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Abstract 

Background Breast cancer (BC) is the most common cancer in women and incidence rates are increasing; metabo-
lomics may be a promising approach for identifying the drivers of the increasing trends that cannot be explained 
by changes in known BC risk factors.

Methods We conducted a nested case–control study (median followup 6.3 years) within the New York site 
of the Breast Cancer Family Registry (BCFR) (n = 40 cases and 70 age-matched controls). We conducted a metabo-
lome-wide association study using untargeted metabolomics coupling hydrophilic interaction liquid chromatography 
(HILIC) and  C18 chromatography with high-resolution mass spectrometry (LC-HRMS) to identify BC-related metabolic 
features.

Results We found eight metabolic features associated with BC risk. For the four metabolites negatively associated 
with risk, the adjusted odds ratios (ORs) ranged from 0.31 (95% confidence interval (CI): 0.14, 0.66) (L-Histidine) to 0.65 
(95% CI: 0.43, 0.98) (N-Acetylgalactosamine), and for the four metabolites positively associated with risk, ORs ranged 
from 1.61 (95% CI: 1.04, 2.51, (m/z: 101.5813, RT: 90.4, 1,3-dibutyl-1-nitrosourea, a potential carcinogen)) to 2.20 (95% 
CI: 1.15, 4.23) (11-cis-Eicosenic acid). These results were no longer statistically significant after adjusting for multiple 
comparisons. Adding the BC-related metabolic features to a model, including age, the Breast and Ovarian Analysis 
of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk score improved the accuracy of BC prediction 
from an area under the curve (AUC) of 66% to 83%.

Conclusions If replicated in larger prospective cohorts, these findings offer promising new ways to identify expo-
sures related to BC and improve BC risk prediction.

Keywords Breast cancer epidemiology, BOADICEA, Metabolome, Metabolomics, Nested case–control study, Partial 
least-squares discriminant analysis (PLS-DA)

Introduction
Breast cancer (BC), the most common cancer and the 
leading cause of cancer death in women worldwide [1], is 
increasing over time, and established risk factors cannot 
account for this increase [2]. Metabolic phenotype rep-
resents the metabolite profile, influenced by genetic and 
environmental factors [3]. Characterization of metabolic 
processes may provide new insights into risk factors for 
breast carcinogenesis [4]. Thus, a comprehensive readout 
of the chemical body burden and the resulting endog-
enous response with the fast-evolving technologies of 
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high-resolution mass spectrometry (HRMS) in the recent 
decade, metabolomics is one promising approach to gain-
ing comprehensive insight into the etiological pathways 
leading to BC. [4–6] The small molecule profile of blood 
untargeted metabolomics provides an integrated readout 
of the body’s chemical burden and its endogenous meta-
bolic response.

At least 10 prospective metabolomic studies of BC risk 
using pre-diagnostic plasma (n = 88–1691 cases) with the 
mean follow-up ranging from 4 to 21  years have been 
carried out [7–16]. Most prior studies [7, 8, 11, 12, 15, 
16], however, focused on postmenopausal women and 
none of these studies focused on women at high risk 
due to their family history. These studies reported that 
metabolites such as sex steroid-related metabolites, glyc-
erolipids, and cholesteryl esters were altered several years 
prior to BC diagnosis; suggested that metabolomics is 
potentially a powerful approach to identify metabolomic 
biomarkers that are altered during BC development and 
before clinical symptoms. In addition, studies also found 
several BC-associated metabolic features were correlated 
with diet [15] or body mass index (BMI) [16]. For exam-
ple, a nested case–control study identified 113 nutritional 
metabolites and found 3 metabolic features, including 
saturated fatty acids (from fats/oils), vitamin E deriva-
tives (from desserts or vitamin supplements), and andro-
gens (from alcohol), were associated with BC, with odds 
ratios (ORs) ranging from 0.6 to 2.2 [15]. These studies 
highlighted the associations between baseline plasma 
metabolomic signatures and BC risk and suggested 
potential metabolic pathways as a promising avenue for 
discovering therapeutic targets for prevention.

Women with a family history of BC are two to four 
times more likely to develop the disease compared to 
women with no family history [17]. BC risk associated 
with family history varies with the age of the individual, 
number of affected relatives and age at which the rela-
tives were diagnosed with BC [18, 19]. Our prior study 
estimated lifetime risk based on the Breast and Ovar-
ian Analysis of Disease Incidence and Carrier Estima-
tion Algorithm (BOADICEA) for women enrolled in the 
Breast Cancer Family Registry (BCFR) and found there 
was substantial variation in absolute risk among par-
ticipants [17]. Therefore, the BCFR is a unique cohort 
to identify biomarkers for women across the risk con-
tinuum. The goal of this pilot study, which employed a 
prospective nested case–control study design, was to 
interrogate the relationship between metabolomic fea-
tures with breast cancer risk in pre-diagnostic plasma 
of women enrolled in the New York site of the BCFR, a 
registry of individuals within families with breast and/or 
ovarian cancer [17, 20]. 

Materials and methods
Study design
We conducted a prospective study among the women 
unaffected with BC at enrollment within the New York 
site of the BCFR (for details see [21]). At recruitment, 
eligible participants completed a questionnaire that 
included information on demographics, lifestyles, envi-
ronmental factors, and family history of cancer [20]. All 
BCFR participants were requested to provide a 30  ml 
blood sample at the time of the baseline recruitment. 
Biospecimens were processed according to a common 
standardized protocol and stored at − 80 °C till metabo-
lomic analysis.

We actively follow participants for subsequent infor-
mation on cancer incidence and vital status and attempt 
to verify cancers through pathology reviews and medical 
records. For the present nested case–control study, we 
analyzed data for 40 prospectively ascertained BC cases 
and 70 age- (± 5yrs) matched controls. Of these 40 cases, 
17 were diagnosed with BC within 5 years, 17 cases were 
diagnosed with BC between 5 and 10 years and six cases 
were diagnosed with BC more than 10 years after blood 
draw. This study was approved by Columbia Univer-
sity’s Institutional Review Board. All methods were per-
formed in accordance with the relevant guidelines and 
regulations.

Liquid chromatography‑high resolution mass 
spectrometry (LC‑HRMS) analysis
To interrogate circulating metabolic differences, we con-
ducted global metabolomics of blood plasma samples 
using a liquid chromatography-high resolution mass 
spectrometry (LC-HRMS)-based metabolomics work-
flow [22]. For sample pretreatment, blood plasma samples 
were thawed on ice; 50 µL was aliquoted and extracted 
with 100 µL ice-cold acetonitrile (ACN) pre-spiked with 
the internal standard mix (final ACN: sample, 2:1, v/v). 
After centrifugation, supernatants were collected, of 
which 10 µL was injected for LC-MS analysis. The ana-
lytes were chromatographically separated, ionized and 
analyzed on a Thermo Fisher Scientific Vanquish dual 
chromatograph coupled to a high-resolution accurate-
mass (HRAM) quadrupole-Orbitrap Q-Exactive HF-X 
mass spectrometer (Waltham, MA, USA) under two 
complementary modes: hydrophilic interaction liquid 
chromatography-electrospray ionization mass spectrom-
etry in positive ion mode (HILIC) and  C18-electrospray 
ionization mass spectrometry in negative ion mode 
 (C18). The HILIC column uses a polar stationary phase 
that retains well polar species (e.g., primary metabolites 
including many organic acids and amino acids), while 
the  C18 column uses a more nonpolar stationary phase 
that separates more nonpolar species well; using both 
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columns allows us to cover a broad range of metabolites. 
For both modes, we operated the instrument in full scan 
mode at 120,000 mass resolution (full width at half maxi-
mum, fwhm) scanning a mass-to-charge (m/z) range of 
85–1,275. For quality assurance and quality control (QA/
QC), extracts of NIST1953 plasma (Gaithersburg, MD, 
USA) and BioIVT plasma (New Cassel, NY, USA) were 
injected intermittently with sample extracts. Other QA/
QC procedures were implemented, spanning timely mass 
calibration, sample randomization, blinding technicians 
from case–control status of samples, method blanks, and 
triplicate sample injection. We further performed strin-
gent post-data procedures, including triplicate sample 
filtering (keeping only features with ≥ 2/3 occurrences), 
replicate median summarization, and combat correction 
(accounting for batch effects). The resultant dataset after 
QA/QC reached a CV of 7.92% of total ion chromato-
gram (TIC) intensity using all features for QC samples, 
and the pairwise Pearson Correlation within QC samples 
(averaged) has a mean of 0.95 and %CV range of 0.78–1.

Data processing and analysis
We converted the acquired RAW format data to mzXML 
format in ProteoWizard msConvert, and extracted mass 
spectral features and aligned separately for each mode 
using apLCMS [23] with modifications by xMSanalyzer 
[24]. We used ComBat [25] for batch correction. The 
resultants feature table consist of 5,992 HILIC and 5,780 
 C18 features, respectively, containing accurate m/z, reten-
tion time (RT), and peak intensity (i.e., peak area, as a 
semi-quantitative measure for statistics) for individual 
ion features in each sample, which are referred to as m/z 
features hereafter. For QC purpose, we filtered the fea-
ture tables to remove peaks that were detected in fewer 
than 20% of study samples (i.e., consistently detected in 
analytical replicates of at least one participant’s sample). 
We did not observe statistically significant differences in 
the number of missing features between cases and con-
trols. We retained a total of 2,264 metabolic features for 
HILIC and 2,988 metabolic features for  C18 for data anal-
ysis; the remaining metabolic features with values below 
the detection limit were imputed with half the minimum 
of the non-missing values. Prior to statistical analysis, we 
 log10 transformed and Pareto-scaled peak intensities [26]. 
To annotate compound structures for these detectable 
metabolic features, we used a multi-layered approach, 
and assigned confidence of annotation according to the 
Schymanski Scale [27] by the guidelines of the Metabo-
lomics Standard Initiatives (MSI) [28]. Briefly, we refer-
enced an in-house m/z-RT library that was established 
from over 900 authentic chemical standards (level 1) 
and applied de novo annotation (level 4) through match-
ing accurate m/z against annotations from Mummichog 

pathway analysis (10  ppm) and filtered out unlikely 
annotations by (1) focusing exclusively on ESI adduct 
species [M +  H]+, [M + H-H2O]+,  [M]+, [M-H]−, and 
[M-H-H20]−, and (2) filtering based on machine learning 
predicted RT, using bidirectional recurrent neural net-
work (BRNN) for HILIC RT and random forest for  C18 
RT, respectively.

Absolute risk of BC
We assessed the 1-year risk of breast cancer by leverag-
ing familial pedigree and vital status data, encompassing 
cancer diagnoses, age at diagnoses, and information on 
BRCA1 and BRCA2 mutations. Our analysis employed 
the BOADICEA model [29], utilizing the obtained proba-
bility as a continuous risk score in subsequent regression 
analyses. Variables included in the BOADICEA algo-
rithm include age at baseline, year of birth, first-, second, 
and third-degree relatives with BC, identical twin with 
BC, age at cancer diagnosis, bilateral BC, ovarian cancer, 
pancreatic cancer, prostate cancer, molecular subtype of 
breast tumors, vital status of family members, BRCA1 
and BRCA2 mutation status and Ashkenazi Jewish herit-
age [30].

Statistical methods
We used the Wilcoxon rank test to compare the meta-
bolic feature levels between cases and controls. We used 
the original p < 0.05 to select the candidate metabolite 
features for further multivariate logistic regression analy-
sis. We also conducted partial least squares-discriminant 
analysis (PLS-DA) to examine the metabolic features by 
case and control groups while adjusting for confounding 
factors. Specifically, for data pretreatment, we removed 
potential batch effects by combat [31] normalization 
(using xMSanalyzer) [24], imputed zero values with half 
of the minimum within-sample peak intensity, and con-
ducted log-transformation and Pareto scaling of the 
alignment datasets (HIL and  C18 separately). We then 
performed linear regression adjusting for potential con-
founding variables including age (continuous years), BMI 
(continuous kg/m2), smoking, alcohol drinking, and men-
opausal status; the fit of the model was checked, and the 
resultant residuals were retrieved for PLS-DA using mix-
Omics. The variable importance in the projection (VIP) 
in the PLS-DA was retrieved in R using PLSDA.VIP() 
function of the mixOmics [32], and the VIP scores were 
plotted to assist in the sorting of the top candidate meta-
bolic ion features contributing the most to the PLS-DA 
classification. We performed pathway enrichment analy-
sis in MetaboAnalyst 5.0 using the mixed mode (com-
bining data of HILIC and  C18) as input, and applied the 
Mummichog [33] algorithm (p-value cutoff 0.05) to iden-
tify the most enriched metabolic pathways referencing 
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against MFN (Homo sapiens), a human genome-scale 
metabolic model from the original mummichog pack-
age that has been manually curated from various sources 
including KEGG, BiGG and Edinburgh model.

We used logistic regression adjusting to calculate odds 
ratios (OR) and 95% confidence intervals (CI) for indi-
vidual metabolic features with BC diagnosis. Model 1 
adjusted for age at blood (continuous). Model 2 adjusted 
for age and BOADICEA breast cancer 1 year of risk score 
(continuous). Model 3 included variables in Model 2, 
BMI (continuous), race and ethnicity, alcohol, and smok-
ing status (never, former and current), menopausal sta-
tus (Pre and post-menopausal status). For ROC analysis, 
we conducted three logistic regression modes: Model 
1, including age (continuous years); Model 2, includ-
ing age and BOADICEA 1-year risk score; and Model 3, 
including age, BOADICEA risk score, and six metabolic 
features. All the variables were modeled as continuous 
rather than categorical, which makes it less likely that 
the model was over-fitted given the small sample size. 
We also conducted a sensitivity analysis by excluding the 
4 cases diagnosed with breast cancer within 1 year after 
blood collection. Analyses were done in SAS (v. 9.4).

Results
Table 1 presents the baseline characteristics for cases and 
controls. The mean ages were 45.2 ± 11.4 years for cases 
and 46.4 ± 13.4 years for controls. The average age at BC 
diagnosis was 51.6 ± 12.5 years. Twenty-four cases (60%) 
and 49 controls (71.0%) were pre-menopausal at baseline.

We detected and aligned 11,772  m/z features (5,992 
HILIC and 5,780  C18) for the untargeted plasma metabo-
lomic profiling. Of these, 5,252 (2,264 HILIC and 2,988 
 C18) were detected in at least 80% of samples. A non-
parametric test found 289 metabolic features (135 HILIC 
and 154  C18) (Fig.  1A and B) were statistically signifi-
cantly different between cases and controls if the original 
p-value was less than 0.05. Thirty-two metabolic features 
(17 HILIC and 15  C18) had fold changes (FCs) above 1.5 
(case > control) or below 0.667 (cases < control) (Fig.  2A 
and B). Table  2 presents the changes in annotated met-
abolic features with significant fold changes (original 
p < 0.05) between cases and controls [34]. In this study, 
among HILIC features, we observed 4 positively associ-
ated and 13 negatively associated features in cases com-
pared to controls. Among  C18 features, we observed 12 
positively associated and 3 negatively associated features 
in cases compared to controls.

Table 1 Characteristics of study subjects, New York site of the BCFR

Total
(N = 110)

Prospective Cases
(N = 40)

Unaffected
(N = 70)

N (%) or Mean ± SD N (%) or Mean ± SD N (%) or Mean ± SD

Age at blood draw 46.0 ± 12.7 45.2 ± 11.4 46.4 ± 13.4

Body mass index (BMI) 24.3 ± 4.9 24.6 ± 4.9 24.1 ± 5.0

 < 25 66 (60.0) 23 (57.5) 43 (61.4)

 ≥ 25 44 (40.0) 17 (42.5) 27 (38.6)

Menopausal status

Pre-menopausal 73 (66.4) 24 (60.0) 49 (70.0)

Post-menopausal 36 (32.7) 16 (40.0) 20 (28.6)

Unknown 1 (0.9) 1 (1.4)

Alcohol drinking

Never 67 (60.9) 22 (55.0) 45 (64.3)

Former 15 (13.6) 7 (17.5) 8 (11.4)

Current 27 (24.5) 11 (27.5) 16 (22.9)

Unknown 1 (0.9) 1 (1.4)

Smoking

Never 72 (65.5) 26 (65.0) 46 (65.7)

Former 23 (20.9) 8 (20.0) 15 (21.4)

Current 13 (11.8) 5 (12.5) 8 (11.4)

Unknown 2 (1.8) 1 (2.5) 1 (1.4)

Race/Ethnicity

Non-hispanic white 81 (73.6) 32 (80.0) 49 (70.0)

Hispanics 27 (24.5) 8 (20.0) 19 (27.1)

Non-Hispanic Black/Asian 2 (1.9) 2 (2.9)
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Fig. 1 Manhattan plots of metabolome-wide association study. Features heighted in purple indicate original p < 0.05 in Wilcoxon Rank Test. 
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Table  3 presents the odds ratio values of BC risk for 
the annotated metabolic features. The ORs of log-met-
abolic features range from 0.31 to 2.20 in Model 3. For 
the metabolites negatively associated with risk, the ORs 
range from 0.31 (95% CI: 0.14, 0.66) for HILIC feature 
(m/z: 138.066, RT: 25.4  s, L-Histidine) to 0.65 (95% CI: 
0.43, 0.98) for HILIC feature (m/z: 222.0984, RT: 27.5 s, 

N-Acetylgalactosamine). For the metabolites positively 
associated with risk, ORs ranged from 1.61 (95% CI: 1.04, 
2.51) for HILIC feature (m/z:101.58, RT:90.4 s, 1,3-Dobu-
tyl-1-nitrosourea) to 2.20 (95% CI: 1.15, 4.23) for  C18 
feature (m/z:346.246, RT:126  s, 11-cis-Eicosenoic acid). 
These results were no longer statistically significant after 
adjusting for multiple comparisons.

Fig. 2 Volcano plot of metabolites/features. 
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We calculated the Area under the Receiver Operat-
ing Curve (AUC) to evaluate the performance of our 
classifier. The AUC of the model that included age, and 
BOADICEA 1-year risk score) improved from 0.66 to 
0.83 once our six candidate metabolites were incorpo-
rated into the model (Fig.  3). We did not include two 
metabolic features, glucose (m/z:181.0721, RT 33 s) and 
caffeine (m/z:195.0878, RT 31.6 s), because both metab-
olite features were highly correlated with L-Histidine 
(m/z:138.0662, RT 25.4 s), with correlation coefficients 

of 0.83 (p < 0.0001) and 0.96 (p < 0.0001), respectively. 
We also conducted a sensitivity analysis by excluding 
four cases diagnosed with breast cancer within 1  year 
after blood collection. The results were similar (data 
not shown).

In addition to the metabolome-wide association 
analysis, we also conducted a supervised classification 
approach PLS-DA to differentiate cases and controls 
based on the metabolic profiles. Figure  4 presents the 
PLS-DA score plots showing the separation of the two 
groups and shows both HILIC and C18 features with two 

Table 2 Fold change of the significant metabolic features

MSI metabolomics standard initiative, FC Fold change: ratio of metabolic features level between cases and controls, m/z mass-to-charge, RT retention time, FDR false 
discovery rate

m/z RT (s) Metabolites MSI level FC log2(FC) raw.pval FDR BC/CTRL

HILIC

222.0984 27.5 N-Acetylgalactosamine 1 0.55 -0.86 0.001 0.38 Down

690.9543 53.7 1.57 0.65 0.002 0.38 Up

181.0721 33.0 Glucose 1 0.6 -0.74 0.003 0.43 Down

287.98 198.8 0.63 -0.66 0.004 0.46 Down

182.0754 34.7 0.6 -0.73 0.004 0.46 Down

101.5813 90.4 1,3-Dibutyl-1-nitrosourea 4 1.81 0.85 0.006 0.46 Up

236.9971 62.8 0.66 -0.6 0.007 0.46 Down

162.9844 179.9 0.38 -1.38 0.009 0.46 Down

161.1283 89.1 N(6)-Methyllysine 1 1.64 0.71 0.011 0.46 Up

113.0597 26.0 Sorbate 1 0.66 -0.59 0.011 0.46 Down

124.0507 43.2 0.62 -0.69 0.012 0.46 Down

138.0662 25.4 L-Histidine 4 0.67 -0.59 0.012 0.46 Down

129.0182 34.0 2-Oxoglutarate 4 0.46 -1.11 0.014 0.46 Down

195.0878 31.6 Caffeine 1 0.66 -0.6 0.033 0.46 Down

196.0911 30.4 0.66 -0.59 0.035 0.46 Down

190.9794 158.2 0.49 -1.02 0.042 0.48 Down

367.991 210.4 1.61 0.69 0.048 0.51 Up

C18

359.2203 128.3 1.7 0.77 0.0001 0.34 Up

389.2902 164.6 1.52 0.6 0.0029 0.63 Up

147.0491 25.6 1.65 0.73 0.0036 0.63 Up

301.2173 145.9 Eicosapentaenoic acid 1 1.5 0.59 0.0059 0.63 Up

295.1372 147.7 0.58 -0.79 0.0071 0.63 Down

302.2195 144.0 1.5 0.59 0.0084 0.63 Up

378.864 81.9 1.53 0.62 0.0099 0.63 Up

552.31 133.8 LysoPE(0:0/24:6(6Z,9Z, 12Z,15Z, 
18Z, 21Z)

4 1.59 0.66 0.0108 0.63 Up

199.1634 132.1 1.96 0.97 0.0143 0.63 Up

346.2462 126.0 11-cis-Eicosenoic acid 4 1.54 0.62 0.0152 0.63 Up

555.9508 103.5 0.64 -0.65 0.0214 0.63 Down

456.4133 150.3 1.68 0.75 0.0438 0.68 Up

610.4909 156.0 1.71 0.78 0.0439 0.68 Up

95.0062 29.8 0.61 -0.72 0.0444 0.68 Down

200.173 132.9 Dodecanoic acid 4 1.62 0.7 0.0489 0.68 Up



Page 8 of 14Wu et al. Breast Cancer Research          (2024) 26:141 

clusters by case–control status with some overlap. Fig-
ure  5 and Supplement Table  1 present the results from 
the pathway enrichment analysis based on the Mummic-
hog algorithm [33]. The main pathways associated with 
BC include arginine and proline metabolism and urea 
cycle/amino group metabolism.

Discussion
We conducted a metabolome-wide association study 
based on an untargeted metabolomics workflow and 
identified eight BC related-metabolic features that were 
statistically significantly different between cases and con-
trols. One of the identified features is amino acid and 
another feature belongs to lipids. In addition, we identi-
fied metabolic features related to diet as well as potential 
carcinogens. Pathway enrichment analysis identified a 
realm of pathways linked to both amino acid metabolism 
(e.g., arginine and proline metabolism) and lipid metabo-
lism (e.g., glycerophospholipid metabolism). Our findings 
suggest that those metabolites and associated pathways 
are worthy of further evaluation using targeted, quanti-
tative metabolomics analyses for BC risk. However, we 
recognized that these differences were not statistically 
significant after adjusted for multiple comparisons; thus, 
these preliminary findings thus need to be further tested 
and validated in larger prospective studies of BC.

1,3-Dibutyl-1-nitrosourea has demonstrated carci-
nogenic potential in animal models [35–38]. Specially, 

exposure of rats to different doses of 1,3-dibutyl-1-nitro-
sourea via drinking water, resulted in a dose–response 
relationship with mammary tumors [36]. Other cancers 
such as leukemia and vaginal tumors were also observed 
in rats with high exposure to it [39]. However, additional 
data is needed in order for the International Agency 
for Research on Cancer (IARC) to determine whether 
a probable or possible carcinogen is carcinogenic in 
humans. To our best knowledge, this study is the first 
human data on an association of 1,3-dibutyl-1-nitrosou-
rea with BC demonstrating the utility of the approach in 
identifying potential environmental exposures associated 
with the disease.

Dietary polyunsaturated fatty acids have been postu-
lated as a modifiable factor that could influence cancer 
risk [40]. However, evidence for the effects of polyun-
saturated fats such as omega-3 and omega-6 fatty acids 
on risk of cancer is conflicting [41–43]. Dietary intake 
of trans fatty acids was found to be associated with a 
slightly increased risk of BC (HR = 1.09, 95% CI: 1.01, 
1.17) in the European Prospective Investigation into 
Cancer and Nutrition (EPIC) [44]. A systematic review 
and meta-analysis of randomized trials on omega-
3, omega-6 and total dietary polyunsaturated fat on 
cancer incidence concluded that increasing omega-3 
has little or no effect on BC incidence (RR = 1.03, 95% 
CI:0.89, 1,20) [45]. Through measuring serum phos-
pholipid fatty acid composition among women in the 

Table 3 Breast cancer risk for 12 metabolic features, nested case–control study within the New York Site of the BCFR

Significant metabolites features are indicated in bold

m/z mass-to-charge, RT retention time

Model 1: adjusted for age at blood (continuous). Model 2: model 1 + BOADICEA 1-year risk. Model 3: Model 2 + race and ethnicity + BMI (continuous) + alcohol (never, 
former and current) + smoking (never, former and current) + menopausal status

m/z RT (s) Model 1 Model 2 Model 3

OR (95% CI) p‑value OR (95% CI) p‑value OR (95% CI) p‑value

HILIC

1,3-Dibutyl-1-nitrosourea 101.5813 90.4 1.62 (1.13–2.32) 0.01 1.66 (1.14–2.42) 0.01 1.61 (1.04–2.51) 0.03

Sorbate 113.0597 26 0.71 (0.40–1.28) 0.26 0.72 (0.40–1.30) 0.27 0.70 (0.36–1.39) 0.31

2-Oxoglutarate 129.0182 34 0.70 (0.45–1.10) 0.13 0.70 (0.44–1.11) 0.13 0.74 (0.44–1.25) 0.26

L-Histidine 138.0662 25.4 0.45 (0.24–0.85) 0.01 0.45 (0.24–0.87) 0.02 0.31 (0.14–0.66) 0.003

N(6)-Methyllysine 161.1283 89.1 1.98 (1.13–3.46) 0.02 2.20 (1.21–4.00) 0.01 2.00 (1.01–3.98) 0.047

Glucose 181.0721 33 0.60 (0.37–0.95) 0.03 0.58 (0.36–0.92) 0.02 0.54 (0.32–0.90) 0.02

Caffeine 195.0878 31.6 0.61 (0.38–1.00) 0.049 0.61 (0.37–0.99) 0.047 0.49 (0.28–0.87) 0.01

N-Acetylgalactosamine 222.0984 27.5 0.66 (0.45–0.96) 0.03 0.65 (0.44–0.95) 0.03 0.65 (0.43–0.98) 0.04

C18

Dodecanoic acid 200.173 132.9 1.57 (0.90–2.75) 0.11 1.48 (0.85–2.57) 0.17 1.59 (0.87–2.91) 0.14

Eicosapentaenoic acid 301.2173 145.9 1.81 (0.89–3.69) 0.10 1.78 (0.84–3.75) 0.13 1.86 (0.87–3.96) 0.11

11-cis-Eicosenoic acid 346.2462 126 1.99 (1.10–3.60) 0.02 2.07 (1.12–3.81) 0.02 2.20 (1.15–4.23) 0.02

LysoPE(0:0/24:6(6Z,9Z, 
12Z,15Z, 18Z, 21Z)

552.31 133.8 1.90 (1.14–3.15) 0.01 1.88 (1.11–3.16) 0.02 1.77 (1.04–3.01) 0.04
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E3N study, Chajes et al. found increasing levels of pal-
mitoleic acid, a trans-monounsaturated fatty acid, was 
associated with an increased risk of BC (OR–1.7) [46]. 
We found both eicosapentaenoic acid, an omega-3 fatty 
acid, and 11-cis-eicosenoic acid, an omega-9-fatty acid, 
were associated with an increased risk of BC. Because 
omega-3 has been suggested as a supplement for BC 
prevention, a compensatory mechanistic route may 
occur in BC cases. Our finding needs to be validated in 
cohorts with a larger sample size.

LysoPE(0:0/24:6(6Z, 9Z, 12Z, 15Z, 18Z, 21Z), a 
lysophospholipid, is classified as a lipid mediator and 
elicits many biological effects such as cell prolifera-
tion, and migration [47] that are critically required for 
tumor formation and metastasis [47]. We found higher 

LysoPE(0:0/24:6(6Z, 9Z, 12Z, 15Z, 18Z, 21Z) was asso-
ciated with higher BC risk. Alterations of lysoPC and 
lysoPE were observed in serum and plasma collected 
from BC patients [13, 48, 49] as well as breast tumor 
tissue [49]. It has been suggested that lipid oversupply 
enhances cancer cell proliferation by providing the raw 
materials needed to generate new cells [50]. Chronic 
lipid oversupply might increase BC risk, perhaps by 
supplying energy and nutrients to the growing tumors.

L-Histidine is an essential amino acid with unique 
roles in proton buffering, metal ion chelation, and 
scavenging of reactive oxygen and nitrogen species 
[51]. Histidine supplementation suppressed inflamma-
tion and improved insulin resistance in obese women 
with metabolic syndrome in a randomized controlled 

Fig. 3 Receiver operating characteristics of a model with breast cancer risk factors and a model with breast cancer risk factors and six metabolite 
features, New York site of the BCFR. Metabolomic panel include: 1,3-Dibutyl-1-nitrosourea, L-Histidine, N(6)-Methyllysine, N-Acetylgalactosamine, 
11-cis-Eicosenoic acid and LysoPE(0:0/24:6(6Z,9Z, 12Z,15Z, 18Z, 21Z)
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trial [52]. Histidine was associated with a decreased 
risk of BC (OR = 0.91, 95% CI, 0.84, 0.99) in a metabo-
lome-wide association study within EPIC; however, the 
association was no longer statistically significant after 
adjustment for multiple comparisons [14]. Another 
metabolome-wide association study found histidine 
was associated with an increased risk of BC among pre-
menopausal women in the French E3N cohort. [12]

Diabetes was associated with triple-negative breast 
cancer in a prospective analysis of the Sister Cohort 
[53]. Long term use of metformin has been associated 
with decreased risk of ER-positive BC [53]. Impaired 
glucose was associated with a non-statistically sig-
nificant 40 percent higher BC risk in a cohort of 7,894 
women aged 45–64  years from four US communities 
[54]. The inverse association between glucose and BC 
risk is challenging to interpret as the biospecimens 
were collected from non-fasting individuals in our 
study.

The epidemiological evidence on coffee consumption 
and BC risk is conflicting [55]. The EPIC study found an 
association between coffee intake and lower postmeno-
pausal BC risk (HR = 0.90, 95% CI, 0.82, 0.98) [56]. While 
there was no evidence for an association in a cohort of 
57,075 postmenopausal women [57]. Overall, current 

studies of coffee consumption and BC examined coffee 
consumption based on self-report questionnaire. One 
suggestion is that possible risk differences exist with rates 
of caffeine metabolism [58]. Further biomarker stud-
ies measuring caffeine metabolites are needed to bet-
ter characterize the preventive effect of caffeine in BC 
development.

In addition to the metabolome-wide association anal-
ysis to identify individual metabolic features associ-
ated with BC, pathway enrichment analysis showed that 
selected metabolic pathways such as arginine, proline and 
urea cycle might be altered in early breast tumorigenesis 
[59–62]. Untargeted metabolomics is a hypothesis-gen-
erating strategy to discovery early signs of metabolome-
wide perturbations in BC development. Measuring 
metabolomic profiles may be a potential screening tool to 
identify higher risk individuals [63, 64]. Perturbations in 
fatty acid, arginine, and proline metabolism were found 
in plasma from BC cases at the time of cancer diagnosis 
[64, 65]. Our findings could provide insights for the iden-
tification of pathways for BC development.

Due to the sample size limitations, we opted not to 
explore the metabolite profiles by BC molecular subtypes. 
The results of our study also need to be interpreted with 
caution. The metabolomic features were only measured 

Fig. 4 Partial least square discriminant analysis (PLS-DA) of plasma metabolomic data comparing breast cancer cases and unaffected controls 
under two complementary modes of analysis including (A) PLS-DA of hydrophilic interaction chromatography (HILIC) positive ESI and (B)  C18 
chromatography negative ESI
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in non-fasting blood samples from a single timepoint for 
each participant, and we saw three metabolic features 
(L-Histidine, glucose, and caffeine) were positively cor-
related with each other. Although it is likely that most of 
the endogenous metabolites are biologically reproducible 
within a 2-year period [66], further studies are needed to 
examine the effect of blood collection conditions such as 
seasonal variation or fasting time. In addition, six metab-
olite features remain statistically significantly different 
between cases and controls after adjusting for selected 
risk factors; however, there might be some unadjusted 
confounding factors.

Accurately identifying high-risk individuals is essen-
tial for effective primary prevention (e.g., chemopre-
vention) [67–71], and for risk-based screening options 

[72, 73] which emphasize risk rather than age for opti-
mal screening outcomes. BC risk assessment models 
used in the clinic only have very modest discriminatory 
accuracy in the range of 65% [74–77], meaning that 35% 
of women are misclassified. Inaccurate risk assessment 
means that women are either subject to over-treatment 
with biopsies and multiple screens or under-treatment 
with missed opportunities for optimal prevention, 
including chemoprevention. The most widely known 
and most commonly used model for BC risk assessment 
is the Breast Cancer Risk Assessment Tool (BCRAT, 
or Gail model) [78, 79], which although it is well-cal-
ibrated, only has modest discriminatory accuracy at 
the individual level (AUC ~ 0.6-0.65) [80–82]. Recently, 
modest improvements were achieved by incorporating 

Fig. 5 Pathway analysis of the plasma metabolome comparing breast cancer cases and unaffected controls based on the Mummichog algorithm. 
The P-values are from Fisher’s exact test applied to an enrichment test of individual metabolic features on pathways, mapping m/z-matched 
metabolites against a permutation procedure to reduce Type I error while adopting a more conservative version of Fisher’s test to increase 
the robustness of the test
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polygenetic risk score [83], epigenetic markers [84], 
and lifestyle factors [85]. Metabolome studies identi-
fied diet-and/or lifestyle-related metabolic features 
and their associations with breast cancer [16, 86, 87]. 
Metabolomics can detect metabolic shifts resulting 
from lifestyle behaviors and may provide insight on 
the relevance of changes to carcinogenesis.  In addi-
tion, metabolomics analysis can also identify metabolic 
features associated with environmental exposure, such 
as polycyclic aromatic hydrocarbons (PAHs) [88]. Our 
prior study showed women with a higher risk of BC 
based on their genetic factors are more susceptible to 
PAH exposure [89]. Incorporating metabolite markers 
related to modifiable factors might result in substan-
tially greater magnitudes of association with BC risk.

Strengths of our study include the collection of 
plasma before diagnosis (range of 1–15 years), and the 
use of an untargeted metabolomic approach allowing 
us to identify novel contributors to BC. In summary, 
our study identified selected metabolic pathways and 
potential exposure factors related to breast cancer. If 
replicated in larger prospective cohorts, these find-
ings offer promising new ways to identify environ-
mental exposures related to BC and improve BC risk 
prediction.
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