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Abstract 

Background Bidirectional crosstalk between HER2 and estrogen receptor (ER) pathways may influence outcomes 
and the efficacy of endocrine therapy (ET). Low HER2 expression levels (HER2‑low) have emerged as a predictive 
biomarker in patients with breast cancer (BC).

Methods PALLAS is an open, international, phase 3 study evaluating the addition of palbociclib for 2 years to adju‑
vant ET in patients with stage II‑III ER‑positive/HER2‑negative BC. To assess the impact of HER2 expression on patient 
outcomes in the phase III PALLAS trial, we analyzed (1) the association between rate of HER2‑low with demographic 
and clinicopathological parameters, (2) the prognostic value of HER2‑low status on invasive disease‑free survival 
(iDFS), distant relapse‑free survival (DRFS), and overall survival (OS) and (3) HER2 expression’s value as a predictive 
biomarker of response to palbociclib. HER2‑low was defined as HER2 immunohistochemistry (IHC) 1 + or IHC 2 + with 
negative in situ hybridization (ISH). All pathologic evaluation was performed locally. Prognostic and predictive power 
of HER2 were assessed with Cox models.

Results From the original PALLAS intention‑to‑treat population (N = 5753), 5304 patients (92.2%) were included 
in this analysis. Among these, 2254 patients (42.5%) were classified as having HER2 IHC 0 (HER2‑0), and 3050 (57.5%) 
as having HER2‑low disease (1838 with IHC 1 + and 1212 with IHC 2 +). Median follow‑up was 59.8 months. HER2‑low 
prevalence varied significantly across 21 participating countries (range 16.7% to 75.6%; p < 0.001) and was more fre‑
quent in patients enrolled in North America (63.1%) than in Europe (53.4%) or other regions (53.4%) (p < 0.001). HER2 
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Introduction
Endocrine therapy (ET) is the mainstay of adjuvant sys-
temic treatment for patients with estrogen receptor-
positive (ER +) and human epidermal growth factor 
receptor 2-negative (HER2-) early breast cancer. [1] Over 
the past decades, significant benefits have been demon-
strated with the use of tamoxifen, aromatase inhibitors 
and ovarian function suppression for five to ten years 
after local treatment. [2] More recently, the addition of 
a new class of drugs (CDK4/6 inhibitors, CDK4/6i) to 
ET has led to improvements in progression-free survival 
and overall survival in the metastatic setting, prompting 
the investigation of the role of these agents in the early 
setting. [3–5] In this context, the global phase III PAL-
LAS study assessed whether the addition of 2 years of the 
CDK4/6i palbociclib to adjuvant ET would reduce the 
risk of invasive relapse in patients with stage II-III ER + /
HER2- breast cancer. [6] Overall, the results of the study 
showed no difference in disease outcomes with the addi-
tion of palbociclib. [6] However, with the results of other 
adjuvant studies showing benefits from the addition of 
CDK4/6i [7, 8], the combination of CDK4/6i with ET is 
now considered a standard treatment approach in both 
early and advanced settings. [9–11] Although CDK4/6i 
are associated with toxicities, and primary or secondary 
resistance to these agents may occur, no predictive bio-
markers of response have been validated for clinical use.

Crosstalk between estrogen receptor (ER) and HER2 
pathways has been implicated in treatment resistance 
to both ET and HER2-targeted therapies. [12, 13] HER2 
has been shown to promote ligand-independent ER acti-
vation through tyrosine kinase domain phosphorylation 
and both ER and HER2 can activate the MAPK/PI3K/
AKT signalling through distinct mechanisms. [12, 14] ER, 
via its non-genomic signalling pathway, can phosphoryl-
ate key components of this pathway, while HER2, through 
homo- or heterodimerization, leads to phosphorylation 
of its cytoplasmic tyrosine kinase domain, triggering the 
MAPK/PI3K/AKT activation. [12, 14] Bidirectional sign-
aling between ER and HER2 can lead to loss of sensitiv-
ity to ET via downstream phosphatidylinositol 3-kinase 
(PI3K) and RAS pathways and/or downregulation of ER 

expression. [15, 16] Preclinical evidence suggests that 
combined endocrine and anti-HER2 therapies improve 
clinical outcomes in patients with ER-positive, HER2-
positive disease. [17, 18] Indeed, CDK4/6i have been 
shown to restore sensitivity to anti-HER2 therapy by sup-
pressing Rb and TSC2 phosphorylation, thus attenuating 
mTOR complex 1 (mTORC1) activity. [19] In line with 
these findings, early clinical studies suggest synergistic 
activity from the addition of CDK4/6i to ET and anti-
HER2 therapy. [20–22] This strategy is currently being 
prospectively tested in a confirmatory randomized trial. 
[23] The interaction between HER2-targeted therapies 
and CDK4/6i observed in HER2-positive disease has also 
been shown to be relevant in cancers with low levels of 
HER2 expression (HER2-low). In in vitro models derived 
from ER-positive tumors, the combination of palbociclib, 
fulvestrant, trastuzumab and pertuzumab demonstrated 
synergy in both HER2-positive and HER2-low cell lines. 
[24].

Although the efficacy of anti-HER2 therapies was tra-
ditionally restricted to tumors with HER2 amplification / 
overexpression [25], new generation antibody–drug con-
jugates (ADCs) have demonstrated activity in patients 
with HER2-low disease. [26–28] Indeed, trastuzumab 
deruxtecan (T-DXd), a HER2-targeted ADC, is currently 
approved for the treatment of patients with advanced 
HER2-low breast cancer [29, 30] and ongoing stud-
ies employ HER2-low status as an inclusion criterion. 
[31] Interestingly, while in patients with HER2-positive 
(HER2 +) disease the expression of HER2 and ER are 
inversely related, HER2-low expression has been shown 
to be positively associated with ER expression. [32, 33] 
Therefore, in view of the intricate crosstalk between the 
HER2 and ER pathways, we hypothesized that HER2-low 
status could influence the response to CDK4/6 blockade 
in patients with ER + early breast cancer in the PALLAS 
trial.

Methods
Study and patients
PALLAS (AFT-05/ABCSG-42/BIG-14–03, PrE0109, 
ClinicalTrials.gov identifier: NCT02513394, EudraCT 

status was not significantly associated with iDFS in a multivariable Cox model (hazard ratio 0.93, 95% confidence inter‑
val 0.81 – 1.06). No significant interaction was observed between treatment arm and HER2 status for iDFS (p = 0.43). 
Similar results were obtained for DRFS and OS.

Conclusions In this large, prospective, global patient cohort, no differences were observed in clinical parameters, 
prognosis, or differential benefit from palbociclib between HER2‑0 and HER2‑low tumors. Significant geographic 
variability was observed in the prevalence of HER2‑low status, suggesting a high degree of variation in pathologic 
assessment of HER2 expression without impact on outcomes.
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2014–005181-30) is an open-label, international, phase 
3 study that enrolled patients with stage II–III ER + /
HER2- breast cancer who were randomized to receive 
adjuvant ET for at least five years either alone, or in 
combination with palbociclib 125 mg once daily (three 
weeks on and one week off ) for two years. All enrolled 
patients provided written informed consent, and the 
trial was approved by institutional review boards and 
ethics committees and carried out in accordance with 
the Declaration of Helsinki. Further details regarding 
study design and results are available in the original 
publication. [6] Overall, no invasive disease-free sur-
vival benefit was observed from the addition of palbo-
ciclib to ET. [6].

HER2 assessment was performed locally accord-
ing to institutional guidelines, in a Clinical Labora-
tory Improvement Amendments (CLIA)-approved 
setting in the United States or a certified laboratory 
in other countries. In patients treated with neoad-
juvant systemic therapy, HER2 status was obtained 
from the baseline core biopsy (prior to neoadjuvant 
therapy) whenever available. In the case of upfront 
surgery, the postoperative tissue result was used for 
HER2 status. HER2-low was defined as HER2 immu-
nohistochemistry (IHC) 1 + or IHC 2 + with negative 
in  situ hybridization. Only patients with HER2-0 and 
HER2-low breast cancer were included in this analysis; 
those with HER2 + breast cancer or missing HER2 sta-
tus were excluded. ER and progesterone receptor (PR) 
IHC assessments were also performed locally and are 
reported as the percentage of positive cells.

Objectives and endpoints
The aims of this analysis were [1] to assess the associa-
tion between low levels of HER2 expression with demo-
graphic and clinicopathological parameters, [2] to test 
the prognostic value of HER2-low status on invasive 
disease-free survival (IDFS), distant relapse-free survival 
(DRFS), and overall survival (OS) and [3] to assess the 
value of HER2 expression as a predictive biomarker of 
response to palbociclib.

The endpoints were defined as in the original trial and 
based on the STEEP definitions. [6, 34] IDFS was defined 
as the time from randomization to the date of the first 
event: local or regional invasive ipsilateral recurrence, 
contralateral invasive breast cancer, distant recurrence, 
second primary invasive cancer of non-breast origin, 
or death from any cause. DRFS was defined as the time 
from randomization to the date of the first event, distant 
recurrence, or death from any cause. OS was defined as 
the period between randomization and death from any 
cause.

Statistical considerations
Association of HER2 status with other baseline covari-
ates was tested with Chi-squared tests. Analyses were 
performed considering two (HER2-0 vs. HER2-low) or 
three (HER2-0 vs. HER2 1 + vs HER2 2 +) comparison 
groups. Prognostic power of HER2 was assessed with 
uni- and multivariable Cox proportional hazards mod-
els. Multivariable models included age, T-stage, N-stage, 
grade, and PR expression. The predictive value of HER2 
status for palbociclib benefit was tested with Cox models 
using an interaction term (hazard ratio is a relative scale 
measure) as well as on the absolute scale with 5-year 
Kaplan Meier estimate differences between arms. The 
proportional hazards assumption was tested using the 
weighted Schoenfeld residuals. No strong violations were 
observed. Hazard ratios (HR) and 95% confidence inter-
vals (CI) are reported. For the absolute 5-year differences 
the 95% CIs were derived via non-parametric bootstrap-
ping (percentile method). Tests with p-values < 0.05 were 
considered statistically significant. For this PALLAS anal-
ysis the 5-year median follow-up data set was used (i.e., 
all data up to May 30th, 2023). Analyses were performed 
with SAS 9.4 (SAS Institute Inc, Cary, NC).

Results
From the original PALLAS intention-to-treat popula-
tion (N = 5753), 5304 patients (92.2%) were included in 
this analysis. Fourteen patients (0.2%) were excluded due 
to HER2 positivity (either IHC 3 + or in  situ hybridiza-
tion (ISH) positive/amplified), 435 (7.6%) due to missing/
unknown HER2 status. Among the patients included, 
2254 (42.5%) were classified as HER2 IHC 0 (HER2-0) 
and 3050 (57.5%) as HER2-low (1838 with IHC 1 + and 
1212 with IHC 2 + with negative in  situ hybridization). 
For this analysis, median follow-up was 59.8 months.

Association of HER2‑low status with demographic 
and clinicopathological characteristics
Compared to HER2-0, patients with HER2-low tumors 
had minimally higher ER expression levels (mean 
expression 88.9% vs. 87.9%, p = 0.023), and body mass 
index (BMI) (mean BMI 27.9 vs. 27.7  kg/m2, p = 0.047) 
(Table  1). HER2-low status varied significantly across 
21 participating countries, ranging from 16.7% in Mex-
ico to 75.6% in Japan (p < 0.001) and was more frequent 
in patients enrolled in North America (63.1%) than in 
Europe (53.4%) and other regions (53.4%) (p < 0.001) 
(Fig.  1). Among all participating countries, Austria had 
HER2-low prevalence (57.4%) closest to the overall popu-
lation (57.5%). We therefore studied the national hetero-
geneity of HER2 expression in this particular country. 
Significant heterogeneity in HER2-low expression was 
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Table 1 Association of HER2‑low status with demographic and clinicopathological characteristics

Characteristic HER2 0N = 2254 HER2 lowN = 3050 p‑value

Anatomic stage 0.308

   I/IIA 393 (17.4%) 565 (18.5%)

   IIB/III 1861 (82.6%) 2485 (81.5%)

T‑stage 0.926

   T0/T1/Tis/TX 424 (18.8%) 561 (18.4%)

   T2 1264 (56.1%) 1717 (56.3%)

   T3/T4 566 (25.1%) 772 (25.3%)

N‑stage 0.318

   N0 276 (12.2%) 422 (13.8%)

   N1 1109 (49.2%) 1498 (49.1%)

   N2 554 (24.6%) 731 (24.0%)

   N3 315 (14.0%) 398 (13.0%)

   Missing 0 1 (0.0%)

Histological grade 0. 890

   Grade 1 234 (10.4%) 331 (10.9%)

   Grade 2 1292 (57.3%) 1721 (56.4%)

   Grade 3 627 (27.8%) 854 (28.0%)

   Grade X/Missing 101 (4.5%) 144 (4.7%)

Age at randomization (years) 0.785

   Mean (SD) 53.1 (10.8) 53.0 (11.1)

   Min—Max 26.0 to 90.0 22.0 to 86.0

Menopausal status at randomization 0.660

   Postmenopausal 1209 (53.6%) 1635 (53.6%)

   Pre‑/Perimenopausal 1032 (45.8%) 1391 (45.6%)

   Male/Missing 13 (0.6%) 24 (0.8%)

Baseline ECOG‑PS 0.161

   0 1917 (85.0%) 2536 (83.1%)

   1/unknown 335 (14.9%) 512 (16.8%)

   Missing 2 (0.1%) 2 (0.1%)

BMI at randomization 0.047

   N 2222 3025

   Mean (SD) 27.7 (6.1) 27.9 (6.1)

   Min—Max 15.6 to 65.6 15.8 to 56.4

ER positive cells (%) 0.023

   N 1987 2726

   Mean (SD) 87.9 (17.3) 88.9 (17.0)

   Min—Max 0.0 to 100.0 0.0 to 100.0

PR positive cells (%) 0.094

   N 2007 2766

   Mean (SD) 59.7 (37.6) 58.3 (37.1)

   Min—Max 0.0 to 100.0 0.0 to 100.0

Primary surgery type 0.188

   Breast‑conserving surgery 892 (39.6%) 1138 (37.3%)

   Mastectomy 1359 (60.3%) 1905 (62.5%)

   Both 3 (0.1%) 7 (0.2%)

Prior radiation 0.552

   No 241 (10.7%) 342 (11.2%)

   Yes 2012 (89.3%) 2708 (88.8%)

   Missing 1 (0.0%) 0

Prior chemotherapy 0.063

   No 422 (18.7%) 511 (16.8%)

   Yes 1832 (81.3%) 2539 (83.2%)
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demonstrated across 20 Austrian sites, ranging from 
14.9% to 100.0% (Fig. 1). No differences in HER2 expres-
sion were observed according to age, menopausal status, 
baseline performance status, anatomic stage, T-stage, 
N-stage, histological grade, PR, primary surgery type, 
prior radiation, or prior chemotherapy.

Prognostic value of HER2‑low status
Univariable and multivariable models were performed to 
assess whether HER2 expression was associated with dif-
ferences in long-term outcomes among patients enrolled 
in PALLAS. In univariable analyses, HER2-low status was 
not associated with differences in iDFS (HR 0.92, 95%CI 
0.80 – 1.05), DRFS (HR 0.94, 95%CI 0.81 – 1.10), or OS 
(HR 0.94, 95%CI 0.76 – 1.16) (Table 2, Figs. 2, Additional 
File 1: Supplementary Figs. 1 and 2).

Consistent with the univariable analysis, in multi-
variable Cox regression model adjusted for age, T-stage, 
N-stage, grade and PR, there were no statistically signif-
icant differences in iDFS (HR 0.93, 95%CI 0.81 – 1.06), 
DRFS (HR 0.96, 95%CI 0.82 – 1.12), or OS (HR 0.96, 

95%CI 0.78 – 1.18) according to HER2-low status. Simi-
lar results were obtained when HER2-0 was compared 
to HER2 1 + and HER2 2 + separately (Additional File 1: 
Supplementary Table 1).

HER2‑low expression as a predictive biomarker 
of palbociclib benefit
No significant interaction between the HER2 status and 
the relative benefit to palbociclib was identified for iDFS, 
DRFS or OS. Similar results were seen for absolute treat-
ment benefit. Absolute effect sizes were similar between 
HER2-0 and HER2-low patients with mainly overlapping 
95% confidence intervals (Fig.  3; Additional File: Sup-
plementary Table  2 and Supplementary Figs.  3 and 
4). Similar results were obtained when HER2-0 was com-
pared to HER2 1 + and HER2 2 + separately (Additional 
File: Supplementary Table 2).

Table 1 (continued)
SD standard deviation, ECOG-PS Eastern Cooperative Oncology Group Performance Status, BMI body mass index, ER estrogen receptor, PR progesterone receptor. P 
values are from Chi‑square tests excluding the missing category

Fig. 1 HER2‑low rates by continent (A), by country (B), and by site within a country (Austria, C). Abbreviation: HER2, human epidermal growth factor 
receptor 2

Table 2 Prognostic value of HER2 status (HER2‑low vs. HER2‑0)

HR hazard ratio, CI confidence interval, IDFS invasive disease‑free survival, DRFS 
distant relapse‑free survival, OS overall survival. aAdjusted for age, T‑stage, 
N‑stage, grade, and progesterone receptor status

5‑year survival Unadjusted HR 
(CI)

Adjusted HR 
(CI)a

IDFS HER2‑0 82.1% 0.92 (0.80 – 1.05) 0.93 (0.81 – 1.06)

HER2‑low 83.5%

DRFS HER2‑0 85.5% 0.94 (0.81 – 1.10) 0.96 (0.82 – 1.12)

HER2‑low 86.5%

OS HER2‑0 92.5% 0.94 (0.76 – 1.16) 0.96 (0.78 – 1.18)

HER2‑low 92.9%

Fig. 2 Invasive disease‑free survival according to HER2 status. 
Abbreviation: HER2, human epidermal growth factor receptor 2
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Discussion
In this study, we evaluated the distribution and impact of 
HER2-low expression in patients with ER + early breast 
cancer enrolled in a large, prospective, randomized, and 
international trial. Marked regional heterogeneity in the 
HER2-low rate was demonstrated both across countries 
and within national sites. HER2-low expression was not 
associated with significant prognostic impact in this pop-
ulation or with differential benefit from palbociclib.

The significant geographic variability observed in the 
prevalence of HER2-low status in our analysis was ini-
tially identified at the continental level, with patients 
enrolled in North America having approximately 10% 
higher HER2-low rates compared to Europe and other 
regions. To further investigate this finding, we compared 
the prevalence of HER2-low status among different coun-
tries and, subsequently, across different sites within a 
single country. In all these levels, significant differences 
in HER2-low rates were observed. This discrepancy is 
particularly relevant considering that HER2-low status 
is currently used as an actionable biomarker to select 
patients for treatment with the ADC trastuzumab der-
uxtecan (T-DXd) in the metastatic setting. [29, 30] This 
ADC was approved by the U.S. Food and Drug Admin-
istration (FDA) and the European Medicines Agency 
(EMA) based on the results of the DESTINY-Breast04 
study, in which T-DXd was superior to investigator’s 
choice therapy in patients with HER2-low metastatic 
breast cancer. [26, 29, 30] Notably, the recruitment 
period in PALLAS (2015–2018) preceded the presenta-
tion of the results of the pivotal studies demonstrating 
the benefit of T-DXd in the HER2-low population. [26] 
Whether the regional discrepancies found were due to 

a real biological difference in HER2 expression among 
patients randomized in different regions, differences 
in HER2 assessment methods, variations in reporting 
standards across sites, or a spurious finding remains to 
be determined. Indeed, other studies have shown high 
inter-observer variability in the assessment of HER2-low 
status, which likely reflects the original purpose of the 
available assays to differentiate the presence or absence 
of HER2 overexpression / amplification, and not to differ-
entiate HER2-low from HER2-0. [35–37] Several assays 
are currently approved for HER2 assessment, including 
Pathway 4B5, HercepTest pAb (Autostainer, SK001) and 
HercepTest mAb pharmDx, and it has been shown that 
these methodologies differentially identify HER2-low 
status when directly compared. [35, 36] Geographical 
differences in the prevalence of HER2 and ER positiv-
ity in breast cancer within the same country have been 
described and were partially attributed to regional varia-
bility in racial/ethnic composition. [38, 39] In the specific 
case of HER2-low, a large retrospective cohort including 
data from over one million patients in the United States 
demonstrated significant variations in the prevalence of 
HER2-low status across participating sites (lower rates 
were seen at academic centers). [38] In that cohort, varia-
tions in the HER2-low rate were also observed according 
to age, race/ethnicity, ER expression, grade, and histo-
logical type. 37 At the individual level, a rapid autopsy 
study that included patients with HER2-negative primary 
breast cancer demonstrated that HER2-0 and HER2-low 
metastases coexisted in approximately 80% of patients. 
[40] Furthermore, significant intra-organ heterogene-
ity in HER2-low status was observed among samples 
obtained from different lesions within the same organ. 

Fig. 3 Invasive disease‑free survival probability according to treatment arm in patients with HER2‑0 (A) and HER2‑low (B) tumor. Abbreviation: HER2, 
human epidermal growth factor receptor 2
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[40] Taken together, these findings demonstrate the 
extreme instability and lack of reproducibility of the cur-
rent assessment of HER2-low status. The recent results 
from the DESTINY-Breast06 study, demonstrating the 
superiority of T-DXd over chemotherapy in patients with 
HER2-low and HER2-ultralow (HER2 IHC scores greater 
than 0 but less than 1 +), ER + breast cancer, underscore 
the clinical significance of even minimal HER2 expres-
sion and the growing challenges in standardizing scoring 
methods. [41] Given the current and future relevance of 
this biomarker, as advised by the ESMO Expert Consen-
sus Statements on HER2-low breast cancer, initiatives 
aimed at improving the diagnostic accuracy of HER2-
low status should be sought, particularly considering 
that HER2-low status has been adopted as an inclusion 
criteria for important ongoing trials. [31, 42, 43] Moving 
forward, evolving investigational approaches could help 
achieve this goal, including the use of artificial intelli-
gence-assisted pathology tools, HER2-targeted molecu-
lar imaging diagnostics, and the use of liquid biopsy for 
HER2 status determination. [44–46] Other clinicopatho-
logical factors with statistically significant differences 
between HER2-0 and HER2-low groups in the present 
analysis (i.e., ER, and BMI) were not considered clinically 
significant due to the small absolute difference observed 
between the groups. Although the absolute difference in 
mean ER expression between the HER2-low and HER2-0 
groups was small (1.0%), this finding is in line with pre-
vious analyses showing a positive correlation between 
HER2 and ER expression in patients with no HER2 
amplification/overexpression. [33, 47].

In our analysis, patients with HER2-low tumors had 
similar outcomes compared to those with HER2-0 in 
the entire cohort, regardless of the treatment arm. Inter-
estingly, two large meta-analyses aiming to assess the 
prognostic value of HER2-low status demonstrated that 
patients with HER2-low disease have modestly better 
DFS and OS compared to patients with HER2-0 tumors. 
[48, 49] Similar results were obtained in sub-analyses 
including only patients with ER + disease. [48, 49] How-
ever, most of the studies included in both systematic 
reviews were retrospective and with significant methodo-
logical heterogeneity. [48, 49] The relatively short follow-
up period (approximately five years) and smaller sample 
in our analysis may also have hindered the detection of a 
potentially small prognostic effect size. Another aspect to 
be considered when analyzing the prognostic value of this 
biomarker is that several initiatives have failed to identify 
significant different molecular characteristics between 
tumors categorized according to HER2-low status. [50] 
Furthermore, the marked regional heterogeneity in 
HER2-low expression found in our analysis also suggests 
that studies testing HER2-low as prognostic biomarker or 

as a separate biological entity may be hampered by the 
low accuracy of the available diagnostic methods in dif-
ferentiating HER2-low from HER2-0. Thus, the results 
observed in our study and the lack of characterization of 
HER2-low tumors as a distinct biological entity suggest 
that the prognostic value of this biomarker may be lim-
ited or non-existent.

Apart from ER expression, there are no validated bio-
markers of response to CDK4/6i incorporated into 
clinical practice. Considering the crosstalk between the 
HER2 and ER pathways, we further explored the inter-
action between HER2-low status with treatment arms. 
In our analysis, HER2-low status was not shown to pre-
dict  response to  palbociclib. Although HER2-low status 
was associated with a numerical benefit from palbociclib 
compared to HER2-0 (absolute IDFS difference at 5 years: 
2.6% vs. 0.6%), this difference was not statistically signifi-
cant. In the metastatic setting, conflicting results were 
observed in studies evaluating the interaction between 
HER2-low status and the benefit from CDK4/6i. In a 
secondary analysis of the PALOMA-2 and PALOMA-3 
studies, the addition of palbociclib to ET was associ-
ated with PFS improvement only among patients with 
HER2-low disease in PALOMA-3, while in PALOMA-2 
both HER2-0 and HER2-low groups derived similar 
benefit from CDK4/6i. [51] Large retrospective cohorts 
also found that the benefit of CDK4/6i was independ-
ent of HER2-low status. [52] A protocol-defined analysis 
assessed the value of genomic subtype (PAM50 intrinsic 
subtype) from whole-transcriptome RNA sequencing as 
a predictive biomarker in PALLAS. In this analysis, no 
significant interaction between PAM50 molecular sub-
type and palbociclib treatment benefit was identified. 
[53] Of note, although not statistically significant, the 
subgroup with the greatest numerical potential for pal-
bociclib benefit was the HER2 enriched (HR 0.25, 95% 
CI 0.07–0.93). [53] Similarly, biomarker analyses from 
the monarchE trial demonstrated consistent abemaciclib 
benefit across breast cancer intrinsic molecular subtypes 
and the most prevalent genomic alterations, except for 
MYC amplifications. [54] Interestingly, HER2 / ER cross-
talk is an important mechanism underlying MYC upreg-
ulation and MYC-mediated glutamine metabolism has 
been associated with resistance to ET. [55] Overall, these 
findings demonstrate the lack of accurate biomarkers of 
response to CDK4/6 inhibition in the early setting and 
emphasize the need for continued research in the field.

In conclusion, in this large, prospective, international 
cohort, no differences were observed in clinical charac-
teristics, prognosis, or differential benefit from palbo-
ciclib (absolute and relative predictive value) between 
HER2-0 and HER2-low tumors. Significant geographic 
variability was observed in the prevalence of HER2-low 
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status, suggesting a high degree of variation in patho-
logic assessment of HER2 expression without impact on 
outcomes.
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