AF-1 and AF-2, with complete suppression of oestrogen
dependent gene expression (Fig. 2c).

The preclinical characteristics of fulvestrant, which define this
compound as a SERD devoid of oestrogen-like activity, have
been extensively reviewed [78]. These include an affinity for
the ER approximately 100 times that of tamoxifen, the specific
absence of oestrogen-like activity on the uterus, and the
capacity to block completely the stimulatory activities of both
oestrogens and anti-oestrogens like tamoxifen with partial
agonist activity. The absence of oestrogenic activity has

important consequences for the development of resistance,
which can limit the effectiveness of long-term tamoxifen
therapy. In vitro studies demonstrate that tamoxifen-resistant
breast cancer cell lines remain sensitive to growth inhibition
by fulvestrant [79], and that in vivo tamoxifen-resistant tumors
remain sensitive to fulvestrant [80]. Taken collectively, these
data suggest that fulvestrant may be a more effective
oestrogen antagonist than tamoxifen that is able to produce a
longer response in animal models.

Clinical studies of fulvestrant
The clinical efficacy of fulvestrant has been compared with
those of tamoxifen and anastrazole in postmenopausal women
with breast cancer. Some of the first clinical data came from a
short-term preoperative study conducted in 201 women with
operable breast cancer in which the biological effects of
fulvestrant were compared with those of tamoxifen [81]. A
dose-dependent reduction in the levels of ER and
progesterone receptor (PgR) expression was observed
across three doses of fulvestrant (50, 125 and 250 mg)
administered intramuscularly for 14–21 days before surgery,
compared with placebo or tamoxifen. At all three doses
fulvestrant reduced proliferation as measured by Ki67
labelling index [82]. These clinical data confirmed that
fulvestrant acts as an ER downregulator, with clear anti-
oestrogenic and antiproliferative activity. Furthermore, the
effect on PgR provided evidence of a more complete
blockade of this ER-dependent pathway compared with
tamoxifen, which increased PgR levels because of its partial
agonist activity.

The efficacy of fulvestrant in tamoxifen-resistant breast cancer
was first demonstrated in a small phase II trial conducted in
19 patients with tamoxifen-refractory disease. Thirteen
patients (69%) achieved clinical benefit, with a median
duration of 25 months, and with seven patients demonstrating
a partial response and six patients stable disease [83]. These
data in tamoxifen-resistant disease are in stark contrast to
those with the SERMs outlined above, where cross-
resistance with tamoxifen was invariably shown. Two phase III
studies then compared the efficacy and tolerability of
fulvestrant (250 mg monthly) with anastrozole in post-
menopausal women whose disease had progressed on or
after prior adjuvant endocrine therapy [84,85]. The median
time to disease progression was numerically longer with
fulvestrant than with anastrozole for both trials, with a longer
duration of response observed in the North American trial
[84]. Fulvestrant was also well tolerated and is the first anti-
oestrogen reported to be at least as effective as a new
generation AI, unlike the trials with the tamoxifen-like or
benothiophene SERMs outlined above.

More recently, data from a multinational randomized double-
blind study comparing fulvestrant (250 mg monthly, intra-
muscular) with tamoxifen (20 mg/day, oral) as first-line therapy
in metastatic breast cancer were reported [86]. The study
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randomized a total of 587 postmenopausal women with
metastatic breast cancer who were ER and/or PgR positive
or in whom receptor status was unknown, and at a median
follow up of 14.5 months there was no significant difference
between the fulvestrant and tamoxifen groups in terms of time
to progression in the whole population (median time to
progression: 6.8 months versus 8.3 months, respectively;
P = 0.088). However, there was a significant difference in
time to treatment failure in favour of tamoxifen (P = 0.026),
with the median being 5.9 months for fulvestrant and
7.8 months for tamoxifen. These were unexpected findings
that were not obviously explained by imbalance in patient
groups, failure to administer intramuscular injections correctly,
or undue toxicity. The separation of the Kaplan–Meier curves
for time to progression occurred almost immediately and was
most pronounced at 3 months, suggesting a higher rate of
early progression in the fulvestrant group. Pharmacokinetic
studies have shown that accumulation of the drug may take
3–6 months to reach steady state plasma levels [87].

New clinical directions for SERDs
The clinical scenario has shifted somewhat with the recent
pre-eminence of the AIs as the first-line endocrine therapy of
choice both in the metastatic and, increasingly, in the
adjuvant setting [69]. As such, there is a need to establish
which endocrine agent and sequence is most effective in the
post-AI setting. In vitro, long-term oestrogen deprivation
(LTED) is a situation analogous to that caused by long-term
AI treatment and subsequent AI resistance, and is associated
with an adaptive increase in ER expression and intracellular
signalling that results in hypersensitivity to low oestradiol
levels [88,89]. It is unclear whether tamoxifen or other related
SERMs will be effective in this setting given their partial
agonist effects, which may be more pronounced in cells that
contain these adaptive changes in ER signalling. In contrast,
fulvestrant has no agonist activity and has been shown to be
more effective than tamoxifen in model systems of both LTED
resistance in vitro [88] and resistance to long-term letrozole

in vivo [90]. Encouraging clinical data were reported for
fulvestrant following progression on AIs in five small phase II
studies (Table 4), with clinical benefit seen in 19–52%
patients [91–95]. At present two large phase III trials (EFECT
and SoFEA) are assessing the true benefit of using a SERD
in this setting by comparing the efficacy of fulvestrant with
that of the steroidal aromatase inactivator exemestane, which
has demonstrated some partial non-cross-resistance with
either letrozole or anastrazole; if positive, these studies may
help to define the optimal role for fulvestrant in ER-positive
postmenopausal metastatic breast cancer [96].

At present, no studies are being conducted to investigate the
benefit of fulvestrant in the adjuvant setting. Clinical studies
combining fulvestrant with various signal transduction
modulators are ongoing, including trastuzumab (Herceptin),
EGFR (epidermal growth factor receptor) tyrosine kinase
inhibitors, and farnesyltransferase inhibitors. These trials are
working on the premise that complete ER blockade
combined with effective signal transduction blockade of
growth factor pathways may abrogate resistance
mechanisms and provide greater control of cancer cells. It
also remains to be seen whether two new orally bioavailable
pure anti-oestrogens (SR16234 and ZK191703) will have
equivalent or superior potency in patients to intramuscularly
administered fulvestrant.

Conclusion
The search for a better version of tamoxifen for the treatment
and prevention of breast cancer has yielded many
compounds of potential interest, but none has replaced
tamoxifen in the clinical arena, despite all the effort involved;
as such, many may feel that SERMs and SERDs have lost
their way. The reality in the treatment of breast cancer is that
they have been surpassed by the third generation AIs, which
have shown better tolerability than tamoxifen, with substantial
gains in efficacy both in the advanced and adjuvant settings.
However, this change in the treatment sequence has created
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Table 4

Clinical efficacy of fulvestrant after progression on prior endocrine therapy with AIs

Number of Clinical 
Study [ref.] Treatment (setting) Prior systemic treatments patients benefita (%)

Perey et al. [93] Fulvestrant (third line) Include tamoxifen and AIs 67 28

Ingle et al. [92] Fulvestrant (second and third line) Prior nonsteroidal AIs, and tamoxifen in 79% of patients 77 29

Petruzelka and Fulvestrant (second to fifth line) Include nonsteroidal AIs, adjuvant tamoxifen, and 44 52
Zimovjanova [94] goserelin formestane

Franco et al. [91] Fulvestrant (mean prior endocrine Include nonsteroidal AIs, tamoxifen, megestrol acetate, 42 19
therapies = 3.4) exemestane, and chemotherapy

Steger et al. [95] Fulvestrant (second to fifth line) Include nonsteroidal AIs, tamoxifen, exemestane, 88 57
goserelin, and formestane

Phase II clinical trials with fulvestrant following disease progression on prior endocrine therapy with aromatase inhibitors (AIs) are summarized.
aClinical benefit included patients who had a complete response, partial response, or stable disease for 24 weeks or longer.
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new challenges for development of novel endocrine
therapies. It is possible that SERMs that retain a small partial
agonist activity may or may not be effective in tumours that
become resistant/hypersensitive to low oestradiol levels
induced by LTED. In contrast, this may be an ideal
opportunity for the SERD fulvestrant to demonstrate its
unique endocrine activity because of its ability to down-
regulate the hypersensitive and activated ER present in
LTED-resistant tumour cells; ongoing clinical trials in
advanced disease will determine whether this preclinical
promise holds forth. As for SERMs, although their clinical
development may have fallen on stony ground to date, if
nothing else they have given us a new opportunity to improve
our understanding of the complex molecular biology of ER
signalling in breast and other tissues. Their clinical
resurgence may still occur in the long-term chemoprevention
setting, where they could deliver an improved safety profile
compared with tamoxifen, combined with effective risk
reduction. SERMs may still have an impact to make, and so
their development is not yet over.
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