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Abstract 

Background Human epidermal growth factor receptor 2 (HER2)‑low breast cancer has emerged as a new subtype 
of tumor, for which novel antibody–drug conjugates have shown beneficial effects. Assessment of HER2 requires sev‑
eral immunohistochemistry tests with an additional in situ hybridization test if a case is classified as HER2 2+. There‑
fore, novel cost‑effective methods to speed up the HER2 assessment are highly desirable.

Methods We used a self‑supervised attention‑based weakly supervised method to predict HER2‑low directly 
from 1437 histopathological images from 1351 breast cancer patients. We built six distinct models to explore the abil‑
ity of classifiers to distinguish between the HER2‑negative, HER2‑low, and HER2‑high classes in different scenarios. The 
attention‑based model was used to comprehend the decision‑making process aimed at relevant tissue regions.

Results Our results indicate that the effectiveness of classification models hinges on the consistency and depend‑
ability of assay‑based tests for HER2, as the outcomes from these tests are utilized as the baseline truth for training our 
models. Through the use of explainable AI, we reveal histologic patterns associated with the HER2 subtypes.

Conclusion Our findings offer a demonstration of how deep learning technologies can be applied to identify HER2 
subgroup statuses, potentially enriching the toolkit available for clinical decision‑making in oncology.
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Background
Breast cancer (BC) is the most frequently diagnosed 
malignancy in women and the second most common 
cause of death from cancer among women worldwide 
[1]. BC is a heterogeneous disease with two main mor-
phological subtypes: ductal carcinoma in situ (DCIS) 
and invasive ductal carcinoma (IDC). The latter accounts 
for 70–80% of cases [2]. The morphological assess-
ment of BC is perhaps the main prognostic factor and 
is still indispensable in routine practice [3]. The addi-
tional evaluation of the estrogen (ER) and progesterone 
(PR) hormone receptors coupled with human epidermal 
growth factor receptor 2 (HER2) categorizes BC into 
the following clinically relevant immunophenotypes: (i) 
luminal A (LUMA), (ii) luminal B (LUMB), (iii) triple-
negative breast cancers (TNBC), and (iv) HER2-enriched 
(HER2+).

The assessment of the proliferative index (Ki-67) 
together with ER, PR, and HER2 status is currently deter-
mined by immunohistochemistry (IHC)-based methods 
followed by visual evaluation by a pathologist [3]. Several 
research efforts have explored gene expression-based sig-
natures for specific BC stratification [4], informing the 
selection of precisely targeted intervention therapies. 
For example, a clinically applicable gene expression assay 
using 50 genes (PAM50) that classifies breast cancer into 
four molecular intrinsic subtypes shown above has been 
reported [5].

In particular, the HER2 assessment has been reshaped 
by considering the first Food and Drug Administration 
approved targeted therapy for a new classification of the 
HER2 subtype called HER2-low [6]. Usually, the assess-
ment of HER2 protein overexpression on the surface of 
cells is evaluated by IHC using a well known four-tier 
scoring system of 0 to 3+ (0: negative; 1+: negative; 2+: 
equivocal and 3+: positive) [7]. The HER2-low subtype 
includes tumors with IHC scores of 1+ or 2+ without 
amplification by an additional in situ hybridization (ISH)-
based test [6]. Although the 2+ assessment by ISH is the 
most accurate, it is more expensive, and obtaining the 
results takes more time, thus remaining a bottleneck step 
in current clinical practice in most hospitals [8]. This jus-
tifies efforts for the development of novel approaches that 
aim to quantify HER2-low and should benefit patients 
with a faster and more accurate classification method 
that could better guide therapeutics.

Although the assessment of most biomarkers in BC is 
based on expanded IHC and gene expression profiling 
analyses, recent advances in deep learning (DL) have the 
potential to complement traditional assays [9]. Motivated 
by the ability to learn from underlying features directly 
from hematoxylin and eosin (H &E) stained histopatho-
logical whole slide images (WSIs), we and others have 

developed DL-based systems to predict diverse molecu-
lar phenotypes including mutations in non-small cell 
lung [10], microsatellite instability (MSI) in patients with 
gastrointestinal cancer [11], homologous recombination 
deficiency (HRD) [12] and other clinical biomarkers [13]. 
These studies further emphasize the ability of machine 
learning methods to learn underlying morphologic fea-
tures that mirror the expression of molecular markers.

Although the relevance of machine learning for BC 
applications has been investigated [14–21], most mod-
els have been trained on images of tissue microarrays, 
IHC-stained slides and fluorescence in situ hybridization 
(FISH)-images. Furthermore, the classifiers were used to 
predict HER2 either within the hormone receptor status 
or intrinsic subtype, in which HER2 status was classified 
solely as positive or negative. Most importantly, in light 
of treatment options available for HER2-low patients, the 
assessment of HER2-low tumors by DL models remains 
to be explored.

In this study, we built a series of deep learning mod-
els to examine different training datasets by combining 
quantitative scores from either IHC tests or ISH assays 
for HER2-low assessment in BC patients. Moreover, we 
explored the potential of explainable AI (xAI) mecha-
nisms for providing insights into the underlying causes 
of the model’s decisions. Lastly, we assembled a novel 
online dataset, containing more than 2 million H &E 
image patches.

Methods
In total, data were gathered from 1437 H &E-stained WSI 
of 1351 patients across three multicentric cohorts. These 
included an in-house cohort (ACCCC, N=546) and 
two public repositories (TCGA, N=535 and HEROHE, 
N=356).

ACCCC cohort
We used an anonymized dataset from patients treated for 
BC at A.C. Camargo Cancer Center (ACCCC, N = 504) 
between 2019 and 2021. The HER2 tumor status within 
the ACCCC cohort was determined in accordance with 
standard procedures outlined by the American Society 
of Clinical Oncology/College of American Pathologists 
(ASCO/CAP) guidelines. In total, we obtained and digi-
tized 546  H &E-stained WSI at 0.25 µm/px magnifica-
tion from both biopsy and resection tissue samples using 
a Leica Aperio AT2 scanner. This study received ethical 
approval (#3028/20) from the ethics committee of the 
Fundação Antônio Prudente, with all cases with metas-
tasis or neoadjuvant treatment were excluded. Sup-
plementary Table  2 presents the detailed histological 
characteristics of our in-house cohort.
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HERO cohort
The HERO dataset was downloaded from a publicly 
available database, published by The HEROHE Challenge 
[22, 23], which aimed to create new tools for predicting 
HER2 status in H &E-stained WSI from biopsy sam-
ples of patients with invasive breast cancer. The WSI are 
available at https:// ecdp2 020. grand- chall enge. org. These 
slides were scanned at Ipatimup Diagnostics using a 3D 
Histech Pannoramic 1000 digital scanner at 0.25 µm/px 
magnification, and saved in the MIRAX file format [23]. 
The HERO dataset is composed of 509 slides from dis-
tinct patients and after an initial background tile filtering 
were reduced to 356 slides. Details about the distribu-
tion of IHC scores and HER2 status are summarized in 
Table  1, which were classified by experienced patholo-
gists according to the latest ASCO/CAP guidelines [23].

TCGA‑BRCA cohort
A total of 1072  H &E stained WSI at 0.25 µm/px mag-
nification from 1063 patients was retrieved from the 
GDC portal TCGA-BRCA project, which contains clini-
cal information and is available at https:// portal. gdc. can-
cer. gov/. Only high-resolution H &E stained WSI were 
selected for analysis, excluding those with artifacts such 
as significant pen marks, tissue folds, or blurriness, we 
also only selected slides that had HER2 test results avail-
able in the clinical data, after filtering a total of 535 slides 
remained for the analysis. The HER2 status in TCGA was 
determined using both the IHC score and FISH status.

Ground truth for HER2 status
All models were trained with ground truth data derived 
from a combination of IHC tests and DDISH/FISH tests. 
Specifically, the HER2 protein expression is initially 
assessed using an immunohistochemistry assay, which 
involves staining breast cancer tissue samples with anti-
bodies specific to HER2. The staining intensity and pat-
tern are then evaluated by a pathologist resulting in four 
possible scores (0: negative; 1+: negative; 2+: equivocal 
and 3+: positive). In case of an equivocal result, an addi-
tional in-situ hybridization test is performed either by 
Fluorescence in  situ hybridization (FISH) or dual-color 
dual-hapten brightfield in situ hybridization (DDISH).

For the purposes of our study, all cases were subdi-
vided into three groups according to their IHC score and 
ISH status: HER2-neg, HER2-low, and HER2-high, as 
described in Table 2.

Data preprocessing
In the pre-processing phase, we developed a model to 
remove background and detect tumor regions, aiming 
to segment informational tissue regions from the WSI. 
We employed the following procedures to achieve this 
goal. First, we trained a ConvNeXt-Tiny model [24] with 
the NCT-CRC-HE-100K dataset [25], which contains 
examples of background tiles. Applying this model on 
the TCGA-BRCA, we constructed a set of background 
region annotations. Next, we used annotations from the 
Manual Tumor annotations dataset [26] to create a set of 
non-tumor annotations from the regions in the slide that 
are neither tumor nor background. Finally, we trained a 
combined model (tumor-background) on the entirety of 
TCGA-BRCA slides to identify tumor, non-tumor, and 
background regions based on these annotation sets. The 
prediction of the tumor-background model is illustrated 
in Supplementary Figure 1.

To process the slides prior to the MIL model training, 
each slide was divided into 256 px × 256 px tiles at 0.5 
µm/pixel magnification, if the original slide had higher 
magnification a corresponding down-scaling transforma-
tion was applied, with adjacent tiles having a 50% overlap. 
Next, the tumor-background model was used to detect 
background regions, tumors, and non-tumors in all 
cohorts. Only tiles identified as tumor were used to train 
the MIL model, slides with less than 1000 tumor tiles 
detected were excluded from further analysis.

Feature extraction
Following the color normalization procedure by [27], we 
normalized slides from all cohorts to a reference image 
from the ACCCC dataset. Next, a 1024-feature embed-
ding vector was extracted from each color-normalized 
tile by using the UNI model. This is a general-purpose 
self-supervised model for pathology, trained with more 
than 100 million images from over 100,000 diagnostic H 
&E-stained WSIs across 20 major tissue types [28]. The 
1024-feature vector was used in the following steps to 
train the MIL model.

MIL model definition
We use a weakly supervised multiple instance learner 
(MIL) classifier, which takes an H &E slide in the format 
of a bag-of-tiles as input data and classifies it into one of 
the desired classes using an attention-based mechanism. 
The MIL architecture considered throughout was based 

Table 1 Distribution of slides across the three cohorts and HER2 
groups

Cohort HER2‑neg HER2‑low HER2‑high Total

ACCCC 196 217 133 546

HERO 23 187 146 356

TCGA‑BRCA 40 377 118 535

Total 259 781 397 1437

https://ecdp2020.grand-challenge.org
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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on clustering-constrained-attention multiple-instance 
learning (CLAM) [29].

Briefly, the CLAM model considers the features of a 
slide as a bag of tiles and classifies the slide into one of 
the target classes. Internally, it works by modeling each 
HER2 group independently with an attention layer and 
a classification layer. The attention layer is responsible 
for identifying important tiles and combining them into 
a single 1024-feature vector for the slide based on the 
perceived importance of its tiles, while the classification 
layer takes this representation vector and outputs a single 
activation value: higher outputs represent a higher likeli-
hood of the slide belonging to the class. Finally, this inde-
pendent value for each HER2 group is then combined in 
the output vector using a softmax activation function, 
whose maximum value describes the slide’s HER2 group. 
Additionally, the model also employs an instance classi-
fier whose goal is to cluster the tiles of each class. Dur-
ing training, the instance classifier acts as a regularization 
method that biases the attention backbone into produc-
ing relevant features for both the attention mechanism 
and itself; however, once the model completes the train-
ing stage, it can be used as a tile classifier that identifies 
tiles that are associated with its target HER2 group.

Model training
The ACCCC and HERO cohorts were combined into a 
single dataset and 15% of the cases were separated for a 
hold-out test set. The remaining 85% of the cases were 
further split into 10 cross-validation folds where cases 
were randomly assigned to a training (85%) or valida-
tion set (15%) while ensuring that the label distribu-
tion and slide dataset proportion of both sets remained 
unchanged. All models were trained independently for 
each fold using the same set of fixed hyper-parameters 
with the goal of evaluating the model variance on differ-
ent data. The TCGA-BRCA cohort was used as an exter-
nal test dataset.

We tested six models, each considering a different sub-
set of cases with assay results of HER2 status analyzed at 
the protein level by IHC and ISH techniques (Table  2). 
Each model was trained multiple times with a 10-fold 
cross-validation procedure. All models were trained for 
a total of 200 epochs with the early stopping criterion 
set to the loss of the validation set. To speed up training 
and diminish GPU memory requirements, we divided 
the training procedure into two stages: i) feature extrac-
tion and ii) CLAM classifier training. This approach has 
the advantage of allowing more models to be trained in 
parallel due to the lower memory and processing require-
ments of training each model. All models were trained 
using an NVIDIA A100 40 GB GPU.

We employed the CLAM’s originally proposed loss 
function as the optimization objective, which is a two-
part linear combination consisting of a ’bag’ loss and an 
’instance’ loss. The ’bag’ loss, a Cross-Entropy loss, is 
weighted by 0.7, while the ’instance’ loss is a Smooth SVM 
Loss. The training process utilized the ADAM optimizer 
with a fixed learning rate of 0.0001 and weight decay of 
0.0001. The resulting model has 2.1M parameters.

Analysis of actionable tiles
Actionable tiles can be identified by the CLAM’s instance 
layer, which is a set of binary classifiers available for each 
class (in our case, HER2 groups). Its goal is to identify 
whether a given tile belongs to its specific class. For each 
slide in the internal test set, we classify the tiles with the 
instance layer, selecting those with a predicted probabil-
ity above 0.5 for their respective class. The top 15 tiles 
with the highest attention value of each slide identified by 
the instance classifier are selected as actionable tiles. In 
total, we sampled 100,280 actionable tiles across all HER2 
groups and models, regardless of the final whole-slide 
classification. Hence, our goal is to understand what fea-
tures were learned as being relevant for each group.

To analyze the actionable tiles, we propose a visualiza-
tion approach based on a 2D histogram of the latent fea-
ture space. First, we reduce the dimensionality of the tile 
feature vector with PCA, projecting the first two prin-
cipal components of the features onto two dimensions. 
Then, we discretize this space into 30 × 30 bins, with each 
of the bins acting as a centroid around the sampled tile’s 
embeddings, clustering the tiles with similar features. 
This approach allows us to characterize the continuous 
space of tile features by coloring the bins based on dif-
ferent criteria. For instance, bins can be colored using 
the HER2 group that appears more frequently, or we can 
color them only when two or more models use their cor-
responding feature. This approach allows us to organ-
ize and understand the space of actionable histological 
features.

Results
The purpose of this study was to develop a deep learning 
model for the assessment of HER2-low tumors. To this 
end, we develop a computational pipeline involving the 
following three steps (Fig. 1): 

1. Tiles were extracted from whole-slide images (WSI) 
and subsequently classified into tumors and nontu-
mor groups (Fig. 1B, C).

2. The generated bag of tiles for the tumor and non-
tumor groups were then used for feature extraction 
with the UNI model [28] (Fig. 1D).
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3. The resulting bags of features were used to train a 
multiple instance learning (MIL) model for classi-
fying the WSI into HER2-negative, HER2-low, and 
HER2-high classes (Fig. 1E).

Model performance reveals that classifying HER2‑low 
is challenging
We built six distinct models to explore the ability of 
classifiers to distinguish between the HER2-negative, 
HER2-low, and HER2-high classes in different scenarios. 
The detailed trained set used in these models is summa-
rized in Table 2 and the performance is shown in Fig. 2. 

(B)

Slide feature bag

HER2 NEG 
attention

HER2 LOW 
attention

HER2 HIGH 
attention

CLAM
Attention backbone

∑

(E)

HER2-NEGATIVE HER2-LOW HER2-HIGH
0 1+ 2+(N) 2+(P) 3+

Score Score Score
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Fig. 1 Workflow of the proposed method. A Datasets (ACCC, HERO, TCGA) are split by patients (N) into four categories: training and validation (85%, 
ACCC+HERO); test (15%, ACCCC+HERO); external validation (TCGA). B Whole‑slide Images are split into tiles; C regions of interest are identified; D 
features are extracted from tile images; E the CLAM model is trained to classify tile sets into HER2‑negative, HER2‑low, and HER2‑high groups

0 1+ 2+
(N)

(N)
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Fig. 2 AUROC of the 10‑fold cross‑validation results for the test set. Each model was trained with its own set of HER2 scores, i.e., each target HER2 
group. The HER2 scores used are indicated by the dots, while the dot’s color indicates its target HER2 group for the model

Table 2 Data partitioning scheme of each model

Data partitioning scheme of each model. We divided the cases into the following 
3 groups according to the results of the IHC and ISH status: HER2-neg, HER2-low, 
and HER2-high

HER2‑neg HER2‑low HER2‑high

IHC 0 1+ 2+ 3+

ISH Neg Pos

M1 • • •

M2 • • •

M3 • • • •

M4 • • • •

M5 • • •

M6 • • • • •
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Specifically, while the M6 model was trained to clas-
sify the 3 classes with the whole dataset, we also trained 
models with subsets; for example, M1 was trained with 
only HER2 2+ and 3+ cases, to detect HER2-low on the 
HER2 2+ subgroup without the need for a confirmatory 
additional ISH-based test.

To assess the learning variability of these models we 
performed a 10-fold cross-validation on each of the sub-
sets tested, the hold-out internal test AUC for each fold 
can be seen on boxplot variance as shown in Fig. 2. ROC 
curves for each model and fold are included in the Sup-
plementary Figure  2. Precision-Recall curves are shown 
in Supplementary Figure 3.

We assessed the detection of HER2-low in HER2 2+ 
results based on the IHC-based assay results (M1). In this 
model, the training dataset includes results where there 
is an inherently subjective and high interobserver agree-
ment, which guarantees a good discriminatory capacity 
of this classifier. Notably, this model has great potential 
for use in a cost-effective manner, since HER2 2+ IHC 
results require confirmation by an additional assay based 
on hybridization methods. Next, we sought to evalu-
ate the ability to discriminate groups of patients with 
HER2 0 (negative, scoring 0) vs. HER2 2+ (with scoring 
2+ with additional positive ISH results and scoring 3+ 
being equivalent). In fact, when considering that molecu-
lar changes precede and results altered cellular histology, 
the M2 model was able to detect groups of patients with 
a basal HER2 expression (without HER2 amplification) as 
distinct from those with high expression. Therefore, it is 
reasonable to expect great performance from this model 
as compared with the former model. Notably, by consid-
ering either groups labeled as HER2-low (HER2 1+ and 
HER2 2+ with additional ISH negative), we noted a per-
formance gain to discriminate HER2-low. However, the 
M4 and M5 models show a performance drop when we 
either include the HER2 0 and subtract the HER2-high 
(HER2 2+ with additional ISH positive and HER2 3+) 
groups. Although we are using labels ground truth results 
from well-standardized clinical practice, these results 
suggest a possible confounding effect on the trained 
classes when considering the HER2 1+ group. This is 
a result of the subjectivity and slight difference in the 
results (low interobserver agreement) obtained from the 
IHC assays by the experts of the HER2 0 and 1+ groups 
[30], which consequently affects the performance of the 
models since the results of the molecular tests are con-
sidered in the division of the training and testing groups 
of the models. Although building a model to classify sam-
ples into 3 groups is challenging, we observed that the 
M6 (ideal) model shows a discriminatory power to pre-
dict HER2 group directly from H &E histology. The worst 
performance is obtained from the fM5 model, which 

must detect HER2-low type tumors among the HER2 0, 
1+, and 2+ groups with negative ISH results; ultimately, 
this demonstrates a limitation of the model when consid-
ering results from assays where there is discordance in 
distinguishing HER2 0 from HER2 1+ [30, 31].

Importantly, HER2 assessment protocols are continu-
ously updated according to the recommendations of the 
American Society of Clinical Oncology/College of Amer-
ican Pathologists (CAP) [32] and thus gathering high-
quality datasets with consistent labeling of the HER2 
groups (neg, low and high) is challenging, this hampers 
the evaluation of the models capability to generalize to 
independent datasets. Indeed, we used the TCGA breast 
cancer data for HER2 prediction as an external cohort. 
In particular, we observed the same trend for all mod-
els built considering the distinct datasets (Supplemen-
tary Table  1, Supplementary Figure  4). However, since 
the TCGA-BRCA dataset used a different set of guide-
lines for HER2 assessment, we observed a drop in per-
formance for all models, as expected. Furthermore, the 
TCGA database aggregates image datasets from numer-
ous institutions, each employing varied protocols for 
sample preparation and image capture. Such technical 
diversity also affects classification performance [19].

Altogether, our findings suggest that the performance 
of classifiers is dependent on the reproducibility and reli-
ability of assay-based tests for HER2 since the results of 
these assays serve as the ground truth for model training.

Actionable tiles reveal patterns used by the classifier
A key step in deep learning in a clinical setting is inter-
preting how the generated models work, thus allowing us 
to evaluate their validity and trustworthiness. To under-
stand which histological patterns are used by the model 
to classify the HER2 classes, we need to examine which 
features are being used by the MIL classifier. To this end, 
we considered the attention layers provided by the MIL 
algorithm [33]. These layers direct the classifier to a sub-
set of tiles with features that allow for the classification 
(Fig. 3). We focus our analyses on tiles that are given high 
levels of attention, denoted as actionable tiles, due to 
their importance on the final result of the classifier.

The resulting representation revealed patterns across 
different models and inside the folds for the same model 
(Fig. 4). The analysis of different folds by the same model 
reveals the occurrence of recurring patterns, indicating 
that tiles of similar features in these areas are being used 
for the classification of the same class.

Tiles classified into a given HER2 class tend to form 
clusters on the two dimensional principal component 
space. Tiles from these clusters share morphologi-
cal characteristics that define each class. A sample of 
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the image tiles of each such cluster in Fig.  4C–D sup-
ports this (with more tiles examples in Supplementary 
Figure 5).

While histopathological evaluation of tissue sections 
stained with hematoxylin and eosin (H &E) is indispen-
sable for the management of breast cancer, the relation-
ship between cell pattern and HER2 subgroups is still 
unclear. We thus examined the cellular patterns of the 
actionable tiles associated with the HER2 groups. We 
observed actionable tiles in HER2-high with the presence 
of hyalinized stroma with minimal inflammatory infil-
trate, possible isolated neoplastic cells, and various dis-
tinct histologic patterns including cohesively patterned 
neoplasia with lobular infiltration patterns of nuclear 
grades 1/2, and structural patterns that resemble micro-
papillary features. This subtype also exhibited tiles with 
nuclear grades 2/3 but predominantly grade 2, and rare 
instances of mitotic activity. Conversely, we noted action-
able tiles in HER2-neg presented nuclear grade 3 and 
were enriched for adipose cells. Importantly, this adipose 
microenvironment could be associated with motility and 
invasiveness of breast cancer cells [34]. Reinforcing this 
observation, we noticed some tiles with muscular tissue 
infiltrated by isolated neoplastic cells, a feature that can 
be associated with aggressiveness since muscular infil-
tration of thoracic wall muscles characterizes advanced-
stage tumors. Putting it all together, the presence of 

apocrine features, higher nuclear grade and a more infil-
trative pattern indicate a more aggressive tumor, often 
associated with triple-negative breast cancers (TNBC). 
Finally, actionable tiles in HER2-low were enriched for 
chronic inflammatory cells, fibrotic tissue, and predomi-
nantly nuclear grades 1 and 2. These histology findings 
provide a nuanced understanding of the heterogene-
ity within breast cancer, underlining the importance of 
explainable visualizations for elucidating how certain 
spatial pathology features correlate with HER2 groups 
and specific diagnoses.

Filtering tiles of interest guides training

Given a tumor identified as HER2-negative through an 
IHC stain, it is reasonable to infer that its corresponding 
H &E WSI lacks discernible features indicative of HER2-
positivity. Conversely, in cases where the patient is identi-
fied as HER2-positive, it is reasonable to assume that at 
least certain regions within their H &E WSI exhibit fea-
tures relevant to HER2-positivity. Consequently, models 
can be trained using WSI stains as input data and IHC 
annotations as data labels. Hence, this problem formu-
lation aligns effectively with the principles of multiple 
instance learning (MIL) [35]. However, as digital slides 
may incorporate distinctive artifact patterns result-
ing from the staining protocol or digitalization process, 
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Fig. 3 H &E‑stained slide of a tissue sample and its corresponding attention heatmap generated by the proposed model. Attention maps highlight 
meaningful patches at different magnifications. The heatmap shows the areas where the model focuses more of its attention, with warmer colors 
indicating higher attention scores. The dotted line shows the region identified as tumor
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which might be captured by the MIL algorithm, we con-
duct background detection and removal of tiles from the 
dataset prior to MIL model training. This is undertaken 
to mitigate the potential impact of such tiles and mini-
mize any spurious effects they may introduce.

Importantly, one of the most common methods for 
background removal is a thresholding-based algorithm 
such as the Otsu method [36]. However, such methods 
are not able to detect other types of artifacts such as out-
of-focus regions and colored pen markings, which are 
present in some datasets, including TCGA dataset.

To investigate whether the inclusion of specific subsets 
of tiles impact the results of the MIL model, we devel-
oped a neural-network method to identify and filter 
background, tumor, and non-tumor regions, as described 
in the Data preprocessing section. We illustrate the effect 
of this filter by training models with different subsets and 
evaluating the performance of each model (Table 3, Sup-
plementary Figure  6). First, we attempted to filter only 
background tiles (NOBG), and we found that the model 
is able to distinguish tissue-specific patterns; however, 
we also found that the model learns to give high levels of 
attention to tiles showing the tumor environment, which 
prompted us to test the models using only tiles from the 
tumor region. We refer to this filtering configuration as 
tumor only (TUMO), and we found that by using the 
tumor environment, we were able to achieve the best bal-
ance between model performance and training speed, as 
the models only need a fraction of tiles (Supplementary 
Figures 7 and 8) to achieve similar performance to mod-
els using the full set (Supplementary Figure 6).

Our analysis indicates that models built only with 
tumor tiles (TUMO) performed similarly to models that 
used all tiles except background (NOBG). This suggests 
that by filtering the tiles, the model can focus on the most 
important areas, lowering the risk of attending spurious 
unique patterns such as artifacts or background noise. 
We chose to use TUMO because it strikes the optimal 

balance between model predictive performance and 
hardware requirements.

Comparison of alternative implementations

We compared the results from the CLAM model with 
two other implementations of the MIL method: ADMIL 
[33] and TransMIL [37], the results are summarized in 
Table 4, Supplementary Image 9. The methods presented 
comparable performance in most models, however 
CLAM showed better overall performance. Importantly, 
only the CLAM method permits multi-class predictions, 
while the ADMIL and TransMIL method implements 
only binary prediction, thus we choose to employ the 
CLAM method.

We also compared the use of the UNI feature extrac-
tor with a ResNet-50 trained with the ImageNet dataset 
[38]. Notably, all models trained with UNI outperformed 
models trained with ImageNet features (Supplementary 
Figure 10). This highlights the importance of foundation 
models trained for a specific domain.

Discussion
HER2-positive BC is characterized by higher levels 
of epidermal growth factor receptor 2 (HER2), where 
anti-HER2 targeted therapies have shown to be effec-
tive. More recently, the approval of targeted therapies in 
HER2-low tumors has expanded the efficacy of BC treat-
ments to benefit countless patients. Herein, we explore 
the ability to detect HER2 status directly from H &E 
images using deep learning. We built six models aiming 
to explore the ability of classifiers to distinguish between 
HER2-negative, HER2-low, and HER2-high classes from 
distinct datasets of IHC and ISH-based assays for HER2 
status assessment. We show that models trained to dis-
tinguish HER2-negative from HER2-low had lower per-
formance compared to those that only classified between 
HER2-negative and HER2-high or HER2-low and HER2-
high. Thus, we argue that the known challenges [7] 

Table 3 Median and standard deviation of the AUROC of the 
internal test

Median and standard deviation of the AUROC of the internal test set on 
the 10-fold cross-validation with different tile filtering strategies. The best 
performance for each model is highlighted in bold

NOBG TUMO

M1 0.88 +0.02 0.90 +0.01
M2 0.87 +0.02 0.85 +0.02

M3 0.91 +0.02 0.87 +0.02

M4 0.85 +0.01 0.85 +0.01

M5 0.69 +0.04 0.72 +0.02
M6 0.78 +0.01 0.78 +0.02

Table 4 Median and standard deviation of AUROC performance

Median and standard deviation of AUROC performance on the internal test set 
for ADMIL, CLAM, and TransMIL. ADMIL and TransMIL can only work on binary 
models. The best performance for each model is highlighted in bold

ADMIL CLAM TransMIL

M1 0.87 +0.02 0.90 +0.01 0.88 +0.03

M2 0.85 +0.02 0.85 +0.02 0.85 +0.02

M3 0.84 +0.02 0.87 +0.02 0.88 +0.04
M4 N/A 0.85 +0.01 N/A

M5 0.73 +0.05 0.72 +0.02 0.71 +0.02

M6 N/A 0.78 +0.02 N/A
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in distinguishing HER2 score of 0 from 1+ may affect 
the quality of data needed for training the algorithms. 
Improvements in the pathologic workflow, including 
stringent quality controls [30, 39] and novel quantitative 
testing that allows measuring a range of antibody con-
centrations may help to maximize the sensitivity of HER2 
expression.

On the external test set, we observed an overall drop 
in performance compared to the validation set, which is 
expected, considering that the TCGA cohort is a multi-
centric heterogeneous dataset. This effect can also be 
explained as a result of overfitting. Notably, the M2 
model performed significantly better on the external test 
set compared to the other models, suggesting that the 
distinction between HER2-neg and HER2-high is better 
defined, and the classification accuracy might more easily 
be translated to new cohorts.

When selecting which slide tiles to utilize, many studies 
eliminate all background tiles and make predictions on 
what is left [16, 19–21]. We tested whether using solely 
tumor tiles was sufficient for accurate predictions, and 
our findings were encouraging. Importantly, while it is 
anticipated that the tumor environment would hold the 
essential information for prediction, it remains unclear if 
surrounding tissues also carry significant information.

In the clinical setting, IHC and ISH assays remain the 
gold standard, however, it is important to note that a 
wide range of potential candidates for anti-HER2 treat-
ment incurs screening costs and is hindered in the rou-
tine due to various reasons, such as the constrained 
accessibility of molecular assays, turnaround time, tissue 
requirements, and health plan coverage. Given that the 
majority of pathology slides are already routinely stained 
with H &E, the use of these models enables a fast and 
cost-effective testing in routine daily practice. For exam-
ple, in cases when IHC result is 2+ “equivocal” and the 
HER2 status needs to be tested with additional ISH assay, 
the model M1 can be used to discriminate among HER2-
low or HER2-high. Additionally, the M2 model might be 
useful for pre-screening patients aiming to detect HER2-
neg vs HER2-high before the IHC assay. Finally, the M6 
model could be used to discriminate HER2-neg, HER2-
low or HER2-high without the need for additional tests.

While past studies have examined the ability of 
machine learning-based models to predict HER2 status as 
either positive or negative, our work attempts to expand 
upon the classification of these subtypes by including 
HER2-low as a new category. Our results are particularly 
relevant for two main reasons. This is the first study to 
detect the HER2-low biomarker from histological images 
considering a retrospective series of 804 patients from 
two distinct datasets (ACCC and HEROHE), and it elu-
cidates the limitations of detecting HER2-low solely 

from IHC results [30]. Our study reveals the local cel-
lular patterns learned for the morphological phenotypes 
related to the HER2-low and other subgroups, highlight-
ing which regions of an image are important to the final 
prediction.

Finally, our findings further reinforce the importance of 
revisiting the guidelines for HER2 assessment while also 
supporting the inclusion of more than one pathologist 
in the HER2 assessment alongside the use of agreement 
metrics and, following the best practices for utilizing 
controls [7, 30, 39]. Although this practice would be 
ideal, many laboratories are not able to make it a reality 
due to the availability of pathologists and the increasing 
workload of these professionals.

In addition, by using H &E slides we are also investigat-
ing the potential discovery of new H &E tissue patterns 
that pathologists could learn from and adopt in their 
evaluation. Therefore, AI-based approaches, such as the 
one proposed in the present work, have become increas-
ingly in demand and promise to support decision-making 
in the evaluation of biomarkers.

Although our results are promising, our model may 
fail to generalize due to overfitting, differences in imag-
ing systems and staining protocols. Our findings may also 
be hampered by subjective results from IHC-based assays 
[30].

Conclusion
In our retrospective study using multicentric cohort, we 
evaluated HER2 subgroups status using the start-of-art 
of deep learning models in histological images. We show 
that a weakly-supervised deep learning model can pre-
dict HER2 subtypes directly from H &E slides. However, 
we found that the performance of a model is dependent 
on the reliability of ground truth, which is derived from 
the experts interpretation of molecular assays. Future 
works should focus on curating datasets with high inter-
expert agreement in order to mitigate subjective variabil-
ity of the HER2 assessment.
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