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Abstract 

Background  Patients with pathologic complete response (pCR) to neoadjuvant chemotherapy for invasive breast 
cancer (BC) have better outcomes, potentially warranting less extensive surgical and systemic treatments. Early pre-
diction of treatment response could aid in adapting therapies.

Methods  On-treatment biopsies from 297 patients with invasive BC in three randomized, prospective neoadjuvant 
trials were assessed (GeparQuattro, GeparQuinto, GeparSixto). BC quantity, tumor-infiltrating lymphocytes (TILs), 
and the proliferation marker Ki-67 were compared to pre-treatment samples. The study investigated the correlation 
between residual cancer, changes in Ki-67 and TILs, and their impact on pathologic complete response (pCR) and dis-
ease-free survival (DFS).

Results  Among the 297 samples, 138 (46%) were hormone receptor-positive (HR+)/human epidermal growth fac-
tor 2-negative (HER2−), 87 (29%) were triple-negative (TNBC), and 72 (24%) were HER2+. Invasive tumor cells were 
found in 70% of on-treatment biopsies, with varying rates across subtypes (HR+/HER2−: 84%, TNBC: 62%, HER2+: 
51%; p < 0.001). Patients with residual tumor on-treatment had an 8% pCR rate post-treatment (HR+/HER2−: 3%, 
TNBC: 19%, HER2+: 11%), while those without any invasive tumor had a 50% pCR rate (HR+/HER2−: 27%; TNBC: 48%, 
HER2+: 66%). Sensitivity for predicting residual disease was 0.81, with positive and negative predictive values of 0.92 
and 0.50, respectively. Increasing TILs from baseline to on-treatment biopsy (if residual tumor was present) were linked 
to higher pCR likelihood in the overall cohort (OR 1.034, 95% CI 1.013–1.056 per % increase; p = 0.001) and with a 
longer DFS in TNBC (HR 0.980, 95% CI 0.963–0.997 per % increase; p = 0.026). Persisting or increased Ki-67 was associ-
ated with with lower pCR probability in the overall cohort (OR 0.957, 95% CI 0.928–0.986; p = 0.004) and shorter DFS 
in TNBC (HR 1.023, 95% CI 1.001–1.047; p = 0.04).

Conclusion  On-treatment biopsies can predict patients unlikely to achieve pCR post-therapy. This could facilitate 
therapy adjustments for TNBC or HER2 + BC. They also might offer insights into therapy resistance mechanisms. Future 
research should explore whether standardized or expanded sampling enhances the accuracy of on-treatment biopsy 
procedures.

Trial registration GeparQuattro (EudraCT 2005-001546-17), GeparQuinto (EudraCT 2006-005834-19) and GeparSixto 
(EudraCT 2011-000553-23).
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Introduction
Retrospective analyses of prospective breast cancer (BC) 
trials have shown comparable efficacy between chemo-
therapy administered in the adjuvant versus neoadju-
vant settings [1]. Excellent response, defined as achieving 
pathologic complete response (pCR) to neoadjuvant 
chemotherapy (NACT), varies across breast cancer (BC) 
subtypes and is strongly influenced by the treatment 
regimen used. During the analyzed trials, pCR rates were 
approximately 50% and 30% for patients with triple-nega-
tive and HER2-positive disease, respectively [2]. In recent 
developments, incorporating immune checkpoint inhibi-
tors into NACT for TNBC resulted in pCR rates of 64.8% 
[3], while employing dual anti-HER2 blockade yielded 
pCR rates of 66.2% in HER2-positive disease, depend-
ing on hormone receptor status [4]. Excellent response 
serves as a prognostic indicator for patient survival, espe-
cially in triple-negative and HER2-positive disease [5], 
and neoadjuvant therapy can serve as an in vivo assay for 
chemotherapy response.

Prediction of therapy response is of clinical interest 
offering the potential to customize treatment approaches 
and enhance response rates. With the emergence of new 
therapies and refined treatment protocols, there arises 
the question of whether de-escalating local and/or sys-
temic treatment is viable for patients with a strong like-
lihood of achieving pCR [6]. For example, PET-based 
imaging can be used to predict pCR in patients with 
HER2-positive BC during neoadjuvant treatment with 
dual anti-HER2 treatment [7].

The conventional method for identifying response 
markers involves correlating genomic measurements 
from pre-therapeutic samples with clinical outcomes [8]. 
On-treatment tissue samples offer the opportunity for 
microscopic confirmation of response, biomarker exami-
nation, and tissue provision for translational research. 
However, the reliability of biopsy procedures and histo-
pathological assessment for predicting on-treatment pCR 
remains uncertain. The RESPONDER trial examines if 
vacuum-assisted biopsies can be used to predict response 
in the breast with a false negative rate below 10% [9].

In neoadjuvant aromatase inhibition for HR + BC, 
gene expression analysis of on-treatment samples has 
been shown to predict treatment response and patient 
survival [10]. Ki-67 immunohistochemistry can indicate 
the need to switch to neoadjuvant chemotherapy if Ki-67 
levels remain elevated during endocrine treatment alone 
[11, 12]. In the context of neoadjuvant chemotherapy 
(NACT), we assessed on-treatment response using ultra-
sound in the GeparTrio (G3) [13] and GeparQuinto (G5) 
[14] trials. In G3, we could demonstrate that response-
guided switch of chemotherapy regimens can improve 
patient outcome.

During neoadjuvant chemotherapy (NACT), on-
treatment samples can be utilized to uncover molecular 
mechanisms linked to therapy response, such as immune 
and proliferation signatures [15] and to pinpoint poten-
tial markers of resistance/response through comparative 
gene expression analysis between responders and non-
responders [16].

Aim of this retrospective-prospective biomarker study 
was to evaluate the frequency of residual cancer cells in 
on-treatment samples from neoadjuvant clinical chemo-
therapy trials for BC, and to correlate their presence with 
response to treatment.

We also included the evaluation of two biomarkers: 
tumor-infiltrating lymphocytes and the proliferation 
marker Ki-67. Pre- and post-treatment levels of tumor-
infiltrating lymphocytes (TILs) can predict response to 
chemotherapy and survival [17, 18] and chemotherapy 
may trigger or amplify a cytotoxic immune response [19]. 
High levels of the proliferation marker Ki-67 can pre-
dict a better response to neoadjuvant chemotherapy but 
also a poorer long-term prognosis due to more aggres-
sive tumor biology [20]. During neoadjuvant aromatase 
inhibition, on-treatment Ki-67 evaluation also predicts 
patient outcomes [12]. We hypothesized that an increase 
in TILs or a decrease in Ki-67 could predict patient out-
come after completion of chemotherapy.

Methods
Patients and samples
Patients were treated within the randomized, multi-
center neoadjuvant clinical trials GeparQuattro (G4) 
[21–23], GeparQuinto (G5) [14, 24, 25] and GeparSixto 
(G6) [2]. Details on the study designs and outcomes 
are available in the original publications. In brief, G4 
was a phase III study comparing the simultaneous or 
sequential use of capecitabine with epirubicin, cyclo-
phosphamide and docetaxel (EC-T) with concomitant 
trastuzumab in HER2 + disease. G5 was a phase III 
study to evaluate EC-T with or without bevacizumab 
(B) in HER2-negative BC (setting I), to compare pCR 
rates of patients treated with paclitaxel with or with-
out everolimus with HER2-negative BC without sono-
graphic response after four cycles EC ± B (setting II) 
and to compare pCR rates in patients treated with EC-T 
followed by trastuzumab or lapatinib in HER2-positive 
disease (setting III). G6 was a phase II trial to evaluate 
the addition of carboplatin to neoadjuvant treatment 
for patients with triple-negative or HER2-positive BC. 
Biopsies were obtained at the time of diagnosis and 
during chemotherapy: in G4 and G5 after 4 of 8 cycles 
and in G6 after 2 of 6 cycles. Ultrasound was used to 
guide sampling on-treatment. Only biopsies from pri-
mary breast tumors were included in this study, not 
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those from lymph nodes. Detailed information on sam-
pling procedures (tumour size on ultrasound, num-
ber of biopsies, needle size) was not available for data 
analysis in these older clinical trials. All patients with 
available material in the central GBG tumor bank were 
eligible for this retrospective biomarker analysis. Of 
the 1495, 1948 and 588 patients in the G4, G5, and G6 
trials, respectively, 106, 145 and 61 matched pre-ther-
apeutic and on-treatment biopsies were available in 
the biobank and included in the study, resulting in 312 
matched pairs. 15 samples had to be excluded due to 
insufficient pre-treatment material, resulting in a total 
of 297 matched samples. Table  1 details the baseline 
patient characteristics.

All patients provided written informed consent for 
participation in the study and the utilization of bioma-
terials for translational research purposes. The study 
protocol received approval from the relevant ethics 
committee and national competent authority.

Biomarker analysis
An experienced pathologist (BVS, CD) reassessed the 
biopsies on an H&E-stained slide to identify the presence 

of invasive breast cancer (BC) at the German Breast 
Group’s central histopathology laboratory. On-treatment 
biopsies were categorized as positive for invasive tumor 
(tu+) if residual invasive cancer cells were observed. 
Ductal carcinoma in situ or other precursor lesions were 
not included in this classification.

The presence and quantity of tumor-infiltrating lym-
phocytes (TILs) in the stromal compartment were doc-
umented following the guidelines of the international 
TIL working group. This involved comparing the H&E-
stained slide under review to standardized reference 
images. [26].

Immunostaining for Ki-67 was performed on a Ventana 
Discovery XT instrument (Ventana, Tucson, AZ) using 
the MIB-1 clone (diluted 1:50). Quantification of stained 
tumor cells was performed using a digital software solu-
tion (VMScope, Berlin, Germany) according to recom-
mendation of the Ki-67 in BC working group [27]. For 
each case, three areas were chosen and counted, and the 
mean value of the different areas was used for analysis.

Table 1  Baseline characteristics of the study cohort

All G4 G5 G6

Subtype HR−/HER2− 87 (29.3%) 19 (19%) 43 (30.9%) 25 (43.1%)

HR+/HER2− 138 (46.5%) 53 (53%) 85 (61.2%) 0 (0%)

HER2+ 72 (24.2%) 28 (28%) 11 (7.9%) 33 (56.9%)

Response no pCR 235 (79.1%) 81 (81%) 125 (89.9%) 29 (50%)

pCR 62 (20.9%) 19 (19%) 14 (10.1%) 29 (50%)

On-treatment biopsy tu+ 207 (69.7%) 69 (69%) 112 (80.6%) 26 (44.8%)

tu− 90 (30.3%) 31 (31%) 27 (19.4%) 32 (55.2%)

cT stage T1 25 (8.4%) 0 (0%) 11 (7.9%) 14 (24.1%)

T2 181 (60.9%) 68 (68%) 81 (58.3%) 32 (55.2%)

T3 42 (14.1%) 16 (16%) 17 (12.2%) 9 (15.5%)

T4 49 (16.5%) 16 (16%) 30 (21.6%) 3 (5.2%)

cN stage N0 125 (42.1%) 43 (43%) 51 (36.7%) 31 (53.4%)

N1-3 171 (57.6%) 57 (57%) 88 (63.3%) 26 (44.8%)

NA 1 (0.3%) 0 (0%) 0 (0%) 1 (1.7%)

Grading G1-2 156 (52.5%) 55 (55%) 76 (54.7%) 25 (43.1%)

G3 136 (45.8%) 40 (40%) 63 (45.3%) 33 (56.9%)

NA 5 (1.7%) 5 (5%) 0 (0%) 0 (0%)

Histology NST 268 (90.2%) 89 (89%) 122 (87.8%) 57 (98.3%)

Lobular 23 (7.7%) 9 (9%) 14 (10.1%) 0 (0%)

Other 6 (2%) 2 (2%) 3 (2.2%) 1 (1.7%)

TILs
Median = 8, IQR = 10

< 30%
≥ 30%

267 (89.9%)
30 (10.1%)

91 (91.0%)
9 (9.0%)

129 (92.8%)
10 (7.2%)

47 (81.0%)
11 (19.0%)

Ki-67
Median = 15.4, IQR = 22.7

≥ 15%
< 15%
NA

149 (50.2%)
142 (47.8%)

6 (2.0%)

55 (55.0%)
41 (41.0%)

4 (4.0%)

72 (51.8%)
65 (46.8%)

2 (1.4%)

15 (25.9%)
43 (74.1%)

0 (0%)
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Statistical considerations
Pathologic complete response (pCR) was defined as the 
absence of invasive or non-invasive BC in the breast and 
lymph nodes after completion of neoadjuvant treatment 
(ypT0 ypN0). Disease-free survival (DFS) was defined as 
the time from study entry to distant or local relapse or 
death from any cause.

Statistical analyses were computed in R 4.0.3 (R Pro-
ject for Statistical Computing, RRID:SCR_001905). The 
change of TILs (ΔTILs) and Ki-67 (ΔKi-67) was calculated 
as the difference between on-treatment and pre-treat-
ment as a continuous parameter. To test the associa-
tion of positive on-treatment biopsies (tu+) with tumor 
characteristics and pCR, chi-squared test was used. The 
Kaplan Meier method with log rank test was used to 
illustrate the association of response parameters with 
DFS. Uni- and bivariate Cox proportional hazard regres-
sion models were fit to examine the association of bio-
markers with DFS. Logistic regression models were fit to 
examine the association of biomarkers with pCR.

Results
Frequencies of residual cancer cells and their association 
with patient and tumor characteristics (Fig. 1)
Residual cancer cells were present in biopsies of 207 
patients (tu+; 70%) after 4 of 8 cycles (G4, G5) and 2 of 
6 cycles chemotherapy (G6), respectively. 90 biopsies 
showed no residual disease (tu−; 30%). The highest fre-
quencies of tu− biopsies were observed in patients with 
HER2+ (49%) and TNBC (38%) BC (Fig. 1). The highest 
frequency of tu− patients was observed among patients 
of the G6 trial (all patients had triple-negative or HER2-
positive disease). The frequency of tu− patients was also 
higher in patients with small tumors. There was no sta-
tistically significant association with lymph node status, 
histological grading, TILs or histologic subtype (Fig. 1).

Frequencies of residual cancer cells and their association 
with response to treatment (Figs. 2, 3)
In tu− patients a pCR was observed in 50% (45/90) 
(Fig.  2A). In contrast, only 17 of 207 (8%) patients with 
positive biopsies (tu+) had a pCR after completion of 
the full treatment course, and 92% had residual diseases 
(190/207). A similar association could be observed in 
the different BC subtypes (Fig.  2A). The distribution of 
patients with pCR or non-pCR after completion of chem-
otherapy according to on-treatment biopsies with (tu+) 
or without (tu−) residual cancer cells is demonstrated 
in a Sankey plot (Fig.  3) in detail. Sensitivity to predict 
residual disease was 0.81 (specificity 0.72). The posi-
tive and negative predictive values were 0.92 and 0.50, 
respectively.

In univariate Cox regression analyses, the absence of 
tumor cells in on-treatment biopsies was associated with 
a lower risk of relapse in patients with triple-negative dis-
ease (Table  2). However, the effect was not statistically 
significant when adjusted for pCR in a bivariate model 
(Table 3). The relationship between the presence of resid-
ual disease during and/or after chemotherapy and patient 
survival was demonstrated in a Kaplan–Meier analysis 
(Fig. 2B). Patients with residual cancer cells during chem-
otherapy (tu+) and residual disease (RD) after comple-
tion of the full course show the highest risk of relapse.

Patients with false negative predictions, i.e. those 
without residual tumor cells on-treatment but residual 
disease after completion of treatment were analyzed 
(Fig. S1). A higher frequency of false negative predictions 
was observed in HR+/HER2− disease. There was no sta-
tistically significant association with tumor stage, nodal 
status, grade or TILs. Patients with false positive predic-
tions, i.e. those with residual cancer cells on-treatment, 
but with pCR after chemotherapy were demonstrated 
in Fig.  S2. This was more frequently observed in HR−/
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Fig. 1  Frequency of on-treatment biopsies without tumor cells according to tumor characteristics. On-treatment biopsies without tumor cells 
were more frequent in triple-negative and HER2-positive breast cancers (A), in biopsies from G6 trial patients (B), and in smaller tumors (C). There 
was no statistical association with lymph node status (D), histological grading (E), tumor-infiltrating lymphocytes (F) or histology (G)
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HER2− cases, in the GeparSixto trial, in smaller tumors 
and in patients with negative clinical lymph node status.

Dynamic change of TILs and Ki‑67 and its association 
with patient outcome (Fig. 4)
Paired TIL data was available for 207 patients (all sam-
ples with residual cancer on-treatment), paired Ki-67 
data was available for 196 patients. There was no associa-
tion between the dynamic change in Ki-67 and dynamic 
change of TILs (Fig. S3).

In patients with residual invasive cancer cells in the 
on-treatment biopsy an increase of TILs in a subset of 
patients was observed, while only a few patients showed 
a decrease (Fig.  4A). An increase of TILs was associ-
ated with a higher probability of pCR in the overall study 
cohort, but not within the BC subtypes (Fig. 4C). It was 
associated with a lower risk of relapse in patients with tri-
ple negative disease.

The proliferation index as measured by Ki-67 immu-
nohistochemistry decreased in most patients during 
chemotherapy (Fig.  4B). The lack of decrease in Ki-67 
was associated with a low probability of pCR in all 
patients and was associated with a higher risk of relapse 
in patients with triple negative disease (Fig. 4C).

In bivariate Cox regression analyses in patients with 
triple-negative disease adjusted for pCR, the dynamic 
change of TILs was statistically significantly associated 
with DFS. The change of Ki-67 was not significantly 

associated with relapse-free survival in a bivariate model 
adjusted for pCR (Table 4).

Discussion
In this retrospective research study, we analyzed on-
treatment biopsies obtained during neoadjuvant chemo-
therapy (NACT) for breast cancer (BC).

30% of on-treatment biopsies showed no cancer cells. 
However, if residual cancer cells were detected, achiev-
ing a pathologic complete response (pCR) post-treatment 
was less likely. This suggests the potential for early treat-
ment adjustment, including alternative chemotherapy 
agents or targeted therapies, to enhance response rates, 
particularly within the framework of clinical trials. In the 
GeparTrio and GeparQuinto neoadjuvant trials [13, 14], 
treatment was adjusted according to evaluation of on-
treatment response using ultrasound and led to improved 
patient’s survival in GeparTrio. Biopsy procedures might 
be an additional tool to identify tumors prone to treat-
ment failure early on treatment in future trials.

If no cancer cells were detected during treatment, this 
information could not reliably predict chemotherapy 
outcome, as the rate of pCR was 50% in this group in 
the current study. This suggests that sampling error of 
the residual disease may have led to a false negative on-
treatment sample. False negative prediction was more 
frequent in HR+/HER2− disease, reflecting a tumor biol-
ogy with a lower a priori probability for pCR. False posi-
tive prediction (cancer cells on-treatment but pCR after 
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Fig. 2  Association of cancer cells in on-treatment samples with pathological complete response after completion of chemotherapy (pCR,  A) 
and disease-free survival (B). The rate of pCR was 8% in patients with evidence of cancer cells on-treatment (tu+), but 50% when the biopsy 
was negative for cancer (tu−) (A). In the Kaplan–Meier analysis of patients with HR−/HER2− BC, residual cancer on-treatment (tu+) and residual 
disease (RD) after completion of chemotherapy were associated with shorter survival (B)
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therapy) was more frequent in HR−/HER2− tumors, in 
the GeparSixto trial and in smaller tumors, reflecting 
patients with a higher a priori probability of pCR.

As our study collected on-treatment samples for 
translational research rather than for predicting pCR 
or guiding treatment decisions, its comparability to 
studies focused on on-treatment pCR prediction may 
be limited (reviewed in [6]). The reported negative 

predictive values of these studies vary, ranging from 
71% for core needle biopsy (CNB) to as high as 95% for 
vacuum-assisted biopsy, which offers a larger speci-
men for analysis. However, with its false negative rates 
reaching 49.3%, presents a considerable margin for 

NPV: predicted correctly
n: 45 (50.0%)

PPV: predicted correctly
n: 190 (91.8%)

FPR, n: 17 (8.2%)

FNR, n: 45 (50.0%)

Fig. 3  Distribution of patients with pCR or non-pCR after completion of chemotherapy according to on-treatment biopsies with (tu+) 
or without (tu−) residual cancer cells. Of the 90 on-treatment samples without residual cancer cells (blue), 50% had a pCR at the end of treatment 
and 50% had a non-pCR. Of the 207 on-treatment samples with residual cancer (red), 8.2% had a pCR and 91.8% had a non-pCR. NPV = negative 
predictive value; PPV = positive predictive value; FPR = false positive rate; FNR = false negative rate

Table 2  Univariate Cox regression models to predict disease-
free survival according to residual cancer in on-treatment 
biopsies during neoadjuvant chemotherapy

Subtype Covariate Hazard ratio (95% CI) P

HR−/HER2− tu− vs. tu+ 0.402 (0.163–0.987) 0.047

HR+/HER2− tu− vs. tu+ 1.039 (0.428–2.525) 0.933

HER2+ tu− vs. tu+ 1.77 (0.577–5.43) 0.318

Table 3  Bivariate Cox regression models to predict disease-free 
survival according to residual cancer in on-treatment biopsies 
during neoadjuvant chemotherapy and after treatment

Subtype Covariate Hazard ratio (95% CI) P

HR−/HER2− tu− vs. tu+ 0.544 (0.217–1.369) 0.196

pCR vs. no pCR 0.282 (0.083–0.964) 0.043

HR+/HER2− tu− vs. tu+ 1.14 (0.442–2.939) 0.787

pCR vs. no pCR 0.689 (0.149–3.18) 0.633

HER2+ tu− vs. tu+ 2.114 (0.589–7.584) 0.251

pCR vs. no pCR 0.704 (0.197–2.516) 0.589
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error [28, 29]. However, these investigations aimed to 
evaluate pathologic complete response (pCR) after 
completion of neoadjuvant chemotherapy (NACT) 
before surgery, utilizing minimally invasive methods to 
identify patients potentially eligible for surgery omis-
sion. These trials did not assess the capability to predict 
pCR early during treatment.

In a report of 40 patients from the ISPY2 trial, the 
presence of cancer cells in mid-treatment biopsies was 
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Fig. 4  The number of tumor-infiltrating lymphocytes TILs (A) and Ki67 levels (B) in the on-treatment biopsies are plotted against the baseline 
sample. Only samples with residual cancer in the on-treatment biopsies are shown. The association of dynamic changes in TILs (ΔTILs) and Ki-67 
(ΔKi-67) with pathological complete response (pCR) and disease-free survival (DFS) was evaluated using logistic regression and Cox regression 
analyses, respectively (C, D). An increase in TILs was associated with the likelihood of pCR across tumor subtypes (C) and with a lower risk of relapse 
in patients with triple-negative disease (D). No decrease in Ki-67 was associated with a lower likelihood of pCR across subtypes and a higher risk 
of relapse in patients with triple-negative disease. HR = hazard ratio, OR = odds ratio, CI = confidence interval

Table 4  Bivariate Cox regression models to predict disease-free 
survival according to pCR and dynamic change in TILs or Ki-67, 
respectively

Covariate Hazard ratio (95% CI) P

HR−/HER2− Delta TILs 0.979 (0.959–1.000) 0.048

pCR vs. no pCR 0.190 (0.025–1.418) 0.105

HR−/HER2− Delta Ki-67 1.019 (0.996–1.043) 0.098

pCR vs. no pCR 0.211 (0.028–1.600) 0.132
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associated with a 20% pCR rate, while the pCR rate in 
patients without invasive cancer cells was 90% [30].

Regarding survival, patients with triple-negative 
tumors and residual disease both on- and post-treatment 
had the highest risk of relapse. Patients without the evi-
dence of cancer cells on-treatment but residual disease 
after the completion of the full course of treatment had 
a lower risk. This observation could be explained by 
the fact that the biopsy procedure is more likely to miss 
smaller tumors or tumors with only a minimal amount of 
residual disease.

Pre-treatment levels of TILs can be used to predict 
response to chemotherapy and patient’s survival in BC 
[17]. Chemotherapy might induce or augment a cytotoxic 
immune response [19] and an influx of TILs during treat-
ment is associated with better response [31]. Moreover, 
their presence in surgical specimens is associated with 
better outcome [18] and a gene signature for prediction 
of TILs in post-treatment samples is predictive of sur-
vival [32].

In this study, we observed an increase of TILs in a sub-
set of patients and only a few cases showed a decrease. 
An increase of TILs was associated with a higher prob-
ability of pCR in all patients and with a lower risk of 
relapse in patients with TNBC reflecting their known 
predictive value in triple-negative disease. This observa-
tion is particularly interesting, as it can identify patients 
early on treatment that still harbor invasive tumor resid-
uals, where continuing standard therapy might be the 
option that is superior to a change in treatment plan. Fur-
ther investigation in this group of patients could help to 
refine adapting tumor response into treatment plans and 
could ultimately allow to move the risk assessment after 
NACT to an earlier timepoint.

The marker of tumor cell proliferation Ki-67 can be 
used to predict response to NACT and patient’s survival 
[20, 33]. High levels are typically associated with better 
response to cytotoxic treatment but shorter long-term 
outcome due to more aggressive tumor biology. In the 
context of neoadjuvant aromatase inhibition, on-treat-
ment evaluation of Ki-67 can predict patient outcome 
[11, 12].

In this study, most patients showed a decrease in Ki-67 
index and this was associated with a higher probability of 
response in triple-negative disease. It was also associated 
with a lower risk of relapse in triple negative disease, but 
not in other subtypes. Bivariate survival analyses demon-
strated that these effects were probably due to the asso-
ciation with pCR and its strong association with survival 
in this subtype.

From a translational research perspective, these obser-
vations suggest that on-treatment biopsies could be 
valuable for studying mechanisms of therapy resistance 

and predicting failure to achieve pathologic com-
plete response (pCR) after neoadjuvant chemotherapy 
(NACT). However, they are not suitable for identifying 
markers of chemotherapy sensitivity, as highly sensi-
tive tumors would not contain residual cancer cells in 
on-treatment biopsies. To address this, further analyses 
should focus on revisiting naive biopsies from patients 
who achieved early pCR. On a molecular level, NACT 
induces global changes in gene expression [34]. Examples 
of alterations are genes involved in proliferation, epithe-
lial-mesenchymal transition and metabolic processes 
[35]. Analysis of serial biopsy samples during chemo-
therapy allows the characterization of mechanisms of 
early response and adaption to therapy. In such a study, 
a decreased expression of genes related to immune 
response and proliferation could be observed and the 
downregulation of cell-cycle inhibitors was associated 
with worse response [15]. The use of on-treatment biop-
sies for patient stratification should be further explored 
in the context to clinical trials and should be a part of the 
study protocol.

Several limitations of the study warrant consideration. 
Firstly, it’s important to note that the biopsy procedure 
was not strictly standardized according to the study pro-
tocol. Detailed records of the sampling procedure were 
not available in the database of these older clinical trials. 
This limits the interpretation of the results, as bias due 
to patient selection (e.g. due to different or absent tumor 
visibility on ultrasound) or different sampling procedures 
(e.g. different number and/or diameter of biopsies) can-
not be ruled out. At the time of the clinical trials used in 
this study, no clips were placed in the primary tumor area 
prior to treatment. The accuracy of the biopsy procedure 
may be limited. Additionally, variations in the timing of 
the biopsy procedure across the three trials were inevi-
table due to differences in study design. In GeparQuattro 
and GeparQuinto, on-treatment samples were obtained 
after 4 of 8 cycles, in GeparSixto after 2 of 6 cycles. More-
over, GeparQuattro and GeparQuinto switched from 
anthracycline to taxane therapy following the biopsy, 
whereas GeparSixto continued with the same regimen 
(concurrent taxane/anthracycline). The collection of on-
treatment biopsies was not a mandatory part of the study 
protocol with a potential selection bias and comparably 
small samples sizes in subgroup analyses. The study was 
primarily designed to collect material for translational 
research purposes. It must be considered that patients 
within this trial had been treated before 2012 which pos-
sibly limits accuracy of on-treatment biopsy due to less 
experienced examiners and less refined examination 
instruments. Regimen not matching current standards 
thereby limiting the chances of achieving a pCR, are also 
able to influence false negative rates and predictive values 
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of on treatment biopsies. Immune checkpoint inhibitors 
were not part of neoadjuvant chemotherapy in patients 
with triple-negative breast cancer, and patients with 
HER2-positive disease did not receive dual blockade.

In summary, our findings show that on-treatment biop-
sies can effectively predict non-pCR across breast cancer 
(BC) subtypes when residual cancer is present. This dis-
covery presents potential avenues for tailoring therapy 
concepts in future clinical trials, such as implementing 
de-escalation strategies for responders and exploring 
experimental treatments for non-responders.

A reliable method for predicting chemotherapy 
response during treatment could greatly impact patient 
management and improve treatment strategies. By moni-
toring response, treatment plans can be tailored to indi-
vidual patients, and if a patient is unlikely to respond 
well to the initial regimen, adjustments can be made to 
optimize therapeutic outcomes by switching to more 
effective drugs or modifying the dose. Early prediction of 
non-response allows for discontinuing ineffective treat-
ments, avoiding unnecessary toxicity and complications, 
and better allocation of healthcare resources.

For example, ISPY2 trial is evaluating a combination of 
mid-treatment MRI and core biopsies to predict response 
and guide de-escalation of neoadjuvant treatment [36].

Predicting response helps plan the extent of surgery 
more accurately, potentially reducing the need for exten-
sive procedures like mastectomy. Early prediction of 
treatment success can improve overall prognostication 
and support informed decision-making for post-neoadju-
vant treatment and observation strategies.

Moreover, analyzing sequential biopsies could be 
instrumental in identifying molecular markers of therapy 
resistance to enhance our understanding of tumor biol-
ogy and its adaptation to therapy. These advancements 
can ultimately improve overall treatment paradigms, 
improving the precision and effectiveness, leading to bet-
ter patient outcomes. Further research is warranted to 
determine whether more standardized or extensive sam-
pling procedures, or their combination with additional 
clinicopathological features, could enhance the sensitiv-
ity of on-treatment biopsy procedures.
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