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Introduction
Breast cancer, a major global women’s health concern, 
will be diagnosed in more than 2.3 million women world-
wide by 2020, accounting for more than a quarter of all 
cancers in women [1]. Breast cancer is a highly hetero-
geneous disease that faces many challenges in its diag-
nosis, treatment and prognosis. With the development 
of tumor histology techniques, it not only reveals phe-
notypic information about the tumor, but also closely 
correlates with the progression and prognosis of tumor 
patients [2, 3]. However, assessment of histology is highly 
subjective and may yield different results between differ-
ent observers. The uncertainty inherent in conventional 
pathologic analysis may lead to inappropriate treatment 
and complications that can adversely affect patient qual-
ity of life [4]. In patients with early-stage breast cancer, 
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Abstract
Breast cancer is the most common malignant tumor among women worldwide and remains one of the leading 
causes of death among women. Its incidence and mortality rates are continuously rising. In recent years, with the 
rapid advancement of deep learning (DL) technology, DL has demonstrated significant potential in breast cancer 
diagnosis, prognosis evaluation, and treatment response prediction. This paper reviews relevant research progress 
and applies DL models to image enhancement, segmentation, and classification based on large-scale datasets 
from TCGA and multiple centers. We employed foundational models such as ResNet50, Transformer, and Hover-net 
to investigate the performance of DL models in breast cancer diagnosis, treatment, and prognosis prediction. The 
results indicate that DL techniques have significantly improved diagnostic accuracy and efficiency, particularly in 
predicting breast cancer metastasis and clinical prognosis. Furthermore, the study emphasizes the crucial role of 
robust databases in developing highly generalizable models. Future research will focus on addressing challenges 
related to data management, model interpretability, and regulatory compliance, ultimately aiming to provide more 
precise clinical treatment and prognostic evaluation programs for breast cancer patients.
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about 30% will experience a recurrence within 10 years, 
which necessitates appropriate and proactive treatment. 
However, assessing the probability that a patient will 
or will not recur remains a major challenge plaguing 
patients diagnosed with early-stage breast cancer [5, 6]. 
Currently, treatment stratification and prognostic pre-
diction methods for breast cancer patients are based on 
molecular tests, but these tests are not readily available in 
many places due to cost and other barriers. Therefore, the 
use of artificial intelligence-based digital pathology analy-
sis of histopathology images to determine an alternative, 
cost-effective method of patient stratification has great 
potential for patients worldwide.

Deep learning (DL) show great potential in the diag-
nosis, treatment and prognosis of breast cancer. In diag-
nosis, DL models improve image quality through data 
enhancement techniques and enable rapid segmentation 
of the lesions, greatly improving diagnostic accuracy and 
efficiency [7]. These models utilize convolutional neu-
ral networks (CNNs) to extract features from images 
such as WSI images, digital breast tomosynthesis (DBT), 
mammography (DM), and magnetic resonance imaging 
(MRI), enabling automated and accurate tumor detec-
tion and segmentation [8–10]. In terms of treatment, 
DL technology performs staging and subtyping of breast 
cancer through image-based classification techniques. 
These models are able to identify different tumor features 
and classify them into different cancer subtypes, thus 
providing a basis for developing personalized treatment 
plans [11]. DL models can also integrate multi-omics 
data to predict patients’ responses to different treatment 
plans, helping physicians choose the most appropriate 
treatment strategy. In terms of prognosis, DL technology 
shows significant potential [12]. By analyzing a patient’s 
imaging data, DL models can predict the risk of disease 
metastasis and other clinical outcomes. These models 
not only predict patient survival, but also assess the like-
lihood of recurrence, helping physicians develop long-
term surveillance and follow-up plans [13]. In addition, 
DL technology, trained on large-scale databases, is able 
to build robust and generalizable models that improve 
the accuracy and reliability of prognostic predictions.

DL technology shows great potential in breast cancer 
applications, but it still faces challenges in practical appli-
cation. Data management, model interpretability and 
regulatory requirements are important issues that need 
to be addressed. In this review, we first provide a detailed 
summary of the basic definitions and fundamental algo-
rithms of DL, as well as the basic processes involved in 
DL. Next, we focus on reviewing the applications of DL 
in the early detection and diagnosis of breast cancer. 
Subsequently, we summarize the role of DL in the treat-
ment and prognosis of breast cancer. We also provide a 
detailed review of the applications of DL in the molecular 

typing and tumor microenvironment (TME) of breast 
cancer. Finally, we discuss the limitations of DL in the 
applications related to breast cancer, such as data acqui-
sition and algorithm optimization. In the future, DL will 
greatly assist healthcare professionals in providing more 
precise and personalized treatment plans, creating a bet-
ter tomorrow for breast cancer patients.

Basic definition and general process of DL
DL, as a subfield of Machine Learning (ML), mimics the 
learning process of the human brain through the use of 
multilayer neural networks to extract more advanced 
features from the data and enable learning of the data at 
a higher level. The kernel of DL lies in the ability to use 
multilayered neural networks for processing and extract-
ing features from the input data in order to deal with dif-
ferent sources and multimodal data types.

Basic algorithms for DL
The basic algorithms of DL include Convolutional Neu-
ral Networks (CNN), Generative Adversarial Networks 
(GAN), Recurrent Neural Networks (RNN), and Deep 
Reinforcement Learning (DRL). CNNs are mainly used 
for image processing and analysis. GANs are used for 
image generation, creating high-quality image data 
through alternating training of a generator and a dis-
criminator. RNNs are suitable for processing sequential 
data such as time series, text, and speech. DRL combines 
the advantages of DL and reinforcement learning for 
tasks that require maximizing expected rewards, such as 
landmark detection and lesion segmentation in medical 
image analysis.

CNN
CNN is the most commonly used artificial neural net-
work (ANN) in DL, mainly used for feature extraction 
and analysis of image data. CNN mimics the working 
principles of the biological visual system, using convo-
lutional layers, pooling layers, and fully connected layers 
to extract and process image features. The convolutional 
layer applies multiple filters to scan the input image, 
extracting features such as edges and textures. The pool-
ing layer reduces the size of the feature maps through 
down-sampling, thereby lowering computational com-
plexity and preventing overfitting. The fully connected 
layer maps the extracted features to the classification 
space, completing the final classification task. Common 
CNN architectures include ResNet, VGG, GoogleNet, 
and U-Net. ResNet introduces residual blocks and uses 
skip connections to address the training difficulties of 
deep networks. These skip connections allow gradients to 
be directly transmitted from the later layers to the earlier 
layers, alleviating the vanishing gradient problem. ResNet 
includes variants such as ResNet18, ResNet34, ResNet50, 
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ResNet101, and ResNet152, differing in network depth 
to suit various application scenarios [14, 15]. VGG 
employs a very deep network structure, typically having 
16 or 19 layers (i.e., VGG16 and VGG19). It uses fixed-
size 3 × 3 convolutional kernels and 2 × 2 pooling layers, 
maintaining simplicity and consistency throughout the 
network. VGG is primarily used for image classification 
tasks and is widely used as a pre-trained model in many 
transfer learning applications [16]. The GoogleNet family 
includes versions like Inception v1, v2, v3, v4, and Incep-
tion-ResNet, each improving upon the original design to 
enhance performance. GoogleNet excels in image clas-
sification and object detection tasks, especially dem-
onstrating outstanding performance on large datasets 
[17]. U-Net, as a commonly used architecture for image 
segmentation tasks, has jump connections between its 
encoder and decoder, which are able to extract a wide 
range of image features, and thus efficiently accomplish 
the segmentation task [18, 19]. CNNs have the advan-
tage of parameter sharing and sparse connectivity, and 
are able to learn hierarchical features of an image, which 
leads to efficient image classification and segmentation 
[20]. Transformer is a DL model based on the self-atten-
tion mechanism, initially designed for natural language 
processing (NLP) tasks [21]. The Transformer model 
captures global dependencies within the input sequence 
through the self-attention mechanism, making it highly 
effective in handling long-range dependencies. Recent 
research has primarily focused on combining CNN and 
Transformer models. This combination enhances the 
comprehensiveness of feature extraction by complement-
ing local and global feature extraction and reduces com-
putational complexity. Vision Transformer (ViT) is an 
architecture that applies the Transformer model to com-
puter vision tasks [22]. The core idea of ViT is to divide 
the image into fixed-size patches, flatten these patches 
into vectors, and input them into the Transformer 
encoder for processing. ViT captures global dependen-
cies between image patches through the self-attention 
mechanism, achieving efficient feature extraction.

GAN
GAN is mainly used in image generation task. It is mainly 
trained and learned by using different loss terms during 
the training process to generate images with high qual-
ity data [23]. GAN accomplishes the image generation 
task by alternating between generator and discriminator. 
The generator is mainly used to create new image data, 
and its results can even deceive the discriminator [24]. 
The discriminator’s role is to determine the authentic-
ity of the data from the false image data generated by the 
generator. The image data generated by the GAN through 
this unique alternate training is also more and more close 
to the real image data [25].

RNN
RNN are suitable for processing sequential data, such 
as 3D volumetric images, due to their internal memo-
ry’s ability to memorize their inputs, allowing them to 
excel in solving sequential data problems [26]. RNNs are 
widely used in areas such as time series analysis and nat-
ural language processing (NLP) [27].

DRL
DRL combines the strengths of DL and Reinforcement 
Learning (RL) for tasks that require maximization of the 
expected reward, such as landmark detection and lesion 
segmentation in medical image analysis [28]. DRL has 
achieved significant performance gains in many areas, 
including computer vision, robotics, and gaming [29].

The process underlying DL
The core of a DL model is its complex network archi-
tecture and training process that automatically learns 
and extracts features from raw data, capturing underly-
ing semantic information relevant to the task. The fol-
lowing says the basic process of DL (Fig. 1). First is data 
preparation and preprocessing [30]. Data preparation 
and preprocessing is the first step in successfully train-
ing a DL model. This involves collecting training data 
from multiple sources (e.g., images, text, audio, etc.). The 
collected data needs to be cleaned to remove or correct 
noise and outliers in it. Subsequently, the data is aug-
mented by rotating, scaling, flipping, and other opera-
tions to expand the dataset, which in turn significantly 
improves the generalization of the model. Finally, the 
data is normalized to a uniform range for better process-
ing and learning by the model [11, 31]. The second step 
is model selection and design. According to the specific 
task, choose the appropriate DL model architecture. Cur-
rently, the most common image processing tasks use 
CNNs, and data such as gene sequences use RNN. The 
classical CNN architectures mentioned above are pri-
marily used for various image data classification tasks 
[15]. U-Net, as the most commonly used primary archi-
tecture for image segmentation tasks, is favored by most 
current researchers due to its excellent performance [32]. 
The third step is model training and optimization. Dur-
ing the training process, the model processes the data 
through multiple hierarchical modules. Each module 
consists mainly of linear and nonlinear transformations. 
Although each individual module may be simple, as the 
number of layers increases, the network is able to model 
complex functions [33]. The training process updates the 
internal parameters or weights of the network through a 
backpropagation mechanism. Backpropagation is mainly 
used to calculate the loss function, which results in show-
ing the error between the model output and the actual 
output. The network parameters are then updated using a 
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stochastic gradient descent algorithm to gradually reduce 
the error [34]. Next is the training strategy. The training 
strategy is crucial for utilizing the learning capability of 
deep neural networks. In image generation task, GAN is 
trained by alternating between generator and discrimi-
nator, which in turn generates high quality image data. 
Through this alternate training, the generated data grad-
ually approximates the real data [35]. The fourth step is 
model evaluation and validation. During the training 
process, validation sets need to be used to evaluate the 
performance of the model to ensure that the model is not 
overfitted or underfitted [36]. Commonly used evaluation 
metrics include accuracy, precision, F1 score and recall. 
In addition, methods such as triple cross validation are 
usually used to evaluate and test the performance of the 
model more comprehensively. The final step is model 
deployment and application. The trained and validated 
models need to be deployed to real-world application 
environments. This may involve model optimization to 
improve operational efficiency and responsiveness [37]. 
In addition, the interpretability and security of the model 
need to be considered to ensure the reliability and stabil-
ity of the model in real-world applications. This review 
first provides a detailed summary of the basic definitions 
and fundamental algorithms of DL, as well as the basic 
processes involved in DL.

DL in breast cancer diagnosis
Histopathology plays a crucial role in tumor diagno-
sis. Through detailed observation and analysis of tumor 
pathological tissue sections, pathologists can identify 

and classify benign and malignant tumor characteristics. 
This is essential for determining the type of tumor and 
formulating appropriate treatment plans. Additionally, 
histopathology is used to assess the histological grading 
of tumors, providing information on tumor aggressive-
ness and patient prognosis. Through techniques such 
as immunohistochemical staining, histopathology can 
determine the status of key biomarkers, such as estrogen 
receptor (ER) and progesterone receptor (PR) expression, 
which are important for treatment decisions and progno-
sis assessment. Identifying benign and malignant tumor 
characteristics, histological grading, and determin-
ing biomarker status are key factors for improving the 
accuracy of breast cancer diagnosis. However, the main 
clinical issue currently is the limited number of patholo-
gists, while the workload for pathological diagnosis is 
increasing. Pathologists need to meticulously examine 
tissue sections under a microscope to identify and clas-
sify tumor cells, a process that is both time-consuming 
and laborious, requiring a high level of expertise and 
skill. Additionally, traditional histopathological analysis is 
not only time-intensive but also relies on the subjective 
judgment of pathologists, leading to inconsistencies and 
errors. Variability in diagnoses among different patholo-
gists can further exacerbate the uncertainty in diagnosis. 
The introduction of DL technology offers a new approach 
to addressing these challenges. Through automated and 
standardized image analysis, DL algorithms can quickly 
and efficiently process large volumes of tissue section 
images, significantly improving diagnostic efficiency and 
accuracy. DL can be used to identify aspects of tumor 

Fig. 1 Basic process of DL application in breast cancer
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benignity and malignancy, histological grading, and bio-
marker status, which in turn improves the accuracy of 
breast cancer diagnosis.

The role of DL in breast cancer identification and 
classification
The first is tumor identification and classification [38]. 
Cruz-Roa et al. developed a CNN to classify whether a 
breast cancer whole section image (WSI) plaque contains 
invasive ductal carcinoma. The model was trained on 400 
slides and validated on 200 slides and achieved a pixel-
level F1 score of 76% [39]. Han et al. on the other hand, 
trained a classifier to distinguish between 8 classes of 
benign and malignant breast tumors using the BreaKHis 
dataset with an accuracy of 93.2% [40]. Faster Region-
Based Convolutional Neural Network (FRCNN) is a DL 
model used for object detection. It is an improved ver-
sion of the R-CNN series (including R-CNN and Fast 
R-CNN), significantly enhancing detection speed and 
accuracy [41]. Yap et al. applied the FRCNN model in 
breast cancer mass diagnosis and achieved excellent 
results. On multiple training sets, FRCNN achieved an 
average recall rate of 0.9236, precision rate of 0.9408, 
F1-score of 0.9321, and false alarm rate of 0.0621. When 
using RGB images, the performance of the FRCNN 
model was further improved, with a recall rate of 0.9572, 
precision rate of 0.9020, F1-score of 0.9288, and false 
alarm rate reduced to 0.1111 [42]. These data indicate 
that the FRCNN model has high accuracy and low false 
positive rates in breast cancer diagnosis. In the same year, 
Agarwal et al. also proposed a Faster Region-Based Con-
volutional Neural Network (Faster-RCNN) model for 
detecting breast cancer masses in Full-Field Digital Mam-
mograms (FFDM). Their model achieved an accuracy of 
0.93 and a false positive rate (FPI) of 0.78 on public data-
bases. On the INbreast dataset, their model also showed 
superior performance, achieving an accuracy of 0.99 and 
an FPI of 1.69 for the diagnosis of malignant breast can-
cer masses, and an accuracy of 0.85 and an FPI of 1.0 for 
the diagnosis of benign masses [43]. RetinaNet is a DL 
model designed for object detection. The core idea of 
this model is the introduction of a loss function called 
Focal Loss, which addresses the issue of class imbalance 
between positive and negative samples, thereby enhanc-
ing detection performance [44]. One study employed a 
modified 3D RetinaNet model to detect breast lesions in 
ultrafast DCE-MRI sequences. The model leverages both 
spatial and temporal information to improve the detec-
tion of small lesions. In a dataset containing 572 lesions 
from ultrafast MRI scans, the model achieved a detec-
tion rate of 0.90, a sensitivity of 0.95, and a benign lesion 
detection rate of 0.81 [45]. Another study also utilized 
the RetinaNet model for cancer detection in mammog-
raphy images. This model demonstrated outstanding 

performance across multiple datasets, particularly excel-
ling in detecting various manifestations of breast cancer, 
including masses, architectural distortion, and microcal-
cifications, achieving an AUC of 0.93 in the diagnosis of 
benign and malignant masses [46]. You Only Look Once 
(YOLO) is a DL model for real-time object detection, 
proposed by Joseph Redmon et al. in 2016 [47]. Unlike 
traditional object detection methods, YOLO transforms 
the object detection task into a single regression prob-
lem, achieving end-to-end object detection in an efficient 
manner. In the field of breast cancer diagnosis, Al-Masni 
et al. first proposed a Computer-Aided Diagnosis (CAD) 
system based on regional DL techniques, using a CNN 
called YOLO. This model comprises four main stages: 
preprocessing of mammograms, feature extraction using 
deep convolutional networks, mass detection with con-
fidence, and mass classification using Fully Connected 
Neural Networks (FC-NNs). They utilized 600 original 
mammograms from the Digital Database for Screen-
ing Mammography (DDSM) and their augmented 2,400 
mammograms to train and test the system. Through five-
fold cross-validation tests, the results showed that the 
system detected mass locations with an overall accuracy 
of 99.7% and distinguished between benign and malig-
nant lesions with an overall accuracy of 97% [48]. Su et 
al. proposed a dual model combining YOLO and LOGO 
(Local-Global) architecture for efficient mass detection 
and segmentation simultaneously. After testing on two 
independent mammogram datasets (CBIS-DDSM and 
INBreast), this model significantly outperformed previ-
ous works. On the CBIS-DDSM dataset, the true positive 
rate for mass detection was 95.7%, with an average pre-
cision of 65.0%; the F1-score for mass segmentation was 
74.5%, and the Intersection over Union (IoU) was 64.0% 
[49].

The application of DL in diagnosing lymph node 
metastasis in breast cancer
For the diagnosis of lymph node metastasis, the seven DL 
algorithms developed by Bejnori et al. performed much 
better than the 11 pathologists in terms of diagnostic 
outcomes. The AUC of their best algorithm was 0.99, 
while the AUC of the pathologists’ performance was 0.88 
[50]. This suggests that DL techniques not only improve 
diagnostic accuracy, but also significantly reduce review 
time.

The role of DL in histological grading of breast cancer
Histologic grading is a critical step in the diagnosis of 
breast cancer. The Elston-Ellis revised Scarff-Bloom-
Richardson grading system takes into account glandu-
lar formation, nuclear features, and mitotic activity [51]. 
The mitosis detection challenge presented by Veta et al. 
achieved a total F1 score of 0.61 using a model with a 
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10-layer deep convolutional neural network [52]. Tellez 
et al. used PHH3 stains in combination with CNN anno-
tations, which, although not at the state-of-the-art level, 
demonstrated the potential of DL to improve the consis-
tency of pathologists [53]. The above results indicate that 
DL is approaching or even surpassing advanced patholo-
gists in diagnosing breast cancer. In addition, Veta and 
colleagues et al. proposed suppressed non-CNN algo-
rithms, which are used for breast cancer lesion region 
and cell nucleus segmentation [54]. Their study focused 
on efficiently segmenting tumor cells directly from WSI 
for definitive diagnosis of breast cancer. The nuclear 
detection algorithm devised by Rexhepaj et al. quanti-
fied IHC staining of ER- and PR-expressed cells, with a 
manual and algorithmic quantitative correlation was 0.9 
[55]. In addition, Couture et al. used a feature-based DL 
model trained on 571 H&E tissue microarray images and 
tested on 288 images, with a test accuracy of 84% for ER 
status [56]. Shamai et al.‘s DL system was able to predict 
19 biomarker statuses including ER and PR, obtaining an 
accuracy of 92% [57].

The role of DL in diagnosing TNM staging of breast cancer
TNM staging and histopathological grading are equally 
important parameters in the diagnosis of breast cancer. 
The DL technique demonstrates significant potential in 
both. TNM staging assesses the risk grade and severity 
of the tumor by evaluating tumor size (T), lymph node 
involvement (N), and distant metastasis (M). The DL 
model of Chen et al. accurately detects metastatic cancer 
cells by analyzing the data from the lymph node images, 
which significantly improved the efficiency and accuracy 
of TNM staging with an AUC value of 0.99 [58].

DL utilization of thermography in the diagnosis of breast 
cancer
In the field of tumor detection, thermal imaging technol-
ogy identifies abnormal heat distribution by capturing 
the infrared radiation emitted by tumor tissues. Due to 
the faster metabolism of tumor cells, more heat is gen-
erated, and thermal imaging can reveal these heat differ-
ences. The resulting thermal images can visually reflect 
the location and size of tumors [59, 60]. This technology 
has the advantages of being radiation-free, non-invasive, 
and capable of real-time detection, making it especially 
suitable for early screening. Using Inception V3, Incep-
tion V4, and modified Inception MV4 models in ther-
mal-based early breast cancer detection has achieved 
extremely high accuracy. Different deep convolutional 
neural network (DCNN) models (Inception V3, Incep-
tion V4, and modified Inception MV4) have demon-
strated excellent performance in thermal-based early 
breast cancer detection. The Inception V3 model, when 
using color images and Stochastic Gradient Descent with 

Momentum (SGDM) optimization, achieved nearly 100% 
accuracy with a training time of 12.2 min and a learning 
rate of 1 × 10^-3. Using Adaptive Moment (ADAM) opti-
mization, it also achieved 100% accuracy with a training 
time of 20.42 min at the 7th epoch and a learning rate of 
1 × 10^-4. Root Mean Square Propagation (RMSPROP) 
optimization reached 100% accuracy with a training time 
of 14.87 min at 6 epochs and a learning rate of 1 × 10^-
3. The Inception V4 model, when using color images and 
SGDM optimization, achieved 100% accuracy at 4 epochs 
with a learning rate of 1 × 10^-4 and an area under the 
curve (AUC) of 1. In contrast, ADAM and RMSPROP 
optimizations did not reach 100% accuracy at all train-
ing stages, achieving maximum accuracies of 99.64% 
and 95.91%, respectively. The modified Inception MV4 
model, when using color images and SGDM optimiza-
tion with a learning rate of 1 × 10^-4, achieved 100% 
accuracy and a training speed 7% faster than Inception 
V4 [61]. In breast cancer self-detection, Al Husaini and 
his colleagues have developed a novel AI diagnostic tool. 
This tool, based on DL, integrates a smartphone, infrared 
camera, and thermal imaging of breast cancer to achieve 
self-detection. The process involves capturing thermal 
images with the infrared camera, sending these images to 
a cloud server via a smartphone, and then receiving the 
diagnostic report back on the smartphone after the cloud 
server processes the images. The entire process takes only 
6 s. The tool they developed ensures that the transmitted 
thermal images do not exhibit significant differences due 
to image compression or transmission distance. On the 
contrary, the image precision remains very high, with a 
maximum detection accuracy deviation of only 1%. Using 
the DCNN model Inception MV4, they achieved highly 
accurate detection of breast cancer thermal images, with 
an accuracy rate of nearly 100%. The detection accu-
racy decreases by 11% only when the images are tilted 
during transmission [62]. The thermophysical proper-
ties of breast tissue and the application of local cooling 
gel play a crucial role in enhancing breast cancer detec-
tion through thermography. Researchers used COMSOL 
software to simulate the thermal behavior of breast tis-
sue and applied the Pennes bioheat equation to illustrate 
the thermal distribution across different tissue layers. The 
study found that the temperature variation of the breast 
skin with and without tumors ranged from 2.58  °C to 
0.274 °C. Larger breast sizes led to reduced temperature 
variations, making it difficult to observe thermal con-
trast, while increased tumor depth made detection more 
challenging. The closer the tumor was to the skin surface, 
the more significant the temperature change. Simulation 
results showed that at a tumor depth of 2  cm, the skin 
temperature could increase by approximately 1  °C, and 
at a depth of 10  cm, it was 0.98  °C. The use of cooling 
gel significantly enhanced the thermal contrast in breast 
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thermographic images. At a tumor depth of 10  cm, the 
use of cooling gel could achieve a temperature differ-
ence of 6 °C, which was not achievable in the simulation 
without cooling. After cooling, the temperature varia-
tion of the skin became more pronounced, making it 
easier for the detection equipment to identify abnormal 
thermal areas, thereby improving detection accuracy. 
By increasing thermal image contrast through cooling, 
it is possible to reduce false positives caused by normal 
tissue temperature variations, thereby enhancing detec-
tion reliability [63]. Recent research focuses on utilizing 
real-time thermography video streaming and DL models 
for early breast cancer detection in real-time. Equipped 
with a thermal imaging camera on a standard desktop 
computer, the study uses Inception v3, Inception v4, 
and a modified Inception Mv4 model to classify normal 
and abnormal breasts. The results demonstrate that the 
Inception Mv4 model, combined with real-time video 
streaming, can effectively detect the slightest tempera-
ture differences in breast tissue by generating thermal 
image sequences from different angles. This significantly 
enhances contrast, especially when using cooling gel, 
making the image acquisition process more efficient and 
increasing detection accuracy. For instance, when detect-
ing a 1 cm tumor at a depth of 2 cm in breast tissue, the 
Inception v3 model, at 9  V, achieved a prediction accu-
racy range of 70-89%. After cooling with a gel for 2 min 
under the same conditions, the model’s prediction accu-
racy increased to 80-94%. The Inception v4 model, at 9 V, 
showed a prediction accuracy range of 97-99.8%. With 
cooling for 2 min, the accuracy ranged from 71 to 97%. 
The Inception Mv4 model demonstrated the highest clas-
sification accuracy for breast cancer detection, especially 
with cooling. Cooling enhanced image contrast and sig-
nificantly improved classification accuracy. The Inception 
Mv4 model performed exceptionally well in all measure-
ments, achieving nearly 100% accuracy when cooling was 
used [64]. The DL technique automates and standard-
izes grading by automatically identifying and quantifying 
these features.

The application of DL technology in breast cancer diag-
nosis not only improves diagnostic accuracy and effi-
ciency, but also demonstrates great potential in several 
aspects such as tumor identification, histological grad-
ing, and biomarker status determination. In the future, 
DL has an important role and a broad prospect in breast 
cancer diagnosis. The application of DL in breast cancer 
diagnosis has significantly improved the accuracy and 
efficiency of diagnoses. In addition to diagnosis, DL also 
plays an important role in predicting the prognosis of 
breast cancer.

DL in prognostic prediction of breast cancer
The use of DL in breast cancer prognosis prediction is 
also critical. Its accuracy in breast cancer prognosis pre-
diction has been dramatically improved by evaluating the 
histomorphologic features of breast cancer, breast cancer 
grading, likelihood of recurrence, and multi-omics data.

Evaluating the histomorphological features of breast 
cancer to predict prognosis
Using DL to evaluate the histomorphology of breast can-
cer tissues can be employed to predict patient prognosis. 
Whitney and colleagues and others further demonstrated 
that the risk of recurrence in patients with ER-positive 
breast tumors could be independently predicted based on 
features such as nuclear shape and texture in pathology 
image data, with an even higher accuracy of 0.85 [65].

Prognostic value of tumor-infiltrating lymphocytes (TILs)
The structure and organization of TILs play an important 
role in the prognosis of clinical outcomes [66]. Makhlouf 
et al.‘s study found that breast cancer patients with high 
sTIL had significantly shorter survival times compared 
to those with low sTIL tumors. The hazard ratio (HR) 
for survival in patients with high sTIL was 1.6 (95% con-
fidence interval [CI] = 1.01–2.5, P = 0.04) in the discov-
ery cohort, and 2.5 (95% CI = 1.3–4.5, P = 0.004) in the 
validation cohort. Additionally, the presence of tumor-
infiltrating lymphocytes (tTIL) within the tumor was 
also associated with shorter survival, with an HR of 1.7 
(95% CI = 1.08–2.6, P = 0.01) in the discovery cohort and 
2.0 (95% CI = 1.06–3.7, P = 0.03) in the validation cohort. 
Overall, the DL model effectively assessed sTIL and 
tTIL scores, and high levels of sTIL and tTIL were asso-
ciated with poorer prognosis [67]. Choi et al. utilized a 
DL model to assess prognosis and treatment response in 
breast cancer patients. Their study results indicated that 
stromal TILs (sTILs) in breast cancer played a crucial role 
in predicting response to neoadjuvant chemotherapy. In 
patients with triple-negative breast cancer (TNBC) and 
HER2-positive breast cancer who received neoadjuvant 
chemotherapy, the DL model significantly improved sTIL 
scoring (26.8 ± 19.6 vs. 19.0 ± 16.4, P = 0.003), and high 
sTIL tumors were closely associated with better neoadju-
vant chemotherapy response (odds ratio 1.28, 95% confi-
dence interval 1.01–1.63, P = 0.039) [68].

Evaluating histological grading to predict prognosis
Histological grading is a key prognostic factor in breast 
cancer. Wang and colleagues developed a new DL model 
for whole-slide images (WSI), named DeepGrade, aimed 
at improving risk stratification for breast cancer patients 
with Nottingham histological grade (NHG) 2. The Deep-
Grade model categorizes NHG 2 patients into two groups: 
DG2-high and DG2-low, assessing their prognostic value 
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with recurrence-free survival as the main outcome. The 
model indicated a higher risk of recurrence in the DG2-
high group (hazard ratio [HR] = 2.94, 95% confidence 
interval [CI] = 1.24–6.97, P = 0.015). The DG2-low group 
showed phenotypic similarities with NHG 1, while the 
DG2-high group was similar to NHG 3, suggesting the 
model can identify morphological patterns in NHG 2 
associated with more aggressive tumors. Further evalu-
ation of DeepGrade’s prognostic value in external data 
confirmed an increased risk of recurrence in the DG2-
high group (HR = 1.91, CI = 1.11–3.29, P = 0.019). This 
model-based stratification provides prognostic informa-
tion for NHG 2 tumor patients and offers a cost-effective 
alternative to molecular profiling [69].

Predicting prognosis by assessing lymph mode metastasis 
with DL
Lymph node metastasis significantly increases the risk 
of breast cancer recurrence and is closely associated 
with poor prognosis in patients [70]. Verghese and col-
leagues developed a new DL model, smuLymphNet, to 
analyze axillary lymph node metastases in breast cancer 
patients. The most significant metrics were the effective 
quantification of germinal centers (GC) and sinuses [51]. 
The quantification of these lymph node features showed 
a significant correlation with distant metastasis-free sur-
vival (DMFS) in triple-negative breast cancer (TNBC) 
patients. The results from the smuLymphNet model 
indicated that lymph nodes unaffected by cancer with 
an average of ≥ 2 GCs were associated with longer DMFS 
(HR = 0.28, P = 0.02), and GCs were associated with bet-
ter prognosis in LN-negative TNBC patients (HR = 0.39, 
P = 0.039) [71]. Another similar study focused on DL 
radiomics (DLR) using ultrasound imaging to predict 
lymph node metastasis and tumor burden in patients. 
They employed a DL model framework to predict axil-
lary lymph node (ALN) status in breast cancer patients. 
The diagnostic performance was excellent, with an area 
under the receiver operating characteristic curve (AUC) 
of 0.902. Furthermore, their model was also capable of 
effectively distinguishing between low and heavy tumor 
burdens in patients, with an AUC of 0.905. This effec-
tively links the critical feature of ALN with patient prog-
nosis [72].

The role of DL in predicting recurrence risk
Then there is the recurrence risk prediction. DL tech-
niques have also achieved excellent performance in pre-
dicting the risk of breast cancer recurrence. A recent 
study developed a new DL model to predict the risk of 
ipsilateral recurrence of DCIS by selecting the WSI of 
344 DCIS patients who underwent lumpectomy and 
combining it with clinical data. Sections were stained by 
H&E and then analyzed and feature extracted by the DL 

model. In the DL model, classifiers were first utilized to 
annotate normal ducts, cancerous ducts, vascular areas, 
stromal cells, and lymphocytes separately. Immediately 
after that, among the annotated regions, eight selected 
structural and spatial organization features were chosen 
to be trained on the model to predict the risk of tumor 
recurrence. The results of the study showed that the pre-
diction results were 87% accurate on a 20% validation set 
and were able to predict the risk of recurrence in patients 
after 10 years well (P < 0.0001) [73].

The role of DL in predicting homologous recombination 
defects (HRD)
The prediction of HRD has been a key indicator of breast 
cancer prognosis in recent years. DL methods have 
also shown great potential in predicting HRD status in 
breast cancers, especially BRCA1 and BRCA2 mutation-
associated cancers. A recent study developed a robust 
DL-based method for HRD prediction using digitized 
H&E-stained tumor slides. The algorithm analyzed a 
large number of WSIs of TNBC and ductal breast can-
cers and predicted HRD with high accuracy at an AUC of 
0.86, while also identifying morphological features asso-
ciated with HRD [74].

Predicting patient prognosis through the integration of 
multi-omics technologies with DL
Finally, the integration of multi-omics technology. DL 
technology also shows great potential in the integrated 
analysis of multi-omics data. By combining multi-level 
information from the genome, epigenome, transcrip-
tome, proteome, and metabolome, DL methods are able 
to provide more accurate prognosis prediction and per-
sonalized treatment plans for breast cancer patients. 
Radiography’s ability to provide key features of tumor 
imaging in combination with genotype can be of great 
value in accurately predicting cancer prognosis. Yu et al. 
collected image data from patients scanned with DCE-
MRI from four centers and tallied clinical data from the 
patients involved. The combination of these data was 
used to predict ALN metastasis in a DL model with an 
accuracy of 0.89 [75]. The study showed that the DL 
method, when combined with multimodal imaging and 
clinical data, significantly improved prediction accuracy.

The application of DL in prognostic prediction of 
breast cancer continues to improve the accuracy and effi-
ciency of prediction with the advancement of technology. 
Meanwhile, DL also provides a solid technical foun-
dation for personalized medicine and precision treat-
ment. Through continuous optimization, DL will play an 
increasingly important role in clinical practice and pro-
vide better prognosis and treatment strategies for breast 
cancer patients. Here, we summarize the application of 
DL in breast cancer diagnosis and prognosis (Table 1). By 
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analyzing patients’ imaging and pathology data, DL mod-
els can effectively predict disease metastasis and other 
clinical outcomes. Additionally, DL technology is widely 
applied in the molecular typing of breast cancer, further 
advancing the development of personalized treatment.

The application of DL in molecular typing of breast 
cancer
Molecular typing of breast cancer refers to the classifi-
cation of breast cancer into different subtypes based on 
gene expression profiles and molecular markers to bet-
ter guide treatment and predict prognosis. The main 
molecular typing includes hormone receptor-positive 
(HR+), HER2-positive, and triple-negative (TNBC) 
breast cancers. Each subtype is significantly different in 
terms of pathology, biological behavior, and response to 
therapy. Therefore, accurate molecular typing is essential 
for the development of personalized treatment strate-
gies. In recent years, significant progress has been made 
in the application of DL technology in molecular typing 
of breast cancer [76, 77]. The following is a detailed sum-
mary of the technology’s use in hormone receptor sta-
tus assessment, Ki67 proliferation index scoring, HER2 
status assessment, homologous recombination defect 
(HRD) status prediction, integration of multi-omics tech-
nologies, and spatial transcriptomics applications [78].

Hormone receptor status
Assessing hormone receptor (HR) status is a critical 
step in the prognosis and customization of treatment 
for breast cancer (BC) patients. DL technologies have 
achieved remarkable results in this area [79, 80]. AI-
enabled digital image analysis (DIA) has been able to sig-
nificantly improve pathologists’ consistency in IHC HR 
status assessment. The largest AI study to date, which 
included pathologists and WSI scanners at multiple sites, 
showed that pathologists agreed with AI-assisted results 
in the majority of ER/PgR cases. In addition, deep neu-
ral network (DNN)-based analysis of IHC stained images 
was effective in improving the accuracy of ER and PgR 
scores. The study developed a Morphology-Based Molec-
ular Profiling (MBMP) technique using logistic regres-
sion and deep neural networks, showing comparable 
predictive outcomes to IHC in the majority of patients, 
with accuracy rates for predicting various HR expressions 
ranging from 91–98% [57]. Similarly, a DL algorithm 
based on DNN multi-instance learning demonstrated 
efficient sensitivity and specificity for positive and nega-
tive predictive values in determining BC HR status. The 
AUC was 0.92, with sensitivity and specificity of 0.932 
and 0.741, respectively [81]. The application of these DL 
techniques greatly improved the efficiency and accuracy 
of HR status assessment.

Table 1 Deep learning in breast cancer diagnosis and prognosis
Aspect Study Details Performance Ref
Diagnosis
Tumor Identification and Classification Cruz-Roa et al. CNN to classify WSI for invasive ductal carcinoma F1 score: 76% [39]
Tumor Identification and Classification Han et al. Classify 8 classes of breast tumors using BreaKHis dataset Accuracy: 93.2% [40]
Diagnosis of Lymph Node Metastasis Bejnori et al. DL algorithms vs. pathologists AUC: 0.99 vs. 0.88 [50]
Histologic Grading Veta et al. Mitosis detection challenge F1 score: 0.61 [52]
Histologic Grading Tellez et al. PHH3 stains with CNN annotations Improved consistency 

of pathologists
[53]

Breast Cancer Lesion and Cell Nucleus 
Segmentation

Veta et al. Suppressed non-CNN algorithms Efficient 
segmentation

[54]

Tumor Identification and Classification Rexhepaj et al. Quantified ER- and PR-expressed cells Correlation: 0.9 [55]
Tumor Identification and Classification Couture et al. Feature-based DL model on H&E tissue microarray 

images
Accuracy: 84% [56]

Tumor Identification and Classification Shamai et al. Predict 19 biomarker statuses including ER and PR Accuracy: 92% [57]
TNM Staging Chen et al. Detect metastatic cancer cells from lymph node images AUC: 0.99 [58]
Prognosis
Recurrence Risk Prediction Whitney et al. ER-positive breast tumors; nuclear shape and texture 

features
Accuracy: 0.85 [65]

Prognostic Value of TILs Makhlouf et al. High sTIL associated with shorter survival HR: 1.6 (discovery), 2.5 
(validation)

[67]

Response to Neoadjuvant Chemotherapy Choi et al. High sTIL tumors associated with better response Odds ratio: 1.28 [68]
Histological Grading Wang et al. DeepGrade model for NHG 2 patients HR: 2.94 [69]
Lymph Node Metastasis Verghese et al. smuLymphNet model for axillary lymph node analysis HR: 0.28 [71]
Lymph Node Metastasis Zheng et al. Ultrasound imaging for ALN status prediction AUC: 0.902 [72]
Recurrence Risk Prediction Klimov et al. WSI and clinical data for recurrence prediction Accuracy: 87% [73]
HRD Prediction Lazard et al. DL method for HRD prediction using H&E slides AUC: 0.86 [74]
Multi-Omics Integration Yu et al. DCE-MRI data for ALN metastasis prediction Accuracy: 0.89 [75]
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Ki-67 proliferation index score
The Ki-67 proliferation index is an important prognostic 
and predictive marker for breast cancer. The consistency 
of DL tools in Ki-67 scoring has improved significantly. 
DL models can be used to predict the Ki-67 proliferation 
index in breast cancer tissues [82, 83]. Through neural 
network-optimized image segmentation and region iden-
tification, Fulawka et al.‘s study reduced errors in tumor 
cell recognition, enhancing classification accuracy. Using 
an ensemble model, for a window size of 96 pixels, the 
mean absolute error (MAE) of Ki-67 index prediction 
was reduced from 0.058 to 0.034, significantly improv-
ing the stability and accuracy of predictions. Addition-
ally, the study found that adjusting the threshold bias 
effectively reduced errors, lowering the MAE of a single 
model from 0.058 to 0.034, demonstrating the potential 
of DL technology to enhance the accuracy and reliability 
of breast cancer Ki-67 marker assessment [84]. Lee and 
colleagues utilized a DL model to analyze the relationship 
between Ki-67 levels and recurrence-free survival (RFS) 
in breast cancer patients. By predicting Ki-67 expres-
sion levels, the study revealed its association with the 
21-gene recurrence score (RS) and its predictive ability 
for treatment outcomes and risk of recurrence. Patients 
with high Ki-67 expression in the low genomic risk group 
who did not receive chemotherapy showed a significantly 
increased risk of recurrence (HR = 2.51; P = 0.008), and 
high Ki-67 levels were significantly associated with lower 
recurrence-free survival rates after three years (P = 0.003), 
as well as significantly correlated with secondary endo-
crine resistance (OR = 2.49; P = 0.02) [85]. Using a DL 
model to calculate the Ki67 index and segmenting the 
relevant cells by conventional image processing meth-
ods, tumor cells can be accurately identified for efficient 
determination. The application of this technology not 
only improved the speed and accuracy of the assay, but 
also significantly reduced inter-observer variability.

HER2 status assessment
HER2 expression is critical for effective breast cancer 
treatment. The latest DL algorithms have shown great 
accuracy in differentiating between HER2 positive and 
negative patients [86]. When Che et al. conducted DL 
analysis on HER2 images of breast cancer, the DL model 
they developed demonstrated extremely high accuracy 
in identifying HER2 expression in IHC 0 and 3 + images, 
with an overall accuracy of 97.9% [87]. In addition, Meng 
and her colleagues developed a DL Radiomics (DLR) 
model that combines ultrasound images and clinical 
data from breast cancer patients to predict the HER2 
expression status. Utilizing Extreme Gradient Boosting 
(XGBoost) and Logistic Regression (LR) methods com-
bined with clinical parameters, this DL model demon-
strated excellent diagnostic performance on the test set, 

with a specificity reaching 0.917 and an AUC of 0.810 
[88]. For patients with HER2 scores of 1 + or 2 + or ISH-
negative, the DL model also accurately identifies these 
tumors with very low HER2 expression. This has impor-
tant implications for new therapies for treating BC with 
low HER2 (e.g., trastuzumab-demoxicam for BC with low 
HER2). Farahmand and colleagues developed a CNN-
based classifier for accurately predicting HER2 status and 
trastuzumab treatment response. On an independent test 
set, the AUC for predicting HER2 status using WSI was 
0.81. Additionally, this DL model achieved an AUC of 
0.80 in predicting trastuzumab treatment response after 
a 5-fold cross-validation [89]. Interestingly, automated 
quantification of specific protein overexpression due 
to gene mutations is currently an important direction 
in DL as digital pathology images of H&E staining are 
intensively studied. This line of thought emphasizes that 
a multi-stage DL pipeline should be employed, which in 
turn improves the efficiency, accuracy and interpretabil-
ity of the analysis. A DL architecture utilizing a spatial 
transformer network (STN) in combination with a visual 
transformer was used to detect HER2 expression in the 
absence of IHC staining with excellent results.

HRD status prediction
HRD is a loss of genetic repair mechanisms, often asso-
ciated with mutations in the BRCA1 or BRCA2 genes, 
which are crucial for maintaining the repair of DNA 
double-strand breaks [90]. In breast cancer, the pres-
ence of HRD increases the sensitivity of breast cancer 
cells to certain drugs, such as PARP inhibitors, leading 
to drug resistance in tumor cells [91]. Therefore, pre-
dicting HRD status is particularly important for person-
alized treatment of breast cancer, especially in terms of 
selecting treatment strategies and predicting therapeutic 
efficacy. Lazard and colleagues used DL to predict HRD 
from H&E-stained WSI of breast cancer patients. Initially 
trained and tested on the public TCGA database, achiev-
ing an AUC of 0.83. Furthermore, their research was also 
able to identify specific morphological patterns associ-
ated with HRD, such as necrosis, high density of TIL, and 
nuclear heterogeneity, with an average AUC of 0.76 [74]. 
DL methods have shown significant potential in predict-
ing HRD status. DL models using the Resnet architecture 
were able to successfully predict the status of tumors 
with high or low genomic instability (CIN), with results 
correlating with survival. In addition, other studies have 
directly inferred HRD by BRCA mutation status, with 
results showing significant predictive power. For exam-
ple, the DeepSmile system combined self-supervised 
learning and multi-instance learning networks to achieve 
efficient HRD status prediction on the TCGA dataset, 
with an AUC of 0.81 [92]. The application of these DL 
methods helps to predict HRD status more accurately, 
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thus providing a more reliable reference for breast cancer 
treatment.

Integration of multi-omics techniques
DL technologies have also made significant progress in 
integrating multi-omics data. By combining genomic, 
epigenomic, transcriptomic, proteomic and metabolomic 
information at multiple levels, DL methods can provide 
more accurate prognosis prediction and personalized 
treatment plans for breast cancer patients [93, 94]. In a 
study involving a multi-omics analysis of breast cancer, 
researchers evaluated 1404 cases of invasive breast can-
cer, focusing on 11 biomarkers. By integrating DL and 
multiplex fluorescence immunohistochemistry, the study 
identified five biomarkers—progesterone receptor (PR), 
estrogen receptor (ER), androgen receptor (AR), GATA3, 
and PD-L1—that were significantly associated with over-
all survival in patients [95]. These markers emerged as 
independent risk factors in multivariate analysis, with 
p-values for each biomarker being less than or equal 
to 0.0095, demonstrating strong prognostic relevance 
with an overall p-value of less than 0.0001 [96]. An AI-
based radiogenomics approach was able to significantly 
improve the accuracy of ALN metastasis prediction by 
analyzing DCE-MRI images and clinical data. DL meth-
ods have also been used to predict RNA expression in 
breast cancer patients, and the results show the effec-
tiveness of these methods in providing spatially relevant 
genomic insights [97]. Spatial transcriptomics tech-
niques are capable of mapping expression data to cells 
in histopathologic images, and despite their limited cost 
and availability, some studies have yielded preliminary 
results. For example, the ST-net al.gorithm was devel-
oped to capture the expression heterogeneity of multiple 
genes and successfully predicted the expression of mul-
tiple genes, with results closely correlating with RNA seq 
data from the TCGA dataset. In addition, other studies 
have successfully predicted TP53 and PIK3CA genomic 
alterations in breast cancer by utilizing convolutional 
neural networks and attentional mechanisms to associ-
ate the spatial content of WSI with genomic mutations 
[98, 99]. These studies demonstrate that DL technology 
can effectively combine spatial transcriptomics data with 
histopathology images to provide more in-depth gene 
expression and mutation information.

The application of DL in molecular typing of breast 
cancer has significantly improved the accuracy and con-
sistency of the assessment of hormone receptors, Ki67 
proliferation index and HER2 status. Meanwhile, the 
DL approach also showed great potential in predicting 
homologous recombination defect status and integrat-
ing multi-omics data. These findings suggest that DL will 
be a major breakthrough in molecular typing of breast 
cancer in the future. Here, we summarize the specific 

applications of the DL model in breast cancer (Fig.  2). 
Through DL technology, the molecular typing of breast 
cancer has been greatly improved, aiding in the devel-
opment of more precise treatment plans. Despite the 
significant potential of DL technology in breast cancer 
applications, there are still many challenges in its practi-
cal implementation.

Challenges in the application of DL in breast cancer
Although DL shows great potential in breast cancer 
research and diagnosis, it still faces many challenges in 
practical applications. These challenges focus on algo-
rithms, data scarcity and heterogeneity, model perfor-
mance and interpretability, ethical issues, and related 
software and hardware. The following is a detailed sum-
mary of these challenges.

Algorithmic challenges
Lack of annotated data for algorithm training
Training effective AI algorithms requires a large sample 
of high-quality, annotated images. The task of annotat-
ing these images is typically done by professional orga-
nizational pathologists, a time-consuming and expensive 
process. Additionally, pathologists may suffer from issues 
such as low image resolution, feature ambiguity, and slow 
network connectivity when annotating. While crowd-
sourcing labeled data is a viable solution, it may introduce 
inter-observer variability, leading to inconsistent data 
quality. Small sample sizes also limit the management of 
labeled data [100, 101]. To cope with these issues, meth-
ods such as data augmentation and active learning can be 
employed to maximize the utility of existing samples.

Integration into real-world algorithm validation
Extensive integration of AI algorithms into digital pathol-
ogy workflows requires extensive validation of ML and 
DL algorithms against multi-institutional data to ensure 
the reproducibility and accuracy of their predictions. 
Differences in slide preparation methods, scanner mod-
els, and image formats and analysis methods under-
score the importance of standardization schemes and 
data normalization techniques [102]. These techniques 
not only improve the generalizability of algorithms, but 
also allow for the creation of merged, common datasets 
that can be used to retrain models to account for natural 
variation across populations. Currently, there is a lack of 
official guidelines on the number of annotations, images, 
and laboratories needed to capture natural variation, 
although there are some guiding protocols (e.g., TRI-
POD-AI and PROBAST-AI) [103].

Lack of transparency and interpretability
In digital pathology, most AI algorithms categorize 
samples in a binary way and lack transparency into the 
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model’s decision-making process, a problem known as 
the “black box” problem. In contrast, pathologists’ deci-
sions combine experience, cognition, clinical context, 
and descriptive language to better label and discuss com-
plex or rare cases [104]. The opacity of AI models may 
affect their adoption in clinical settings, as clinicians need 
to explain the rationale for their decisions to patients in 
order to gain their trust.

Diverse and scarce data sources
Multi-center and high-quality data are the basis for 
developing relevant DL models. However, there are issues 
with data sharing across different centers, scanners used 
in different centers vary significantly due to manufacturer 
and operator skill level. The pre-processing process after 
image acquisition can also lead to significant heteroge-
neity in the quality of images due to different algorithms 
[105]. Although DL can increase the quantity of data 
through data augmentation and improve the quality of 
data using methods such as unsupervised learning, there 
is still a lack of standardized algorithms and processes 
[106]. The problem of data sources is a key constraint 

to maximize the generalization ability, repeatability, and 
generalizability of DL models.

Model performance and interpretability
Most AI algorithms lack prospective validation, limit-
ing their application to different patient populations. 
Prospective validation trials should test different patient 
populations to realistically assess the clinical utility of AI. 
In addition, the “black box” nature of AI models prevents 
clinicians from trusting their results [107, 108]. Although 
data visualization tools can support the understand-
ing of algorithmic decisions, more research is needed to 
improve the interpretability and transparency of models.

Ethical issues
The use of AI systems in clinical decision-making raises a 
number of ethical issues, including attribution of respon-
sibility for wrong decisions, public perception of AI 
decision-making tools, and data security and privacy con-
cerns. Standard regulations should be developed along-
side the establishment of new technologies to address 
the transparency and accountability of AI decision-mak-
ing [109]. There is also a need to avoid over-reliance on 

Fig. 2 Specific application of DL in breast cancer
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automation and to ensure that AI systems do not ignore 
common sense and ethical considerations in assisting the 
decision-making process.

Software and hardware challenges
Affordability of computing costs
Widespread adoption of AI-based digital pathology in 
clinical settings requires high hardware, software, and 
storage costs. DL algorithm training relies on dedicated 
Graphics Processing Units (GPUs), which typically 
require dedicated computers and high-cost GPU server 
clusters. Long-term data storage costs are also a major 
challenge, especially for programs that need to store hun-
dreds of gigabytes of images [110]. Despite the availabil-
ity of cloud-based storage solutions, many hospitals rely 
on on-premise data storage, further exacerbating the cost 
issue.

Software scalability and reliability
Although commercial DL-based software has gained 
some acceptance, it still has limitations in covering all 
clinical workflows. In actual clinical practice, DL systems 
need to overcome data scarcity, heterogeneity, and ethi-
cal issues to achieve widespread adoption [111]. In addi-
tion, more efficient unsupervised learning models need 
to be developed to reduce the reliance on large amounts 
of labeled data and to address label noise and data imbal-
ance in medical image analysis.

Medical data privacy and security
Protecting medical data privacy poses a serious chal-
lenge to ML and DL algorithms. These algorithms require 
large amounts of training data, but privacy regulations 
limit data sharing. Collaborative and decentralized train-
ing methods allow model development without sharing 
patient data. In addition, the robustness of data acquisi-
tion methods needs to be addressed to improve the accu-
racy and consistency of image analysis [112].

Multimodal data integration
Only a few DL models currently use non-imaging fea-
tures in conjunction with imaging data. More models 
that combine radiomics features with image data need to 
be developed in the future to improve predictive perfor-
mance and clinical relevance. The development of these 
models will provide new avenues for personalized treat-
ment and prognosis prediction [113].

Although DL technology shows great potential in 
breast cancer research and diagnosis, it still faces many 
challenges in practical applications. These challenges 
include algorithm transparency and interpretability, data 
scarcity and heterogeneity, computational costs, ethical 
issues, and medical data privacy protection. Addressing 
these challenges requires interdisciplinary collaboration 

and innovation to ensure that DL technologies maxi-
mize their potential in clinical practice and provide bet-
ter diagnostic and treatment strategies for breast cancer 
patients.

Perspectives and conclusion
With the continuous development of AI and deep DL 
technologies, the future application of these technologies 
in breast cancer diagnosis and treatment is promising. 
First, AI and DL are expected to significantly improve the 
diagnostic performance of breast cancer and its metasta-
sis through the integration of multiple imaging modali-
ties, such as MRI and ultrasound, especially in areas with 
limited medical resources. This combination of multi-
modal imaging will compensate for the shortcomings of 
a single imaging modality and improve diagnostic accu-
racy and early detection. In addition, AI demonstrates 
great potential in integrating multi-omics data streams to 
provide personalized diagnostic, staging, treatment and 
prognostic recommendations by generating large-scale 
language models (LLMs). These models can combine 
tumor characteristics, individual information, and social 
network data to optimize the output of current visual 
models and present information in a natural language 
format, enhancing the accuracy and efficiency of clini-
cal decision-making. However, data sharing limitations 
remain a major challenge. Methods such as federated 
learning can enhance the performance and generalization 
of DL models by protecting patient privacy for model 
training, facilitating cross-institutional data sharing, and 
helping to build large-scale and diverse datasets. Another 
key development direction is to enhance the transpar-
ency and interpretability of algorithms to increase clini-
cians’ trust in AI systems and to ensure the operability of 
these systems in real clinical settings. There is also a need 
to address legal and ethical issues, such as decision-mak-
ing responsibility and data privacy, to ensure the safety 
and reliability of AI systems. By overcoming these chal-
lenges, AI and DL will play a greater role in the full-stack 
analysis of breast cancer, optimizing clinical workflows 
and improving patient outcomes. Here, we summarize 
relevant clinical trials of DL in breast cancer diagnosis, 
treatment, and prognosis (Table 2).

Although AI and deep DL show great potential in 
breast cancer diagnosis, prognosis and molecular typ-
ing, their practical application still faces many chal-
lenges. These challenges include the lack of large-scale 
high-quality annotated datasets, algorithmic transpar-
ency and interpretability issues, and high computational 
and storage costs. In addition, legal and ethical issues, 
such as decision responsibility and patient privacy, need 
to be fully discussed and resolved before clinical imple-
mentation. In order to achieve effective application of 
DL in clinical practice, large-scale prospective trials must 
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be conducted to validate the performance and practical 
effects of DL systems, and standardized data sharing and 
validation mechanisms must be established. Through 
continuous optimization and innovation, AI and DL will 
play an increasingly important role in the diagnosis and 
treatment of breast cancer, ultimately improving patient 
outcomes and quality of life.
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Table 2 Clinical trials of deep learning in breast cancer diagnosis, treatment, and prognosis
NCT Number Title Status Study 

Results
Conditions Interventions Character-

istics
NCT06016790 Exploring a Breast Cancer Early Screening 

Model Based on cfDNA
Recruiting No Results 

Available
•Breast Cancer
•Breast 
Fibroadenoma

•Genetic: cfDNA 
sequencing

Phase:
Not Applicable

NCT05443672 Multi-center Study of Deep Learning AI in 
Breast Mass

Unknown 
status

No Results 
Available

•Breast 
Neoplasms

•Device: Yizhun 
BUSMS

Phase:
Not Applicable

NCT05243121 Artificial Intelligence Analysis for Magnetic 
Resonance Imaging in Screening and Diagno-
sis of Breast Cancer

Recruiting No Results 
Available

•Breast 
Neoplasms
•Magnetic Reso-
nance Imaging

•Diagnostic Test: 
MRI

Phase:
Not Applicable

NCT05021055 Multicentric Study for External Validation of 
a Deep Learning Model for Mammographic 
Breast Density Categorization

Unknown 
status

No Results 
Available

•Breast Cancer Phase:
Not Applicable

NCT04996615 Artificial Intelligence Analysis for Magnetic 
Resonance Imaging in Screening Breast Can-
cer in High-risk Women

Recruiting No Results 
Available

•Breast Cancer
•Magnetic Reso-
nance Imaging

•Other: no 
intervention

Phase:
Not Applicable

NCT04270032 Using Deep Learning Methods to Analyze 
Automated Breast Ultrasound and Hand-held 
Ultrasound Images, to Establish a Diagnosis, 
Therapy Assessment and
Prognosis Prediction Model of Breast Cancer.

Recruiting No Results 
Available

•Breast Cancer •Diagnostic Test: 
ABUS and HHUS

Phase:
Not Applicable

NCT04156880 Artificial Intelligence in Mammography-Based 
Breast Cancer Screening

Withdrawn No Results 
Available

•Breast Cancer •Other: 
mammography

Phase:
Not Applicable

NCT04003558 Deep Learning Algorithms for Prediction of 
Lymph
Node Metastasis and Prognosis in Breast 
Cancer MRI Radiomics (RBC-01)

Recruiting No Results 
Available

•Breast Neoplasm 
Female
•Early-stage 
Breast Cancer 
•Radiomics
•Axillary Lymph 
Node •Survival, 
Prosthesis

•Other: No 
interventions

Phase:
Not Applicable

NCT03851497 Application of Deep-learning and Ultrasound
Elastography in Opportunistic Screening of 
Breast Cancer

Completed No Results 
Available

•Breast Cancer Phase:
Not Applicable

NCT03706534 Breast Ultrasound Image Reviewed With As-
sistance of Deep Learning Algorithms

Unknown 
status

No Results 
Available

•Breast Cancer
•Breast Lesions
•Breast Mass

•Device: Ultra-
sound Image 
review with CADe
•Device: Ultra-
sound Image 
review with CADx
•Device: Ultra-
sound Image 
manual review
•Procedure: Biopsy

Phase:
Not Applicable
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