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Abstract 

Background  Despite evidence indicating the dominance of cell-of-origin signatures in molecular tumor patterns, 
translating these genome-wide patterns into actionable insights has been challenging. This study introduces breast 
cancer cell-of-origin signatures that offer significant prognostic value across all breast cancer subtypes and various 
clinical cohorts, compared to previously developed genomic signatures.

Methods  We previously reported that triple hormone receptor (THR) co-expression patterns of androgen (AR), 
estrogen (ER), and vitamin D (VDR) receptors are maintained at the protein level in human breast cancers. Here, 
we developed corresponding mRNA signatures (THR-50 and THR-70) based on these patterns to categorize breast 
tumors by their THR expression levels. The THR mRNA signatures were evaluated across 56 breast cancer datasets 
(5040 patients) using Kaplan–Meier survival analysis, Cox proportional hazard regression, and unsupervised clustering.

Results  The THR signatures effectively predict both overall and progression-free survival across all evaluated datasets, 
independent of subtype, grade, or treatment status, suggesting improvement over existing prognostic signatures. 
Furthermore, they delineate three distinct ER-positive breast cancer subtypes with significant survival in differences—
expanding on the conventional two subtypes. Additionally, coupling THR-70 with an immune signature identifies 
a predominantly ER-negative breast cancer subgroup with a highly favorable prognosis, comparable to ER-positive 
cases, as well as an ER-negative subgroup with notably poor outcome, characterized by a 15-fold shorter survival.

Conclusions  The THR cell-of-origin signature introduces a novel dimension to breast cancer biology, potentially serv-
ing as a robust foundation for integrating additional prognostic biomarkers. These signatures offer utility as a prognos-
tic index for stratifying existing breast cancer subtypes and for de novo classification of breast cancer cases. Moreover, 
THR signatures may also hold promise in predicting hormone treatment responses targeting AR and/or VDR.
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Background
The term ’classification’ is often used to denote subgroups 
of breast cancer (BrCa) with different outcomes or treat-
ments. However, utilizing predictive or prognostic clus-
ters for classification has inherent instability, wherein 
group definition may change with treatment or survival 
modality. In contrast, normal cell types have been used as 
a stable reference point to classify hematological malig-
nancies (Figure S1) [1, 2], which inspired us to develop a 
similar approach for BrCa.

We previously identified four differentiation types in 
human normal breast luminal epithelial (NBLE) cells 
based on receptor protein expression for estrogen, andro-
gen, and vitamin-D: ER, AR, and VDR [3, 4]. Triple hor-
mone receptor-positive (THR-3) NBLE cells co-express 
all three receptor proteins, while THR-2, THR-1, and 
THR-zero (THR-0) cells co-express two, one, or none, 
respectively [3, 4]. We found that each THR differentia-
tion stage has a unique DNA methylation profile [5] and 
human BrCa preserve the THR DNA methylation pro-
file of NBLE cells [6, 7]. This suggests that either human 
breast tumors keep the initial THR state of their singular 
normal cell-of-origin or that a differentiation block lim-
its them to one dominant THR state, like hematological 
malignancies [3, 4].

While ER has been a key prognostic and predictive 
marker in BrCa [8], the role of VDR and AR in BrCa 
prognosis has been less clear. In multivariate analysis, 
VDR protein expression does not correlate with BrCa 
overall survival (OS) [9–12]. Similarly, the prognos-
tic role of AR in BrCa is not well defined [13–15], with 
some studies linking AR expression to a better progno-
sis in ER-positive BrCa, and a worse prognosis in ER-
negative BrCa [16, 17]. Therefore, our initial motivation 
for combining AR and VDR with ER was solely based on 
this triple marker panel’s ability to identify distinct nor-
mal breast cell types, rather than their potential addi-
tive prognostic power. Nonetheless, we discovered that 
combining these three markers can unexpectedly form a 
powerful prognostic panel [3, 4, 18].

Since the 1990s, BrCa has been categorized into three 
clinicopathologic subgroups based on the expression of 
ER, PR, and the human epidermal growth factor recep-
tor 2 (HER2). The estrogen receptor (ER) is expressed 
in approximately 70% of BrCa [8], and its activation by 
estrogen drives BrCa growth, making ER-positive tumors 
susceptible to anti-estrogen therapies [19, 20]. HER2 is 
amplified in 10–15% of BrCa that are treated with anti-
HER2 therapies. The remainder of BrCa subtypes are 
negative for ER, PR, and HER2, which are referred to as 
triple-negative breast cancers (TNBC).

Several mRNA-based predictive and prognostic sig-
natures, including MammaPrint [21, 22], Oncotype  DX 

[23], and Prediction Analysis of Microarray 50 (PAM-50) 
[24] have been developed to move beyond the ER/PR/
HER2 paradigm. However, these signatures have typically 
demonstrated clinical utility primarily in node-negative, 
ER-positive, and HER2-negative tumors [25, 26], thus 
benefitting fewer than half of the patient population [25].

In this study, we present a cell-of-origin-based analy-
sis of BrCa. While it remains in its early stages compared 
to the hematopoietic system, this approach has already 
demonstrated significant promise for defining BrCa 
prognostic subtypes, as we will elaborate upon next.

Methods
Samples and inclusion criteria
Cell lines
To develop the triple hormone receptor (THR) mRNA 
signature, we used gene expression profiles of BrCa cell 
lines from the Cancer Cell Line Encyclopedia (CCLE) 
dataset [27], including those positive for a single hor-
mone receptor or none with THR-[0/1] phenotype (BT-
20, HCC1187, HCC1937, HCC1143, and MDA-MB-231) 
together with cell lines positive for two or three receptors 
with a THR-[2/3] phenotype (MCF7, T47D, CAMA-1, 
YMB-1, and ZR-75–1).

Patient data
The mRNA expression data from multiple cohorts com-
prising samples from BrCa patients with available sur-
vival information were analyzed. These cohorts included 
the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) cohort [28] (n = 1904), KM 
plotter (KMP) cohort (n = 2,032, 50 studies) [29], Meta-
10 cohort comprising ten different studies [30], nine of 
which overlap with the KMP cohort except for GSE4922 
(n = 249) [31], and the BC855 cohort (n = 855, 4 studies) 
[21, 32–34].

Development of the triple‑hormone receptor gene 
signatures
To identify genes reflecting THR receptor status, we 
conducted a t-test based differential expression analysis 
between THR-0/1 and THR-2/3 BrCa cell lines in the 
CCLE dataset [27]. The top 50 differentially expressed 
genes (DEGs) sorted by p-value were selected for further 
analysis, termed as THR-50 (Additional File 2).

Subsequently, we extended this analysis to human data 
using gene expression profiles from 855 BrCa samples 
in the BC855 cohort [21, 32–34]. Here, samples were 
categorized into THR-0, THR-1, THR-2, and THR-3 
based on ESR1, AR, and VDR expression levels. Similar 
to CCLE, we performed differential expression analysis 
to identify genes distinguishing THR-0/1 from THR-2/3. 
We prioritized 350 genes common between CCLE and 



Page 3 of 16Omar et al. Breast Cancer Research          (2024) 26:132 	

BC855 cohorts, ranked by SAM fold change and q-value 
(in BC855) or p-value (in CCLE), resulting in a set of 70 
genes defining THR status in both cell lines and human 
tissue, referred to as THR-70 (Additional File 3).

Additional details on the derivation of THR-50 and 
THR-70 can be found in the Supplementary Methods 
(Additional File 1).

Unsupervised clustering of single nucleus transcriptome 
data of healthy breast tissues
Single nucleus chromatin accessibility and transcriptome 
data of normal breast tissues of women of diverse genetic 
ancestry have been described recently [35]. Epithelial 
cells in the normal breast have recently been renamed as 
Basal-Myoepithelial (BM, replacing the previous name of 
basal cells), luminal adaptive secretory precursor (LASP, 
replacing the previous name of luminal progenitor cells), 
and luminal hormone sensing (LHS, replacing the pre-
vious name of mature luminal cells) [35]. BM cells are 
divided into BM-basal alpha (BM-BAα) and BM-BAβ, 
LASP cells into alveolar progenitor (LASP-AP) and basal-
luminal hybrid (LASP-BL), and LHS cells into LHSα and 
LHSβ [36].

The single nucleus RNA-seq (snRNAseq) data was nor-
malized and scaled with the  NormalizeData  and  Scale-
Data  functions in Seurat [37], using the default 
parameters. Subsequently, a heatmap of the single-
nucleus gene expression data for the THR-70 genes was 
generated with the  DoHeatmap  function in the Seurat 
package, for the epithelial subtypes.

Enrichment in normal human breast epithelial cells
To further evaluate the enrichment of THR in nor-
mal breast epithelial cells, we used single cell RNA-seq 
(scRNA-seq) profiles of healthy breast tissue from two 
independent datasets [35, 38]. Specifically, we measured 
the expression and enrichment of THR genes across the 
different epithelial cell clusters using the normalized and 
z-scored expression profiles. Enrichment was computed 
using UCell, a gene signature scoring method based on 
the Mann–Whitney U statistic [39] and the computed 
scores were smoothed using the weighted average of the 
k-nearest neighbors in principal components analysis.

Survival analysis
Survival analysis was utilized to examine the relation-
ship between THR signatures and the outcome of various 
patient cohorts using the Kaplan–Meier (KM) survival 
estimate with log-rank tests [40, 41]. Patients were strati-
fied into two or four groups (quartiles) based on either 
average expression of the signature genes or risk-score 
calculated by logistic regression models. Additional infor-
mation on the categorization process and thresholding 

methods can be found in the Supplementary Methods 
(Additional File 1). The relative hazard ratios were deter-
mined using Cox proportional hazard regression analy-
sis, with p values computed using the Wald test [30].

Gene set enrichment analysis
The immune module of the Gene Set Cancer Analysis 
(GSCA) online platform [42] was used to determine the 
correlation between immune cell infiltrates and GSVA 
enrichment score using ImmuCellAI (Immune Cell 
Abundance Identifier), which estimates the abundance of 
24 immune cell types [43]. Further details on the gene set 
enrichment analysis can be found in the Supplementary 
Methods (Additional File 1).

Unsupervised clustering of patient samples
To assess the capacity of THR signatures for defining 
robust BrCa subtypes, we conducted unsupervised hier-
archical clustering of the samples within the METABRIC 
cohort. The clustering was performed using the ward 
minimum variance method [44], followed by demarcat-
ing the hierarchical tree into five groups. The optimal 
number of groups was determined based on the observed 
patterns and the clinical interpretability. Next, we evalu-
ated overall survival (OS)  and recurrence-free sur-
vival (RFS) probabilities among the five groups using KM 
survival curves and the log-rank test.

Software and statistical analysis
All statistical analyses were performed using R software 
(version 4.0.3). The survival and survminer R packages 
were used for generating KM survival curves and the 
COX proportional hazards models [45, 46]. The stats 
package was used for hierarchical clustering, while the 
glmnet package was used to fit the logistic regression 
models [47]. The significance level (p-value and FDR) was 
set at 0.05 for all statistical tests except for the CCLE dif-
ferential expression analysis, for which we used a p-value 
threshold of 0.01.

Results
Classification of breast tumors by triple hormone receptor 
protein expression
The triple-hormone receptor (THR) categorization 
is based on protein expression of ER, AR, and VDR, 
assessed by immunohistochemical (IHC) staining of 
formalin-fixed paraffin-embedded (FFPE) BrCa tissue 
microarrays (TMA) as described before [3, 4], produc-
ing four subgroups: THR-0, THR-1, THR-2, and THR-3, 
representing 7%, 11%, 28%, and 54% of BrCa, respectively 
(Fig. 1A). We previously showed in KM survival analysis 
that BrCa with fewer hormone receptors is associated 
with shorter OS [3] with a statistically significant hazard 
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ratio (HR) in multivariate analysis: THR-0 (HR = 6.9, CI: 
3.3–14.3, n = 104); THR-1 (HR = 5.3, CI: 2.7–9.9, n = 185); 
THR-2 (HR = 2.9, CI: 1.6–5.2, n = 429); and THR-3 
(HR = 1.0, n = 998) in the Nurses’ Health Study dataset 
(n = 1716) [3].

Derivation of a triple hormone receptor mRNA signature: 
THR‑50
Utilizing data from the CCLE dataset, we developed an 
mRNA signature that can distinguish between THR-0/1 
and THR-2/3 BrCa [27]. We selected the top 50 most 
significant genes (lowest p-value) from the 600 differen-
tially expressed mRNAs to investigate further, referred 
to as  THR-50 signature  hereafter, which allowed us to 
examine the THR-IHC index in publicly available BrCa 

gene expression datasets (Fig. 1B and Additional Files 2 
and 4).

Validation of THR‑50 in human breast cancer
Analysis of the METABRIC cohort (n = 1904) [28] dem-
onstrates  that the median expression of THR-50 divides 
BrCa into two major clusters (Fig. 1C). The genes associ-
ated with THR-[2/3] CCLE (Fig. 1B) are highly expressed 
in ER-positive BrCa within the METABRIC dataset 
(Fig. 1C), as expected. THR-50 is also significantly associ-
ated with RFS (HR = 1.5) and OS (HR = 1.7) (Fig. 1D–E). 
Additionally, even after adjusting for important variables 
such as age, tumor stage, and grade using a multivari-
ate Cox proportional hazards model, THR-50 remains 
significantly associated with RFS and OS (Table  1), 
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Fig. 1  Breast cancer classification based on triple-hormone receptor (THR) expression. A Immunohistochemical (IHC) staining with ER, AR, and VDR 
of tissue microarrays (TMAs) from breast cancer patients (top) identifies four distinct subtypes (bottom). Hormone receptor positive tumors were 
identified as those with > 1% protein expression. B Heatmaps showing the expression of the top 300 (left) and top 50 (right) differentially expressed 
genes between THR-[0/1] and THR-[2/3] cell lines in the Cancer Cell Line Encyclopedia (CCLE) dataset. C Heatmap showing the expression 
of the THR-50 genes in human samples from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. The heatmap 
shows the samples annotation including ER status measured by IHC, clinical 3-gene classifier groups (based on ER, HER2, and MIB-1), histological 
grade, and PAM-50 groups. Red = high expression, blue = low expression. D–E Kaplan–Meier survival plots show the difference in recurrence-free 
survival (RFS) (D) and overall survival (OS) (E) between METABRIC samples predicted as 0 (low-risk) and 1 (high-risk) by THR-50. High-risk samples 
have significantly worse RFS (HR = 1.5, 95%CI: 1.3–1.7, p < 0.0001) and OS (HR = 1.7, 95%CI: 1.5–1.9, p < 0.0001) compared to low-risk samples. Survival 
time is in months. The hazard ratios and 95% confidence intervals are shown. THR: triple-hormone receptors; HR: hazard ratio; CI: confidence interval
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underscoring the independent prognostic value of this 
signature.

Analysis of THR‑50 across breast cancer subtypes
Next, we explored the association of THR-50 with sur-
vival outcomes across BrCa subtypes. Using the THR-
50-derived risk score in the METABRIC cohort, we 
stratified patients into four equal groups with quartile 
1 (Q1) and quartile 4 (Q4) representing the lowest and 
highest risk, respectively. We observed that patients in 
Q4 have significantly worse RFS compared to Q1 across 
ER-positive, ER-negative and HER2 + BrCa (Figure S2A, 
Additional File 5), as well as in the Luminal A (HR = 1.5) 
and Luminal B (HR = 2.4) BrCa subtypes (Figure S2B, 
Additional File 5). The distribution of THR-50 risk scores 
across different BrCa subtypes, defined by the PAM-50 
and clinical 3-gene classification schemes, is illustrated in 
Figure S3, Additional File 5.

These findings were validated in the KMP cohort 
(n = 2,032, 50 studies) [29], where patients were stratified 
based on the average expression of THR-50, into low- 
and high-expression groups. We found that patients with 
low expression of THR-50 exhibit worse OS compared to 
those with high expression across ER + , AR + , ER-, Lum-
A, Lum-B, HER2 + , and lymph-node positive (LN +) 
BrCa subtypes (Figure S4, Additional File 5). These 
results underscore the utility of the THR cell-of-origin 

signature in stratifying the risk of BrCa patients across 
diverse molecular and clinical subtypes.

THR‑50 demonstrates promising performance relative 
to existing prognostic biomarker tests
Multigene biomarker tests such as Oncotype DX, PAM-
50, MammaPrint, and EndoPredict are recommended by 
the American Society of Clinical Oncology (ASCO) for 
ER-positive, HER2-negative, and lymph node-negative 
BrCa [48–50]. However, they are not generally recom-
mended by ASCO for ER-negative, HER2-positive, lymph 
node metastatic (> N1), or treated BrCa [51, 52].

In the KMP cohort (n = 2032), we evaluated the per-
formance of THR-50 alongside PAM-50, MammaPrint, 
and Oncotype DX by categorizing patients based on the 
average expression of signature genes using optimal cut-
offs. Remarkably, high average expression of THR-50 is 
significantly associated with better RFS compared to low 
expression in overall BrCa (HR = 2.04). Similarly, PAM-
50 shows a significant association with RFS in overall 
BrCa (HR = 1.4), while MammaPrint and Oncotype  DX 
do not (p = 0.052 and 0.13, respectively) (Figure S5, Addi-
tional File 5).

Next, we investigated the prognostic performance of 
these signatures across various BrCa groups. Notice-
ably, THR-50 demonstrates significant associations 
with RFS in multiple BrCa subgroups, including lymph 
node-positive (HR = 2.4), AR-positive (HR = 2.9), grade 2 

Table 1  Multivariate survival analysis of THR-50

Overall survival (OS) and Recurrence-free survival (RFS) in the METABRIC cohort using Cox proportional hazards model and including the THR-50-predicted risk 
groups, age, tumor stage, and histological grade. HR: Hazard ratio, 95% CI: 95% Confidence interval, p-value: Wald test p-value

OS

Variable HR 95% CI p-value

THR-50 high-risk 1.4 1.2—1.6 2.4e-05

Age 1.03 1.02 – 1.04  < 2e-16

Tumor stage Stage 2 1.5 1.3 – 1.8 4.97e-07

Stage 3 2.9 2.2 – 3.8 7.49e-16

Stage 4 4.7 2.3 – 9.7 2.02e-05

Histological Grade Grade 2 1.1 0.8 – 1.4 0.72

Grade 3 1.4 1.0 – 1.8 0.049

RFS

Variable HR 95% CI p-value

THR-50 high-risk 1.3 1.1 – 1.6 0.001

Age 0.99 0.985 – 0.998 0.02

Tumor stage Stage 2 1.5 1.3 – 1.9 2.61e-05

Stage 3 3.4 2.6 – 4.5  < 2e-16

Stage 4 10.4 5.3 – 20.7 1.89e-11

Histological Grade Grade 2 1.3 0.9 – 1.8 0.24

Grade 3 1.6 1.1 – 2.3 0.02
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(HR = 2.4), and grade 3 (HR = 1.6) BrCa (Fig.  2A). Simi-
larly, PAM-50 demonstrates significant associations with 
RFS in the same groups, although with a slightly lower 
prognostic power compared to THR-50, except for grade 
3 BrCa (p = 0.29) (Fig. 2A).

THR-50 identifies significant prognostic subgroups 
even within PAM-50 categories, revealing distinct RFS 
outcomes, in Luminal A (HR = 2.2), Luminal B (HR = 1.8), 
HER2-like (HR = 2.3), and basal-like BrCa (HR = 2.5) 
(Fig. 2B).

In contrast, MammaPrint demonstrates significance 
only in Luminal B (HR = 1.3) and HER2 + BrCa (HR = 1.5) 

subtypes. Oncotype  DX, in comparison, shows signifi-
cant associations with RFS across PAM-50 subtypes, but 
with reduced prognostic efficacy compared to THR-50, 
except for basal-like BrCa, where it did not reach signifi-
cance (p = 0.15) (Fig. 2B).

These results indicate that THR-50 exhibits a sig-
nificant  prognostic value across diverse BrCa subtypes, 
unlike currently available tests.

Derivation and validation of THR‑70
The results shown above using THR-50 suggest that the 
CCLE THR signature can be used to filter human tumor 

Fig. 2   THR-50 is significantly associated with recurrence-free survival (RFS) across different breast cancer clinical groups, outperforming established 
tests in the KMP cohort. A Kaplan–Meier survival plots comparing the prognostic power of THR-50 with PAM-50 using RFS in lymph-node 
positive, androgen receptor (AR) positive (AR +), grade 2 and grad 3 breast cancer. The analysis uses an independent validation cohort (KMP) 
comprising 2,032 samples from 50 gene expression datasets. Low (black line) and high (red line) expression groups are defined based on optimum 
cutoffs of the average expression levels of all signature genes. The reported p-values are derived from the log-rank test. The hazard ratios (HR) 
along with their corresponding 95% confidence intervals (CI) are shown. THR-50 results: lymph-node positive (HR = 2.4, CI:1.9–3.1, p = 1.5e-13), 
AR + (HR = 4.5, CI:2.0–11.0, p = 0.0001), Grade 2 (HR = 2.0, CI:1.1– 4.0, p = 0.02), Grade 3 (HR = 1.6, CI:1.1–2.5, p =  p = 0.02). PAM-50 results: lymph-node 
positive (HR = 1.4, CI:1.1–1.9, p = 0.0026), AR + (HR = 2.0, CI:1.1–3.9, p = 0.025), Grade 2 (HR = 1.8, CI:1.1–3.0, p = 0.021), Grade 3 (p = 0.29). B Kaplan–
Meier survival plots comparing the RFS between patients with low and high average expression of THR-50 genes across different PAM-50 groups: 
Lum-A (HR = 2.1, CI = 1.5–3.1, p = 1.4e-05), Lum-B (HR = 1.8, CI = 1.4–2.3, p = 1.2e-05), HER2-like (HR = 2.3, CI = 1.6–3.2, p = 5.2e-07), basal-like (HR = 2.5, 
CI = 1.8–3.6, p = 7e-08). The plot also shows Oncotype DX (ONC-21), and MammaPrint (MAM-70) HR, 95% CI, and p-values. CI: 95% confidence 
interval. HR: hazard ratio
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gene expression data. Therefore, fine-tuning of the THR 
signature was conducted by overlapping the cell line 
expression profiles  with  human tumor  tissue cohort, 
comprising 855 BrCa cases (BC855) [21, 32–34, 53].

Analysis of BC855 cohort reveals that THR categories 
differ from PAM-50 subtypes (Fig.  3A);  demonstrat-
ing that  each THR group encompasses diverse propor-
tions of all six PAM-50 subtypes. For instance, the THR-1 
cohort comprises Luminal A (15.7%), Luminal B (18.8%), 
HER2-enriched (18.5%), Claudin-low (13.9%), Normal-
like (8.7%), and Basal-like (24.4%) PAM-50 clusters, indi-
cating a balanced distribution (Fig. 3A). This distribution 
suggests that the poor outcomes in THR-1 are not attrib-
uted to a single PAM-50 cluster.

We found that 190 THR-associated mRNAs in cell 
lines (CCLE) overlap with THR signature in human 
BrCa tumors (BC855) (Fig.  3B). THR-70 refers to 
the top 70 genes identified by SAM fold change and 
p-value ranking among these 190 genes (Additional 
Files 3 and 4).

Next, by integrating THR-70 with the recently 
described single nucleus transcriptome data of healthy 
breast tissues [35], we show that THR-70 gene expres-
sion is enriched in normal human breast tissue. Inter-
estingly, different THR-70 genes are enriched in 
proliferating (LASP-AP and LASP-BL) versus hormone 
sensing (LHS-HSα and LHS-HSβ) luminal epithelial 
breast cells (Fig. 3C).

Fig. 3  Development and validation of THR-70. A Heatmap showing the expression of the three hormone receptors ER, AR, and VDR 
across the different triple hormone receptor (THR) groups (top). The Pie charts (bottom) show the percentages of PAM-50 subtypes in the different 
THR groups in the BC855 cohort. B Venn diagram showing the genes in common between the top differentially expressed genes (DEGs) 
between the THR-0/1 and THR-2/3 groups in the CCLE and BC855 cohorts, using p < 0.05 as a cut-off. The THR-70 signature comprises the top 70 
DEGs in common between both cohorts based on SAM-fold expression. C Heatmap of the expression of THR-70 genes in normal breast epithelial 
clusters reported in Bhat-Nakshatri et al. Expression levels are z-score transformed. D Violin plots comparing the enrichment of THR-70 across normal 
breast epithelial clusters identified by Kumar et al. Signature scores (normalized U statistics between 0 and 1), shown on the Y axis, were computed 
using UCell. E–F Kaplan–Meier survival plots in the METABRIC cohort comparing the overall survival (OS) between patients predicted as low (Q1) 
and high-risk (Q4) by THR-70. The high-risk samples have significantly worse OS compared to low-risk samples in the PAM-50 basal (HR = 2.2, 95%CI: 
1.2–4.1, p = 0.01), Claudin-low (HR = 6.6, 95%CI: 2.5–17.2), Luminal A (HR = 2.9, 95%CI: 2.1–4.0, p < 0.0001), and Luminal B (HR = 4.2, 95%CI: 2.5–6.9, 
p < 0.0001) (E). Additionally, in clinical 3-gene classifier ER-/HER2- (HR = 2.7, 95%CI: 1.6–4.5, p < 0.0001), ER + /HER2- high proliferation (HR = 4.8, 95%CI: 
2.9–8.0, p < 0.0001), and ER + /HER2- low proliferation (HR = 2.9, 95%CI: 2.1–4.1, p < 0.0001) (F). Survival time is in months. Hazard ratios (HR) and 95% 
confidence intervals (CI) are shown. Statistically significant HRs are highlighted in red
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Previously, we reported that the biomarker profiles 
of most human breast cancers, including the TNBC 
and basal-like cancers, are similar to normal luminal 
breast epithelium with the majority of tumors enriched 
for signatures derived from LHS and LASP cells [35, 
54]. Consistent with this, we found that THR-70 is not 
enriched in normal basal-myoepithelial breast cells 
(BM_BAα and BM_BAβ) (Fig.  3C). Similar results are 
observed in the study by Kumar et  al. [38], in which 
THR-70 is more enriched in luminal hormone-respon-
sive cells (LummHR-SCGB, LummHR-active, and Lum-
mHR-major) compared to the luminal secretory and 
basal cells (Fig. 3D).

Having observed that THR-70 contains a breast cell-
of-origin signature, we examined it in the KMP dataset 
revealing prognostic subgroups within PAM-50 cat-
egories including in Luminal A (HR = 1.6), Luminal B 
(HR = 2.0), HER2-like (HR = 2.1), and basal-like BrCa 
(HR = 2.2), as well as in lymph node-positive (HR = 2.8), 
AR-positive (HR = 1.6), grade 2 (HR = 2.5), and grade 3 
(HR = 1.6) BrCa (Figure S6).

Next, we stratified patients within the METABRIC 
cohort based on THR-70, utilizing calculated risk scores, 
and observed that patients in the highest-risk category 
(Q4) have worse RFS and OS compared to those in the 
lowest-risk category (Q1) across all BrCa subtypes except 
HER2 + (Figs. 3E-F and S7-S8, Additional File 5).

To validate these findings in another dataset, we 
examined the THR-70 signature in the Meta-10 cohort, 
which comprises samples from ten different gene expres-
sion datasets [30] (Figures  S9 and S10, Additional File 
5), where THR-70 demonstrates significant association 
with RFS (HR = 2.5), distant metastasis-free survival 
(DMFS) (HR = 3.8), and survival in lymph node-posi-
tive (HR = 9.7), lymph node-negative (HR = 3.4), treated 
(HR = 4.4), and untreated (HR = 2.3) patients (Fig. 4).

Cumulatively, these results indicate that ASCO-rec-
ommended multigene biomarker tests exhibit varying 
prognostic efficacy across different BrCa subgroups. In 
contrast, THR signatures demonstrate consistent prog-
nostic power across BrCa subtypes. These findings are 
notable as conventional prognostic signatures rarely 

Fig. 4  THR-70 is prognostic in the SurvExpress Meta-10 cohort, comprising samples from 10 different datasets. THR-70 shows a significant 
association with recurrence-free survival (RFS, HR = 2.5 CI: 2.0—3.1, p = 3.7e-16) (A) and distant metastasis-free survival (DMFS, HR = 3.7 CI: 2.7—5.6, 
p = 6.7e-15) (B). It is prognostic in both lymph node positive (LN + , HR = 9.7 CI: 5.0—18.7, p = 9.6e-12) (C) and negative (LN-, HR = 3.3 CI: 2.4—4.5, 
p = 2.7e-15) (D) disease, as well as in patients treated with endocrine therapy post surgery (ETPS, HR = 4.3 CI: 3.0—6.3, p = 1.4e-14) (E), and those who 
did not receive neoadjuvant treatment (NTPS, HR = 2.3 CI: 1.8—2.8, p = 8.7e-17) (F). 95% confidence interval (CI); hazard ratio (HR)
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correlate with such diverse aspects of tumor biology 
across multiple datasets (Figures S7-S10, Additional File 
5), suggesting that a cell-of-origin signature may influ-
ence various facets of the tumor phenotype.

THR‑50 and ‑70 are associated with hormone and immune 
gene set signatures
To gain deeper biological insights into the functional 
roles of  THR-50 and THR-70, we conducted gene set 
variation analysis (GSVA). Consistent with their deri-
vation based on hormone receptor protein expression, 
both THR signatures are enriched for AR and ER path-
ways, which are negatively correlated with PAM-50, 
MammaPrint, and a proliferation signature (PCNA-131) 
(Fig. 5A).

Traditional tissue-based prognostic signatures often 
reflect differences in tumor proliferation due to marked 
outcome differences between high-grade/high-prolifer-
ation tumors with poor outcomes and better-outcome 
tumors with low proliferation. It has been reported that 
proliferation-related genes are overrepresented in 88% of 
the BrCa prognostic signatures examined [55], and their 

removal substantially diminishes the prognostic efficacy 
across a majority of the 47 published signatures [56]. This 
suggests that many established BrCa prognostic tests may 
primarily operate as surrogate markers for proliferation 
[57]. Accordingly, the most notable positive associations 
observed in PAM-50 and MammaPrint through GSVA 
are with cell cycle and apoptosis pathways (Fig.  5A). In 
contrast, we aimed to reduce this proliferation bias by 
filtering THR signature from human tumors (BC855) 
with cell lines (CCLE-600) that exhibit uniformly high 
proliferation rates. Combining tumor and cell line data 
ensured that THR-70 is less influenced by proliferation 
effects (Fig. 5A), cell line artifacts, and non-tumor signals 
from tissue samples.

Notably, analysis of immune enrichment scores 
reveals that THR signatures are considerably associ-
ated with tumors with higher levels of central memory, 
gamma delta (γδ), CD4 + T, Th17, T follicular helper 
(Tfh), NK, and MAIT cell infiltrates (Fig. 5B). In con-
trast, PAM-50, MammaPrint, and PCNA-131 signa-
tures are associated with tumors that are infiltrated 
with myeloid lineages such as neutrophils, dendritic 

Fig. 5  The THR signatures are enriched in ER, AR, and immune pathways in gene set variation analysis (GSVA). A Heatmap showing the Spearman 
correlation coefficients between different breast cancer signatures (rows) and key cancer-associated pathways and biological processes (columns). 
Positive correlation (red), negative correlation (blue), p-value < 0.05 (*), false discovery rate (FDR) < 0.05 (#). B Immune cell type enrichment score 
heatmap (rows) in different breast cancer signatures (columns). Positive enrichment (red) and negative enrichment (blue)
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cells, and monocytes (Fig. 5B). Some of these immune 
cells are known to influence BrCa outcomes, with 
CD8 + T cells generally associated with better out-
comes and Treg/Th17 cells linked to poorer outcomes. 
Interestingly, γδT and Tfh are involved in anti-tumor 
cytotoxicity and antibody generation, respectively [58], 
suggesting that THR signatures may interact with both 
anti-tumor and pro-tumor immune infiltrates. Further 
research is needed to fully elucidate this immunologi-
cal landscape, underscoring the intricate relationship 
between breast cell-of-origin and immune response in 
BrCa. In summary, these results indicate that THR sig-
natures capture aspects of BrCa tumor biology that are 
not captured by standard prognostic tests.

Unsupervised clustering of breast cancer samples using 
THR signatures reveals distinct subtypes
We next explored the utility of the THR signature for 
de novo classification of BrCa. Using unsupervised clus-
tering, we grouped samples in the METABRIC cohort 
based on their expression of THR-70, and subsequently 
analyzed the specific survival rates associated with each 
identified group. Our findings reveal that THR-70 divides 
BrCa into five distinct clusters: E1, E2a, E2b, E3, and 
PQNBC (Fig. 6A).

These clusters encompass a spectrum of ER-positive 
(E1-E3) clusters (Figure S11A, Additional File 5). Based 
on their overlapping survival curves, we consolidated 
E2a and E2b into a unified prognostic group named E2 

Fig. 6  Unsupervised clustering based on THR-70 uncovers five distinct breast cancer groups in the METABRIC cohort. A Heatmap showing 
the expression of THR-70 genes in the METABRIC cohort. Five distinct groups were identified: E1, E2a, E2b, E3, and PQNBC. B Kaplan–Meier survival 
plots comparing the 20 years recurrence-free survival (RFS) rates between different breast cancer groups identified by the by the 3-gene (ER, 
HER2, Mib-1 IHC) classifier (clinical), THR-50 combined with i20 (THR-50i), and THR-70 combined with i20 (THR-70i) signatures. THR: triple-hormone 
receptor. Pi + : pentaplex-negative (ER, PR, AR, VDR, and HER2), immune-positive tumors. Pi-: pentaplex-negative, immune-negative tumors. Survival 
time is in months



Page 11 of 16Omar et al. Breast Cancer Research          (2024) 26:132 	

(Figure S11B-C, Additional File 5). The pentaplex-nega-
tive and quadruple-negative BrCa (PNBC and QNBC) 
clusters include breast tumors that are negative for (ER, 
PR, ±HER2, ±AR, and ±VDR) (Fig. 6A).

The THR heatmap clusters differ from existing cate-
gories of BrCa. For instance, while the THR-E clusters 
predominantly consist of Luminal A (Lum-A), Luminal 
B (Lum-B), and low-grade tumors, they also encom-
pass other subtypes like HER2 +, claudin-low, and 
high-grade tumors, albeit less frequently (Figure S12, 
Additional File 5).

Likewise, the PQNBC cluster contains multiple PAM-
50 subtypes, including basal-like (49.7%), claudin-low 
(34.5%), and HER2-like (14.7%) (Figure S12, Additional 
File 5). These results suggest that the THR groups repre-
sent distinct classifications rather than merely renaming 
existing categories.

THR‑70 clusters can be further stratified utilizing 
an immune signature
An immune signature consisting of 20 genes (referred to 
as i20, Additional File 4) was used to further divide the 
PQNBC cluster into two subgroups (PQNBC.i + and 
PQNBC.i-), with the PQNBC.i + subgroup character-
ized by higher immune infiltration than the PQNBC.i- 
subgroup.  The  combined  THR-immune signatures are 
referred to as THR-50i and THR-70i.

Notably, when compared to the clinical 3-gene clas-
sification scheme, both THR-50i and THR-70i KM 
charts show significantly fewer survival curve crossovers 
(Fig. 6B). In contrast, ER-/HER2- tumors, typically con-
sidered poor outcome subtypes, exhibit survival curve 
overlap with ER-positive clusters (ER + LP/HP) (Fig. 6B). 
Similar findings were observed when comparing THR-
70i to PAM-50, with THR-70i demonstrating clearer 
separation between different BrCa groups compared to 
PAM-50 (Fig. 7). These results align with previous studies 
showing multiple KM curve crossovers among PAM-50 
subtypes [24, 59–64], highlighting that THR-immune sig-
natures provide improved separation of outcome groups 
with reduced overlap.

As a cell-of-origin signature, THR genes exhibit muta-
tions in less than 1–2% of BrCa cases. In contrast, PAM-
50 signature genes have mutations in 35% of BrCa cases 
(Figure S13-14, Additional File 5). It has been proposed 
that early mutations might become redundant or non-
essential as tumors progress, potentially altering the 
prognostic relevance of mutation-based signatures over 
time. Conversely, cell-of-origin signatures like THR may 
maintain stability throughout the tumor’s lifespan.

Interestingly, i20 was also able to divide the ER-/
HER2- group, defined by the clinical 3-gene classification 
scheme, into two distinct subgroups with significantly 

different survival rates (Figure S15B-C, Additional File 
5), suggesting that i20 immune signature can further 
enhance the granularity of existing classifiers.

Stratification of ER + , TNBC, and HER2 cancer with THR.i 
signature
In ER-negative BrCa, we observed a 1.5-fold difference in 
survival probability using the clinical 3-gene (ER/HER2/
Mib-1) and PAM-50 classification methods. In con-
trast, there is a 15-fold difference in survival probability 
between predominantly ER-negative PQNBC.i + and 
PQNBC.i- cohorts (HR = 15.7, 95%CI: 8.5–29.0). There-
fore, compared to the 3-gene classifier and PAM-50, the 
THR-70i signature demonstrates a ten-fold improvement 
in distinguishing ER-negative breast tumor subtypes with 
markedly poor and favorable outcomes (Fig. 7A).

For ER-positive BrCa, while the 3-gene and PAM-50 
methods identify two ER-positive subtypes with hazard 
ratios differing by 1.5- to 1.8-fold, THR-70 delineates 
three distinct ER-positive clusters (E1, E2, and E3) with a 
survival range differing by 2.1-fold (Fig. 7B).

Combining cell‑of‑origin, immune, and genetic biomarkers
We previously demonstrated that HER2-amplified 
BrCa does not align with a specific cell subtype in nor-
mal human breast. Consistent with their pathogen-
esis, HER2 + cancers exhibit marker profiles spanning 
various normal luminal cell types [3]. Therefore, we did 
not anticipate that HER2 + tumors would form a dis-
tinct cluster based on cell-of-origin signatures, which 
indeed was observed in THR cluster heatmaps (Fig.  6). 
Thus, to further stratify BrCa we coupled THR-70i with 
HER2 + (THR-70Hi) that identified six BrCa groups with 
different survival estimates: PQNBC.i-, PQNBC.i + , E1, 
E2, E3, and HER2 + (Figs. 8A and S15A-C, Additional File 
5). The PQNBC subtype includes triple-negative (ER, PR, 
HER2) breast cancers (TNBC) that may  lack either  AR 
or VDR  (quadruple-negative) and both AR and VDR 
(pentaplex-negative).

The survival curves of THR-70Hi groups generally do 
not overlap, demonstrating survival differences ranging 
up to 5.8-fold in both univariate (Fig. 8A) and multivari-
ate (Fig. 8C) survival analyses. In comparison, the PAM-
50 clusters exhibit up to a 3.6-fold survival difference 
range among its groups (Fig. 8B). However, the basal-like 
subtype’s survival curve crosses over HER2, Luminal B, 
and Luminal A subtypes around 5-, 10-, and 20  years, 
respectively, complicating its assessment (Fig. 8B).

Next, we examined the relationship between THR and 
HER2 in more detail. First, we note that HER2 status has 
no effect on RFS in the THR-70 PQNBC cluster (p = 0.28; 
Figure S16A, Additional File 5), emphasizing the domi-
nance of the immune signature in this group.
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Interestingly, we observed that HER2 status correlates 
with RFS in ER-positive THR-E1 (p = 0.012) and THR-E2 
(p = 0.001) clusters but not in the THR-E3 cluster (Figure 
S17, Additional File 5). This suggests that HER2 status 
influences outcomes more prominently in THR-low clus-
ters (E1/2)  compared to THR-high  E3. If validated, this 
finding could aid in stratifying ER + /HER2 + patients; 
those patients with HER2+ tumors that are  triple-pos-
itive for ER, AR, and VDR may experience better out-
comes than HER2 + patients with ER-positive but VDR 
and/or AR-negative BrCa. Additionally, we found that 
THR-50 can also stratify HER2 + patients into two dis-
tinct survival groups (HR = 2.2, CI: 1.4–3.7) (Figure S16C, 
Additional File 5). In summary, the THR cell-of-origin 

signature unveils a novel aspect of BrCa biology diver-
gent from existing clustering methods, offering a robust 
foundation for integrating other prognostic biomarkers 
to enhance BrCa stratification.

Discussion
It is increasingly recognized that the cell-of-origin signifi-
cantly impacts tumor biology and response to treatment. 
Therefore, understanding the lineage/differentiation state 
from which the tumor arises, or toward which it differ-
entiates, provides crucial insights into its prognosis and 
potential therapeutic strategies. This principle is exempli-
fied by the classification scheme of hematological malig-
nancies, which uses stable reference points provided by 

Basal HR: 1.6, 95%CI: 1.2-2.2 Pi- HR: 15.7, 95%CI: 8.5-29.0

A

HER2+ HR: 1.5, 95%CI: 1.1-2.0

Predominantly ER- Clusters

Clinical PAM50 THR-70i

Predominantly ER+ Clusters

Luminal B HR: 1.8, 95%CI: 1.5-2.2ER-HP HR: 1.5, 95%CI: 1.1-2.0

B

E1 vs E3: 2.1, 95%CI: 1.6-2.7
E2 vs E3: 1.6, 95%CI: 1.3-2.0

Clinical THR-70iPAM50

Fig. 7  THR-70 improves the identification of ER-negative (ER-) and ER-positive (ER+) subgroups with distinct survival rates compared to the clinical 
3-gene classifier and PAM-50. A Kaplan–Meier (KM) survival plots comparing the 20-year recurrence-free survival (RFS) in ER-negative breast 
cancer groups identified by clinical 3-gene classifier: HER2 + HR = 1.5, 95%CI: 1.1–2.0, p = 0.001 vs. TNBC (left panel); PAM-50 classifier: basal HR = 1.6, 
95%CI: 1.2–2.2, p = 0.01 vs. claudin-low (middle panel), and THR-70i: PQNBC.i- HR = 15.7, 95%CI: 8.5–29.0, p < 0.0001 vs. PQNBC.i + (right panel). B KM 
plots comparing the 20-year RFS in ER + groups identified by clinical 3-gene classifier: ER + HP HR = 1.7, 95%CI: 1.4–2.1, p < 0.0001 vs. ER + LP (left 
panel), PAM-50: luminal B HR = 1.8, 95%CI: 1.5–2.2, p < 0.0001 vs. Luminal A (middle panel), and THR-70i: E1 HR = 2.1, 95%CI: 1.6–2.7, p <  p < 0.0001; 
E2 HR = 1.6, 95%CI: 1.3–2.0, p = 0.0001, VS. E3 (right panel). Survival time is in months. The hazard ratios (HR) and 95% confidence intervals (CI) are 
shown. HP: high proliferation, LP: low proliferation
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normal hematological cell types. Building on this con-
cept, we have previously identified distinct differentiation 
types in normal breast luminal epithelial (NBLE) cells 
based on the expression of ER, AR, and VDR and DNA 
methylation profiles [3, 5, 6]. We have previously demon-
strated that drugs targeting AR and VDR exhibit an addi-
tive effect in reducing proliferation in TNBC expressing 
both receptors. Additionally, our research has shown that 
combining AR and VDR hormone treatments with chem-
otherapy also yields additive effects  in TNBC [3, 65]. 
These findings underscore the potential predictive utility 
of the THR signature in guiding therapeutic decisions for 
patients with TNBC.

In this study, we introduced the THR signature as a 
novel BrCa classification system based on cell lineage. 
One of the key strengths of our study is the utilization 
of large and well-characterized cohorts of BrCa, which 
allowed us to validate the prognostic performance of the 
THR signatures across various clinical and molecular 
subgroups. Furthermore, by comparing the performance 
of these signatures with existing classifiers, we demon-
strated their significant value in BrCa prognostication. 
By integrating the cell-of-origin signature with existing 
molecular classifications and a novel immune signature 
(i20) we demonstrate robust prognostic value across vari-
ous breast cancer subtypes, revealing more pronounced 
survival differences compared to current clinical and 
molecular subtyping methods. We also note that THR is 
not dominated by a proliferation signal, unlike most BrCa 
prognostic signatures.

Our findings with THR signatures enable a structured 
classification system similar to the taxonomy of species, 
categorizing tumors systematically based on hierarchical 

levels: phylum (organ), class (tissue), order (cell type), 
genus (differentiation state), and species (genetic/epige-
netic alterations). For instance, BrCa can be classified as 
breast (phylum), lobule (class), duct (class), epithelium 
(order), THR status (genus), and HER2 status (species). 
Immunological markers like i20 can further describe the 
tumor’s ecosystem. This modular method can eventually 
stratify BrCa patients by incorporating additional tumor 
hallmarks such as angiogenesis, proliferation, apoptosis, 
senescence, immunity, and invasion [66, 67].

In contrast with this step-wise taxonomic approach, 
with a single classifier for each hierarchical level, 
Oncotype  DX [23], MammaPrint [21, 68] and Prosigna 
(PAM-50) [24] employ hybrid taxa composed of both 
cell  type markers (ER, PR, KRT5, KRT14, and KRT17) 
and genetic markers (MYC, EGRF, GRB7, MDM2, FGFR, 
and HER2). While such composite signatures appear to 
be useful in clinical practice, deconstructing them retro-
actively and assigning biological meaning is difficult [69], 
which may explain why they have not evolved in tandem 
with our growing understanding of BrCa pathophysiol-
ogy [70].

A recent study titled "Cell-of-Origin Patterns Domi-
nate the Molecular Classification of 10,000 Tumors from 
33 Types of Cancer" convincingly illustrates the impor-
tance of cell-of-origin [71]. However, since these cell spe-
cific patterns can involve over thirty percent of the entire 
epigenome [72, 73], these observations have been diffi-
cult to translate into clinical tools [74–83]. Our research 
shows how these genome-wide patterns can be trans-
lated into practical signatures that predict overall survival 
and recurrence-free survival in BrCa patients. The THR 
signature provides a more comprehensive and clinically 

Fig. 8  THR-70 coupled with immune signature (i20) and HER2 (THR-70Hi) captures more granular breast cancer groups compared to PAM-50. A 
Kaplan–Meier (KM) survival chart shows 20-year recurrence-free survival (RFS) of different patient subgroups identified by THR-70, i20, and HER2 
classifier (THR70-Hi): E3 (purple), E2 (black), E1 (blue), HER2 + (yellow), PQNBC.i- (green) and PQNBC.i + (red). PNBC subtype includes breast cancers 
that are negative for ER, PR, HER2, AR and VDR. QNBC subtype includes breast cancers that are negative for ER, PR, HER2, ∓ AR or VDR.  B KM survival 
chart shows 20-year RFS of different patient subgroups identified by PAM-50: Lum-A (purple), Lum-B (blue), HER2-like (yellow), basal-like (green), 
and claudin-low (red). C Multivariate analysis of Hazard ratios (HR) and 95% confidence interval (95% CI) for RFS by THR-70Hi and PAM-50 breast 
cancer groups using a Cox proportional hazards model
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meaningful prognostic model for BrCa by incorporating 
breast cell-of-origin information and THR status. Future 
research should focus on validating these signatures in 
clinical trials and investigating their utility as predictive 
biomarkers for treatment response and therapeutic target 
discovery.
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