
Zhang et al. Breast Cancer Research           (2024) 26:98  
https://doi.org/10.1186/s13058-024-01855-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Breast Cancer Research

An essential gene signature of breast cancer 
metastasis reveals targetable pathways
Yiqun Zhang1†, Fengju Chen1†, Marija Balic2,3,4 and Chad J. Creighton1,5,6* 

Abstract 

Background  The differential gene expression profile of metastatic versus primary breast tumors represents an ave-
nue for discovering new or underappreciated pathways underscoring processes of metastasis. However, as tumor 
biopsy samples are a mixture of cancer and non-cancer cells, most differentially expressed genes in metastases would 
represent confounders involving sample biopsy site rather than cancer cell biology.

Methods  By paired analysis, we defined a top set of differentially expressed genes in breast cancer metastasis 
versus primary tumors using an RNA-sequencing dataset of 152 patients from The Breast International Group Aim-
ing to Understand the Molecular Aberrations dataset (BIG-AURORA). To filter the genes higher in metastasis for genes 
essential for breast cancer proliferation, we incorporated CRISPR-based data from breast cancer cell lines.

Results  A significant fraction of genes with higher expression in metastasis versus paired primary were essential 
by CRISPR. These 264 genes represented an essential signature of breast cancer metastasis. In contrast, nonessential 
metastasis genes largely involved tumor biopsy site. The essential signature predicted breast cancer patient outcome 
based on primary tumor expression patterns. Pathways underlying the essential signature included proteasome deg-
radation, the electron transport chain, oxidative phosphorylation, and cancer metabolic reprogramming. Transcription 
factors MYC, MAX, HDAC3, and HCFC1 each bound significant fractions of essential genes.

Conclusions  Associations involving the essential gene signature of breast cancer metastasis indicate true biological 
changes intrinsic to cancer cells, with important implications for applying existing therapies or developing alternate 
therapeutic approaches.

Introduction
Breast cancer metastasis is a complicated and poorly 
understood process for which there is a shortage of 
effective treatments [1]. A better understanding of the 
mechanisms of metastasis could eventually lead to more 
effective treatment of the disease, greatly extending 
patient life or even curing patients [2, 3]. New insights 
into breast cancer metastasis could be obtained by molec-
ular profiling of both metastatic and primary breast can-
cers [4–11]. Genes differentially altered in sequence or 
expression might provide clues as to the pathways or pro-
cesses underlying metastasis. At the DNA level, except 
for ESR1 mutations, almost no recurrent mutations are 
unique to metastatic compared to primary breast can-
cers [4, 5]. However, a higher tumor mutational burden 
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has been observed in metastatic samples compared to 
the paired primary samples [4]. At the gene expression 
level, widespread differences may distinguish a meta-
static tumor from its primary tumor pair from the same 
patient [4–11]. Some of these differences might represent 
changes intrinsic to the cancer cells, including instances 
of molecular subtype switching [4–6, 12]. Other expres-
sion differences would be extrinsic to cancer cells and 
might involve concerted changes in the tumor microen-
vironment relevant to the metastatic process [13] or may 
simply reflect differences in the tissue and cell composi-
tion of the respective tumor samples [14].

While the differential expression profile of breast can-
cer metastases represents an avenue for discovering new 
or underappreciated pathways for therapeutic target-
ing, a notable challenge would work against our ability 
to utilize such data optimally. As a tumor biopsy sample 
is comprised of multiple non-cancer cell types—includ-
ing fibroblasts, immune cells, endothelial cells, normal 
epithelial cells, and differentiated cells specific to the 
site of biopsy—distinguishing cancer-specific from non-
cancer-specific differential patterns within an aggregate 
expression profile is non-trivial [6, 15]. Comparing bulk 
expression profiles for primary versus metastatic sam-
ples would largely involve comparisons between breast 
and non-breast tissues, respectively, particularly as the 
metastases may be sampled at distal sites from the breast. 
Such tissue-specific expression differences represent arti-
facts rather than actual metastasis biology. As opposed 
to bulk RNA-sequencing (RNA-seq), single-cell RNA 
sequencing (scRNA-seq) might be one potential avenue 
for discerning cancer cell-specific patterns, but to date, 
no scRNA-seq studies have profiled appreciable numbers 
of breast cancer metastases and paired primaries [16]. In 
addition, most genes in practice may not be covered suf-
ficiently by the scRNA-seq platform. True positive genes 
representing tumor biology may be present within the 
differential profile, though these might represent just a 
fraction of the hundreds or even thousands of genes that 
would appear differentially expressed. Incorporating out-
side orthogonal data can help distinguish from the global 
molecular profile the cancer cell-intrinsic genes relevant 
to breast cancer metastasis.

This present study aimed to define a gene expression 
signature of breast cancer metastasis versus paired pri-
maries, for which the genes would be essential to cancer 
cells. The Breast International Group (BIG) conducted 
Aiming to Understand the Molecular Aberrations in Met-
astatic Breast Cancer (AURORA), a molecular screening 
initiative that recently published a gene expression profil-
ing dataset of 152 breast cancer patients, including both 
a metastasis and paired primary sample for each patient 
[4]. To help sift through the top differential metastasis 

genes from the BIG-AURORA dataset, we integrated 
data from CRISPR assays in breast cancer cell lines [17]. 
A significant fraction of genes with higher expression 
in breast cancer metastases versus paired primary were 
essential for breast cancer cell proliferation by CRISPR. 
This “essential” metastasis signature was entirely distinct 
from nonessential metastasis genes, the latter largely 
representing differences in tissue and cell composition 
between primary and metastatic biopsy sites. We could 
also characterize the essential gene signature of breast 
metastasis regarding associated pathways and transcrip-
tion factors.

Results
A gene expression signature of breast cancer metastasis 
versus paired primaries
The BIG AURORA RNA-sequencing (RNA-seq) dataset 
[4] of 152 breast cancer metastases with paired prima-
ries (from the same patient) represented an opportunity 
for us to explore gene expression differences occurring 
in metastases versus primary tumors across so many 
patient tumors. In contrast to an unpaired analysis, the 
paired analysis would identify consistent differences 
between metastasis and primary occurring within the 
same patient, as the corresponding primary provides a 
baseline. Widespread differences between metastasis 
and primary by paired analysis were identified (Data File 
S1). At a significance level of p < 0.001 (paired t-test using 
log2-transformed values), 3929 genes were differential 
out of 28,248 uniquely identified genes represented in the 
dataset. A visual inspection of the differential patterns by 
heatmap (Fig. 1a) showed these to transcend the PAM50 
intrinsic molecular subtype [18] assignments of the 
metastasis or primary sample, notwithstanding instances 
of molecular subtype switching [4, 5, 12].

However, we did find a clear indication that most of the 
observed expression differences between metastases and 
primary tumors would involve differences in non-cancer 
cells between the metastasis biopsy site and the breast, 
respectively, rather than representing changes intrinsic 
to cancer cells. We arrived at this conclusion from two 
observations. Firstly, we noted that the relative intensi-
ties of the differential patterns (higher versus lower fold 
changes) in each metastasis sample compared to its cor-
responding primary pair tracked closely with the metas-
tasis biopsy site (Fig. 1a). Those metastases sampled from 
the liver had higher or lower fold differences (for genes 
statistically higher versus lower in metastasis, respec-
tively) than metastases from other sites. Indeed, the genes 
with the highest fold changes at p < 0.001 included many 
that could be attributed to liver-specific functions, such 
as genes encoding albumin, apolipoproteins, and fibrino-
gens (Data File S1). Secondly, we examined the metastasis 
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expression signature (from the BIG dataset) alongside the 
corresponding differential expression patterns of nor-
mal breast tissues relative to non-breast tissues, using 
the GTEx dataset [19]. Most genes significantly higher 
in breast cancer metastasis were lower in normal breast 

versus non-breast tissues, and vice versa (Figs.  1a and 
b and Data File S1). The expression profile of biopsied 
tumor samples would include the cells surrounding the 
tumor as well as the cancer cells themselves, which rep-
resented a confounding factor in our analyses. Analysis 

Fig. 1  A gene expression signature of breast cancer metastases versus paired primary largely reflects non-breast versus breast tissue differences. 
a Heat map of differential expression in metastasis versus paired primary for a set of 3929 differentially expressed genes with p < 0.001 (paired 
t-test using log2-transformed data). Each metastasis expression profile was centered on its primary pair (not shown). Breast cancer expression 
data involving 152 metastases with paired primary are from the Breast International Group (BIG) [4]. Yellow, high expression in metastasis 
versus primary; blue, low expression in metastasis. Alongside the differential genes from the breast cancer dataset are the corresponding differential 
expression patterns of normal breast tissues (relative to non-breast tissues) from the GTEx dataset [19]. Heat maps of gene expression-based 
signatures of immune cell infiltrates [20] (taking the average log2 fold change from paired primary for the immune cell type marker genes) 
are also shown (NK cells natural killer cells). b Venn diagrams showing the overlapping genes between BIG breast cancer metastasis and GTEx 
normal breast (respectively considering high and low gene lists from each dataset). Breast cancer metastasis genes are from part a. GTEx normal 
breast genes by p < 0.000001, comparing log2 expression between normal breast and other normal tissues. Enrichment p values by chi-square 
test. From parts a-b, the observed global associations of the differential metastasis versus primary genes with both tumor biopsy site and GTEx 
breast expression patterns indicate that most of the observed expression differences in metastases would involve differences in non-cancer cells 
between the metastasis biopsy site and the breast, respectively, rather than representing changes intrinsic to cancer cells
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of gene expression signatures of immune cell types [20] 
indicated that overall levels of T cell and B cell infiltrates 
were statistically lower on average in metastases versus 
its paired primary (p < 0.01, paired t-test, Fig. 1a), though 
these immune cell types often appeared higher in lymph 
node biopsies [4, 13].

An essential gene expression signature of breast cancer 
metastases
We hypothesized that a fraction of genes with differen-
tial patterns in breast cancer metastases versus paired 
primary would be intrinsic to cancer cells and not due to 
sample biopsy composition. To help sift through the top 
differential metastasis genes (Fig.  1a), we turned to the 
Cancer Dependency Map (DepMap) CRISPR assays [17, 
21] measuring the essentiality of each gene for each of 46 
breast cancer cell lines. A low DepMap-based gene effect 
score for a given gene in a cell line indicated that the cell 
line is dependent on the gene for proliferation in  vitro. 
We overlapped the 2115 genes higher (p < 0.001, paired 
t-test) in the breast cancer metastasis signature (from 
Fig.  1a) with the set of 1810 genes that were essential 
(with gene effect score < − 0.75) in > 10% of breast cancer 
cell lines by DepMap. The overlap of 264 genes between 
the two result sets (Fig. 2a and Data File S1) was highly 
statistically significant (enrichment p < 1E−29, chi-square 
test, chance expected overlap of 136 genes) and repre-
sented an “essential” metastasis signature as explored fur-
ther below. We observed no significant overlap between 
the genes lower in metastasis and genes essential by Dep-
Map (Fig. 2a).

The set of 1581 genes higher in metastasis but for 
which no breast cell lines had low DepMap-based gene 
effect scores represented a “nonessential” metastasis sig-
nature that could serve as an interesting comparison and 
contrast to the essential metastasis signature of 264 genes 
(Figs.  2b and c). The remaining 270 metastasis genes 
with low gene effect scores but for fewer cell lines (Data 

Files S1) might also include genes of interest that would 
be intrinsic to cancer cells, though we focused our study 
on the above 264 essential and 1581 nonessential genes, 
as these gene sets should represent a sharper contrast. 
Notably, in contrast to the 1581 nonessential genes, the 
264 essential genes were not significantly enriched for 
genes lower in normal breast tissue by GTEx (Fig.  2b). 
In addition, while the nonessential genes showed the 
above-noted association with liver biopsy site, the dif-
ferential expression patterns for the 264 essential genes 
were much more consistent across diverse metastatic 
biopsy sites (Fig.  2c and d). Also, analysis of single cell 
RNA-sequencing (scRNA-seq) data from both metastatic 
and primary tumors showed the essential signature genes 
to be highly expressed as a group within the cancer epi-
thelial cells (Supplementary Fig.  1a–c). Primary cancer 
cells scored moderate to high for the essential signature, 
though spatial transcriptomics did not reveal any clear 
patterns of the high metastasis signature cells as being on 
the invasive front of the tumor (Supplementary Fig. 1d). 
While genes with low DepMap gene effect scores in > 10% 
of cell lines were highly enriched for cell cycle genes, 
for example involving 651 genes by Whitfield et  al. [22] 
(p < 1E−60, one-sided Fisher’s exact test, Data File S1), 
the essential metastasis signature genes, incorporating 
paired metastasis vs primary comparisons, were not sim-
ilarly enriched for cell cycle genes (p = 0.06).

The essential metastasis signature is manifested in primary 
breast tumors
We could confirm the metastasis-specific expression pat-
terns of most essential genes in an external compendium 
dataset of 195 breast metastases versus paired primary, 
representing seven individual studies [5–11]. Of the 248 
essential genes represented in the compendium dataset, 
182—73%—were differential expressed in metastasis ver-
sus primary tumors across the compendium (p < 0.05, 
paired t-test, Fig.  3a), a highly significant overlap 

Fig. 2  An essential gene expression signature of breast cancer metastases versus paired primary. a Venn diagram showing the overlapping 
genes between the genes essential in > 10% of breast cancer cell lines, according to the DepMap dataset [17, 21] (using CRISPR-based gene effect 
score < − 0.75 to call essentiality for a given gene and cell line), and the metastasis signature genes (from Fig. 1a). Enrichment p-value by chi-square 
test. The 264 genes, both essential by DepMap and higher in expression in metastasis versus primary, represent an essential metastasis signature. 
b Venn diagram showing the overlaps between genes lower in normal breast tissue (by GTEx) and either the 264 essential signature genes (part a) 
or the 1581 “nonessential” genes (higher in metastasis but with no breast cell lines having scores < − 0.75). Enrichment p-value by chi-square test. c 
Heat maps of differential expression in metastasis versus paired primary for essential and nonessential metastasis signature genes (top and bottom, 
respectively, from parts a and b). Alongside the differential genes from the breast cancer BIG dataset are the corresponding CRISPR-based gene 
effect scores (from DepMap) and the average differential expression in normal breast versus other normal tissues (from GTEx). d By metastasis 
tissue biopsy site, average log2 fold change in expression between the breast cancer metastases and their paired primaries, represented separately 
for the essential metastasis genes (left) and the nonessential metastasis genes (right). Box plots represent 5% (lower whisker), 25% (lower box), 50% 
(median), 75% (upper box), and 95% (upper whisker). Data points are colored according to the PAM50 subtype of the metastasis. From parts b-d, we 
observe that the issues involving the contribution of non-cancer cells to the differential metastasis expression profile (e.g., as highlighted in Fig. 1) 
are not present in the essential metastasis signature

(See figure on next page.)
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(p < 1E−80, one-sided Fisher’s exact test). Notably, a 
smaller fraction of the nonessential genes—57%—were 
similarly significant in the compendium dataset (Data 
File S1). We also examined two gene signatures of breast 
cancer metastasis versus primary tumors derived from 

previous studies, one from Siegel et al. [23] and one from 
Chen et al. [24] (Data Files S1). Of the 123 genes high in 
the Siegel signature, 2 and 26 were in our essential and 
nonessential metastasis gene sets, respectively, the latter 
representing a significant overlap (p < 1E−9, one-sided 

Fig. 2  (See legend on previous page.)
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Fisher’s exact test). Similarly, of the 337 genes high in the 
Chen signature, 0 and 147 were in our essential and non-
essential metastasis gene sets, respectively (p < 1E−90 for 
the 147 genes).

Results of previous studies have suggested that the 
metastatic potential of human tumors is encoded 
within the primary tumor [25, 26]. We applied our 
essential metastasis gene signature to each of three 

Fig. 3  The essential metastasis signature patterns as examined in external breast cancer datasets. a For the essential metastasis genes from the BIG 
dataset (from Fig. 2a), heat map of differential expression in a compendium dataset of 195 breast metastases versus paired primary, representing 
seven individual studies [5–11]. Each metastasis expression profile in the compendium dataset was centered on its primary pair (not shown). 
Yellow, high expression in metastasis versus primary; blue, low expression in metastasis. SD, standard deviations from the centered metastasis 
and primary profiles within a given dataset. Of the 248 essential genes represented in the compendium dataset, 182 were differential expressed 
in metastasis versus primary tumors across the compendium (p < 0.05, paired t-test), a highly significant overlap (p < 1E−80, one-sided Fisher’s 
exact test). b Association of the metastasis essential gene signature with breast cancer patient survival across three separate expression datasets 
of primary breast tumors [27–29]. For each dataset, a gene signature score was derived using our “t-score” metric [52–54], comparing the average 
of the normalized expression values for the signature genes against the rest of the normalized gene values within the tumor profile. The Staaf et al. 
dataset represents early stage breast tumors [29]. P-values for association of signature score with patient outcome by log-rank test and by univariate 
Cox, as indicated. c Similar to part b, but using the nonessential signature genes (Fig. 2b) to compute a nonessential gene signature score in primary 
breast tumors
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independent gene expression datasets of primary breast 
tumors [27–29]. For each dataset, the top set of genes 
associated with worse patient prognosis (p < 0.01 by 
univariate Cox) shared significant overlap with the 
essential metastasis signature genes (p < 1E−25, by one-
sided Fisher’s exact test, for each dataset), while better 
prognosis genes were anti-enriched for the essential 
signature genes (Data File S1). For each dataset, we 
computed a signature score derived from the essen-
tial genes. Based on the expression patterns of pri-
mary tumors, the essential metastasis signature could 
stratify patients in each dataset into high-, low-, and 
intermediate-risk groups representing significant dif-
ferences in patient outcome by Kaplan–Meier analysis 
(Fig. 3b). The signature was also associated with worse 
patient outcome by univariate Cox, which treated 
the signature score as a continuous variable without 
grouping patients. These results included the “Scan-B” 
expression dataset from Staaf et  al. consisting of 7598 
early stage breast cancers [29]. Interestingly, the nones-
sential metastasis signature was associated with worse 
breast cancer patient outcome in only one of the three 
primary tumor datasets (Fig.  3c). In multivariate Cox 
models incorporating mRNA expression of prolifera-
tion gene marker MKI67 with the essential metastasis 
signature score, the latter remained statistically sig-
nificant, indicative of its representing additional infor-
mation from cell proliferation (two-sided p < 0.0001 
and p < 1E−6 for Pereira [28] and Staaf [29] datasets, 
respectively; one-sided p = 0.046 for Kessler [27] data-
set). However, in multivariate Cox models incorporat-
ing other well-known prognostic signatures [26, 30] in 
addition to the essential metastasis signature, the latter 
was found to not provide additional prognostic infor-
mation in two out of three datasets (Table S1).

Pathways and functional gene groups represented 
by the metastasis signature
The essential metastasis signature genes represented 
functional gene categories and altered pathways (Fig. 4a 
and Data File S2). In terms of functional gene catego-
ries, we found significantly enriched Gene Ontology 
(GO) annotation terms [31] (representing gene anno-
tation by molecular function, biological process, and 
cellular component) for the essential genes, including 
‘proteasome complex’, ‘translation’, ‘ATP hydrolysis activ-
ity’, ‘NADH dehydrogenase complex’, and ‘extracellular 
exosome’. Enriched wikiPathway [32] gene sets (repre-
senting manually curated pathways) for the essential 
genes included several consistent with the GO terms 
results and included pathways related to the electron 
transport chain, oxidative phosphorylation, proteasome 
degradation, translation factors, and cancer metabolic 

reprogramming. In contrast, the nonessential metasta-
sis signature genes were significantly enriched for genes 
related to extracellular region, cell junction, cell adhesion, 
and the immune response, consistent with these genes 
representing non-breast tissue markers as well as com-
plement pathway genes produced by the liver [33] (Data 
Files S1 and S2). Both 20S and 26s proteasomes included 
several genes both higher in breast cancer expression in 
metastasis and essential in more than 90% of breast can-
cer cell lines in DepMap (Fig. 4b and Data File S1). When 
surveying core metabolic pathways (Fig. 4c), genes both 
higher in expression in metastasis and essential in one 
or more breast cancer cell lines included glycolysis, lipid 
synthesis, the Krebs cycle, the Warburg effect, and the 
electron transport chain. The essential metastasis genes 
involving the electron transport chain spanned com-
plexes I–V (Fig. 4c and Data Files S1 and S2). GO terms 
and pathways involving the cell cycle were not signifi-
cantly enriched in either metastasis gene set (Data File 
S2).

Transcription factor (TF) and global targeting associations
To gain additional insights into possible drivers underly-
ing the essential gene signature of metastasis, we turned 
to two additional orthogonal datasets: one of TF-bound 
target genes cataloged by the Encode project [34] and 
another of cells profiled for gene expression after siRNA 
knockdown for each of 400 different genes [35]. Out of 
158 TFs with available data [6], 119 were significantly 
enriched (p < 0.01, one-sided Fisher’s exact test) for 
essential metastasis signature genes (Data File S2). Of 
the 400 genes knocked down in the siRNA expression 
dataset, 108 had genes that were under-expressed with 
their knockdown (the under-expressed genes represent-
ing downstream targets of the knocked down gene) being 
significantly enriched (p < 0.01) for essential metastasis 
signature genes (Data File S1). We intersected the above 
119 and 108 genes with the genes essential in breast 
cancer cell lines and the genes more highly expressed in 
breast cancer metastases (using more relaxed criteria for 
differential expression to include more genes). No genes 
were found within all four gene sets, but several genes of 
interest involved three of the four gene sets (Figs. 5a and 
b). Genes HCFC1 and PHB2 were higher in breast can-
cer metastases versus paired primary, essential in all 46 
breast cancer cell lines, and encoded TFs for which their 
bound targets involved over-representation of our essen-
tial metastasis signature genes. MCM3 and POLR2I were 
higher in metastases, essential, and had their downstream 
targets (by RNAi) enriched for our essential metastasis 
signature genes. Genes HDAC3, MAX, and MYC were all 
essential for many cell lines and encoded TFs with both 
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Fig. 4  Pathways associated with the essential breast cancer metastasis signature. a Selected significantly enriched Gene Ontology (GO) terms 
[31] and wikiPathway [32] gene sets involving either the essential or nonessential set of metastasis-associated genes. Enrichment p-values 
by one-sided Fisher’s exact test. Some wikiPathways are slightly abbreviated, e.g., “Metabolic reprogramming in colon cancer,” abbreviated as “cancer 
metabolic reprogramming.” Pathways and gene sets highlighted in orange are featured in the pathway diagrams of parts b and c. b Pathway 
diagram representing genes involved in proteasome degradation [32]. On the left of each gene is represented the significance of differential 
expression in breast metastasis versus paired primary (based on BIG dataset; red, higher in metastases). On the right of each gene is represented 
the percentage of breast cancer cell lines in the DepMap dataset with low gene effect scores (< − 0.75). c Similar to part b, but featuring a pathway 
diagram representing core metabolic pathways [32, 55, 56]
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bound and downstream targets enriched for our essential 
metastasis signature genes.

We examined both essential and nonessential metasta-
sis signature genes across all the above datasets, including 
differential expression patterns in metastasis, gene target 
binding for selected TFs, and differential expression pat-
terns in response to the knockdown of selected genes 
(Fig. 5c). Notably, TF-bound targets of MYC, MAX, and 
HCF1 overlapped highly with each other, with these 
bound targets also overlapping genes with lower expres-
sion with MYC or MAX knockdown. Of note, MAX is 
essential for MYC’s oncogenic function in its dimeriza-
tion with MYC [36, 37], and MYC is known to directly 
interact with a recruits HCFC1 [36], where the MYC-
HCFC1 interaction in particular can regulate mitochon-
drial gene expression programs among others [36, 38, 
39]. The nonessential signature genes were also signifi-
cantly enriched for targets of TFs, including MYC, MAX, 
and HCFC1, though these three TFs involved a relatively 
lower fraction of genes for the nonessential versus the 
essential signature (Fig.  5c and Data File S2). Interest-
ingly, where the nonessential genes overlapped with the 
above TF-related and knockdown target-related patterns 
of interest, these genes showed a weaker association with 
liver biopsy site than that of the other nonessential genes 
(Fig. 5c). Genes such as MYC and MAX that did not have 
relatively higher expression in metastases at the mRNA 
level could still be active at the signaling level.

Discussion
In this study, we identified an essential gene signature of 
breast cancer metastasis, defined as the intersection of 
genes with higher expression in metastasis versus paired 
primary and genes essential in breast cancer cell lines by 
CRISPR assays. We found a significant overlap between 
these two orthogonal gene sets, indicative of true biologi-
cal changes intrinsic to cancer cells involving a fraction 
of the global differences within the metastasis expression 

profile. While the essential metastasis signature genes 
were comprised of a subset of genes essential for breast 
cancer cell survival, the signature represented more than 
simply a generic signature of cell proliferation, as, for 
example, genes involved in the cell cycle, while essential 
in breast cancer cells, tended not to be higher in metas-
tasis versus paired primary. The nonessential metastasis 
genes, differentially higher in expression in metastasis 
but not essential in any breast cancer cell lines, provided 
a clear contrast to the essential metastasis genes, further 
establishing the essential genes as underscoring metasta-
sis biology. In contrast to nonessential metastasis genes, 
essential metastasis genes: did not globally represent 
non-breast versus breast tissue expression differences, 
did not show strong associations with tissue biopsy site, 
had a greater percentage of genes with confirmed higher 
expression in metastasis in an external compendium 
dataset, had more dramatic associations with patient 
outcome based on expression in primary tumors, and 
involved an entirely different set of enriched functional 
gene sets and pathways. Transcription factor genes that 
appear to drive the expression of a sizable portion of the 
essential metastasis signature genes include MYC, MAX, 
HDAC3, and HCFC1.

Our study shows the need to refine gene expression dif-
ferences between metastasis and primary tumors to iden-
tify better the metastasis-associated genes likely to play 
a role in cancer biology. Previous studies have utilized 
gene expression data of breast cancer metastases with 
paired primary to identify patterns of subtype switching 
and have utilized annotated gene signatures to examine 
differences corresponding to cell type, including immune 
cell types [4, 5]. Here, we used a different approach to 
incorporate functional data from breast cancer cell lines 
to refine the global signatures for the genes essential for 
proliferation in  vitro. While most cell lines have under-
gone numerous passages, and their molecular state may 
be far removed from that of the original cancer from 

(See figure on next page.)
Fig. 5  Transcription factor (TF) and global targeting associations involving the essential metastasis signature. a Venn diagram of the overlapping 
genes involving four gene sets: genes with high expression in breast cancer metastasis versus paired primary (blue, based on BIG, using a relaxed 
p-value of 4759 by paired t-test); genes essential in at least 10% of breast cancer cell lines (light orange, using effect score < − 0.75); TF genes 
with bound targets enriched (p < 0.01, one-sided Fisher’s exact test) in the essential gene signature (green, TF associations by Encode [34] data); 
and genes for which siRNA knockdown results in under-expression of genes that are significantly enriched (p < 0.01, one-sided Fisher’s exact test) 
in the essential metastasis signature (red, using a gene expression dataset of human umbilical endothelial cells transfected with siRNAs for 400 
different genes [35]). b For the seven genes overlapping among three of the four gene sets from part a, the corresponding patterns are represented 
involving differential expression in breast cancer metastasis, CRISPR-based gene effect scoring in breast cancer cell lines, enrichment of TF-bound 
genes by Encode data, and enrichment of siRNA targets. Gene set enrichment patterns (by one-sided Fisher’s exact test) are represented 
for both essential and nonessential metastasis gene sets. c For both essential and nonessential metastasis signature genes (top and bottom, 
respectively), the corresponding patterns are represented involving differential expression in metastases, CRISPR-based gene effect scoring, binding 
2 kb upstream for selected TFs, and differential expression in response to siRNA knockdown (GSE27869 dataset [35] involving profiling of cells 
after knockdown of each of 400 genes)
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Fig. 5  (See legend on previous page.)



Page 11 of 16Zhang et al. Breast Cancer Research           (2024) 26:98 	

whence they came, they are quite amenable to functional 
interrogation, would not have the issue of non-cancer cell 
admixture involved in human biopsies, and offer pub-
lic omics data resources that can readily be leveraged in 
the interpretation of results from human tumors [6, 40]. 
From a practical standpoint, our approach effectively 
established a metastasis signature for which non-cancer 
cell type patterns were not dominant. Furthermore, the 
overlap between the cell line and metastasis results was 
highly statistically significant, with the overlapping genes 
indicative of a non-random relationship between the two 
results sets. At the same time, many genes essential to 
breast cancer cell proliferation would not just be essential 
to those cells but also for cells in other tissues. Other ana-
lytical approaches to refine gene signatures of metastases 
might be explored in future studies. For example, it might 
be possible to computationally deconvolute the differ-
ent cell types within a bulk metastasis expression profile 
[41], though doing so with high confidence might require 
precise information as to the different cell types involved 
and their fractional contribution.

Our essential signature of breast cancer metastasis 
could have important implications for applying existing 
therapies or developing alternate therapeutic approaches. 
In recent years, compounds directly or indirectly inhib-
iting MYC have shown anticancer activity preclinically, 
with some of these being developed for clinical trial 
evaluation [42, 43], and MYC inhibition has been found 
to halt metastatic breast cancer progression by blocking 
growth, invasion, and seeding [44]. Proteasome inhibi-
tors, such as bortezomib and carfilzomib, are highly 
effective in treating solid tumors, and proteasome inhibi-
tors have been found to re-sensitize the standard chemo-
therapeutic regimens and induce synergistic anticancer 
effects in breast cancer [45]. Bortezomib has been shown 
to inhibit breast cancer growth and reduce osteolysis by 
downregulating metastatic genes [46]. There has been 
accumulating evidence suggesting that the glycolytic 
pathway is upregulated in various cancer types and is 
responsible for their aggressive phenotype, consistent 
with the concept of the “Warburg effect,” whereby tumor 
cells predominantly utilize energy through high rates 
of glycolysis [47, 48]. The reliance of metastatic cells on 
mitochondrial respiration and oxidative phosphorylation 
can be exploited using drugs that target mitochondrial 
metabolism, including therapeutic agents that activate 
signaling pathways that promote the production of reac-
tive oxygen species (ROS), a reduction in antioxidant 
defenses, or both [49].

Additional genes and pathways involved in breast can-
cer metastases would remain to be discovered in future 
studies. Our essential metastasis signature gene patterns 
would span multiple intrinsic breast cancer subtypes, 

though changes specific to a particular subtype might be 
discoverable [6]. New information on molecular path-
ways could reveal their enrichment within metastasis sig-
nature genes. As more data become available, pan-cancer 
signatures of metastases could shed light on molecular 
mechanisms spanning diverse tissues of primary origin 
in addition to breast. Our essential metastasis signature 
focuses on genes essential to cancer cell proliferation, 
though other genes not essential may conceivably have 
a role in the metastatic process. For example, our results 
would not represent tumor microenvironmental changes 
that might influence metastasis. Transcriptional pro-
grams driving organ-specific patterns of metastasis 
would be discoverable by combining patient molecu-
lar data with molecular data from experimental models 
[50]. Future scRNA-seq studies profiling large numbers 
of paired metastatic and primary tumors could identify 
changes occurring within isolated tumor cell populations. 
Signaling changes at the protein or signal transduction 
levels would not necessarily be reflected in the meta-
static cancer transcriptome, though these may be uncov-
ered using other omics platforms. Given the metabolic 
pathway associations uncovered here in metastatic tran-
scriptional programs, it would be worthwhile to generate 
metabolomic profiles of paired metastases and primary 
tumors at a large scale [51]. Nevertheless, our present 
study sheds light on a gene set of high interest regarding 
breast cancer metastasis, with these genes collectively 
associating with robust patterns involving pathways and 
driver genes that would merit further exploration.

Methods
BIG breast cancer metastases dataset
Regarding human subjects, cancer molecular profiling 
data used in the present study were generated through 
informed consent as part of previously published stud-
ies and analyzed in accordance with each original study’s 
data use guidelines and restrictions.

BIG conducted Aiming to Understand the Molecu-
lar Aberrations in Metastatic Breast Cancer (AURORA; 
NCT02102165), a molecular screening program that 
involved extensive profiling of paired primary breast 
tumors and metastatic samples [4]. After entering into a 
data access agreement with BIG, we obtained the RNA-
seq dataset from the AURORA study [4] represent-
ing 314 breast cancer patients, of which 152 had both a 
metastasis with paired primary profiled for gene expres-
sion. Taking the entire processed RNA-seq dataset of 
transcripts per million (TPM) expression values from 466 
tumor profiles (314 patients), we first carried out quan-
tile normalization [58] (limiting the dataset to genes with 
Entrez identifier) and then log2-transformed values. We 
then compared metastasis versus primary in a paired 
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analysis using a paired t-test across the 152 patients with 
paired samples. The BIG gene expression dataset repre-
sented 28,248 uniquely identified genes (by Entrez) with 
detected expression allowing for paired primary-metasta-
sis comparisons. The numbers of differentially expressed 
genes at a nominal p < 0.001 far exceeded the chance 
expected (~ 28 versus 3927 actual genes, FDR = 0.007) 
that would be due to multiple gene testing [59]. When 
overlapping different top-gene results sets (e.g., overlap-
ping genes higher in metastasis with TF bound genes or 
siRNA-targeted genes), we used a more relaxed p-value 
cutoff for differential expression to limit false negatives, 
helping us identify significant overlap patterns.

GTEx normal tissue expression dataset
Gene expression data (TPM values) from GTEx Analy-
sis version 7 release were obtained from the GTEx Portal 
(https://​www.​gtexp​ortal.​org) [19]. Using log-transformed 
values, we compared normal breast tissues (n = 290 indi-
viduals) with normal non-breast tissues (n = 11,398 sam-
ples in all) by t-test. Non-breast tissues included adipose 
tissue, adrenal gland, blood vessel, bladder, brain, blood, 
skin, cervix uteri, colon, esophagus, fallopian tube, heart, 
kidney, liver, lung, salivary gland, muscle, nerve, ovary, 
pancreas, pituitary, prostate, small intestine, spleen, 
stomach, testis, thyroid, uterus, and vagina.

Essential genes by the cancer Dependency Map
We examined gene effect scores (with low scores denot-
ing essential genes) based on Cancer Dependency Map 
(DepMap) CRISPR assays, using the dataset as analyzed 
using the Chronos algorithm from Dempster et  al. [17] 
We focused on the 46 breast cancer cell lines with Dep-
Map data, and we used a cutoff score of < − 0.75 to denote 
gene essentiality in a given cell line. The breast cell line 
PAM50 subtype, as available, was taken from the annota-
tion by Heiser et al. [60].

External breast tumor expression compendium dataset
From public datasets external to the BIG dataset, we 
assembled a compendium dataset of gene expression 
profiling data of breast patient paired metastases and 
corresponding primary tumor. This compendium rep-
resented 195 patient metastases and seven individual 
studies [5–11] (Data File S1). We obtained processed 
expression data tables from the Gene Expression Omni-
bus (GEO) or the Genome Data Commons (in the case 
of the Count Me In or CMI dataset). To normalize the 
metastasis profiles relative to the paired primary, we first 
centered log2-transformed expression values for each 
metastasis expression profile on its primary pair, set-
ting the values for the primary pair to zero. Then, within 
each study dataset, the centered expression values were 

divided by the standard deviation across the centered 
metastasis and primary profiles. This normalization 
step rendered the differential expression values unitless, 
thereby correcting for inter-dataset differences. Of the 
195 metastases, 159 were represented in a metastasis 
expression compendium in our previous study [6], and 
here we added sample profiles from the following addi-
tional datasets: GSE79446, GSE147995, and GSE209998. 
The compendium dataset represented 18,319 genes [6]. 
For GSE209998, we incorporated only the sample profiles 
for which both the metastasis and the paired primary 
were both from fresh frozen samples (with other tumor 
metastases in that dataset involving either the metastasis 
or paired primary or both being sampled from Formalin-
Fixed, Paraffin-Embedded (FFPE) tissue blocks.

The PAM50 subtype of each metastasis and primary 
sample was determined using either the original study 
annotation, where available, or inferred by the global 
expression profile in the following manner. We took the 
breast tumor expression dataset from Hoadley et al. [61], 
for which tumors were molecularly subtyped by PAM50 
assay. For each gene common to our compendium and 
the Hoadley dataset, we computed the mean centroid 
of the four major Hoadley tumor subtypes and centered 
each group average on the centroid. With our compen-
dium dataset, we centered the log2 expression values 
for the metastasis profiles and the primary tumors sepa-
rately within each study to standard deviations from the 
median. We then took the Pearson’s correlation (using 
all genes common to both data sets) between the Hoad-
ley centered averages and the expression values of each 
tumor profile, and the subtype with centroid having the 
highest correlation was assigned to the sample profile.

Survival analyses in primary breast tumors
We examined metastasis gene sets in public transcrip-
tomic datasets of primary breast tumors for associations 
between the gene set and patient outcome. We referred 
to three datasets from Kessler et  al. [27], Pereira et  al. 
[28], and Staaf et al. [29]. The Kessler expression dataset 
represented a compendium involving 1302 patients and 
nine separate datasets assembled previously [27, 62]. We 
originally downloaded the Pereira et al. expression data-
set from CBioPortal. The Staaf et al. dataset was obtained 
from the Mendeley Data site associated with the publi-
cation. Given a gene signature, we scored tumor expres-
sion profiles in the external breast cancer datasets using 
our previously described “t-score” metric [52–54]. With 
the primary breast tumor expression profiles normalized 
gene-wise to standard deviations from the median, we 
compared within each profile the average of the normal-
ized expression values for the signature genes against the 
rest of the normalized gene values. The gene signature 

https://www.gtexportal.org
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t-score is defined here as the two-sided t-statistic com-
paring the metastasis-associated genes with all other 
genes. We assessed the association of this gene signature 
score with patient outcome using univariate Cox and log-
rank (dividing the cases according to low, high, or inter-
mediate signature scoring). We used the same t-score 
metric in scoring the primary breast tumor expression 
datasets for two other well-known prognostic signatures 
(but here with up signature genes being compared with 
down signature genes) [26, 30].

By unsupervised clustering approaches, most gene 
signatures can be shown to associate with breast cancer 
patient outcome [63]. In contrast to unsupervised clus-
tering approaches such as principal components analysis, 
our t-score is supervised in that it imposes a pre-defined 
direction upon the genes in the signature. In our present 
study, tumors that scored highly by t-score metric would 
have all the signature genes higher as a group on average 
than the other genes in the tumor profile. In addition, 
using the Pereira dataset, we carried out an exercise with 
100 randomly generated gene signatures of the same size 
as the essential gene signature. Across all the expression 
profiles in the Pereira dataset, the standard deviation of 
the scores for the actual signature was higher than that 
of the random signatures, indicative of a greater level of 
coordinate expression of the essential metastasis signa-
ture genes across tumors. When assessing the association 
of the random gene signatures with patient outcome, only 
one of the 100 signatures had a univariate Cox p-value 
smaller than the actual essential signature.

Enrichment analyses for TF‑bound genes
We obtained TF binding site locations based on 
ENCODE consortium data from chromatin immuno-
precipitation sequencing (ChIP-seq) [34], from Ensembl 
(GRCh37/hg19 build). We used TF sites as identified 
in the HeLa-S3, HepG2, and K562 cell lines (accessed 
April 2022), involving 158 TFs. We defined associa-
tions between TFs and genes as a TF binding site falling 
within 2 kb upstream of the gene start. For each TF and 
each PDX-based subtype, we identified patterns of sig-
nificant gene set overlap (by one-sided Fisher’s exact test) 
between the TF-bound genes and the genes in the given 
set of interest.

Gene targets of siRNA knockdown
For expression alterations in response to gene knock-
down, we referred to the GSE27869 expression pro-
file dataset of human umbilical vein endothelial cells 
(HUVECs) transfected with siRNAs for 400 different 
genes [35]. We normalized log2 gene expression values 
in GSE27869 to standard deviations from the median 
across the 400 profiles. Of the 400 genes represented 

in GSE27869, 44 involved the 158 TFs surveyed using 
Encode data (see above). For each siRNA differen-
tial expression profile, we took the set of genes under-
expressed with normalized expression < − 0.5. We 
assessed the enrichment of metastasis gene sets within 
the siRNA-associated under-expressed genes using one-
sided Fisher’s exact tests.

Analysis of single cell RNA sequencing (scRNA‑seq) 
and spatial transcriptomics data
We obtained scRNA-seq data for two breast tumors 
from two separate studies: Slyper et  al. [57] of a meta-
static breast cancer (MBC) sample (GSM4186971) and 
Wu et al. [16] of a primary triple negative breast tumor 
(TNBC, sample CID44971). For scoring cell expression 
profiles for a given gene signature, we first filtered the 
geneXcell counts matrices for genes with > 10% nonzero 
values across cells, then imputed the median value across 
cells for each matrix entry of zero, then quantile normal-
ized the imputed counts dataset [58]. We log2-trans-
formed the normalized counts data, centered each gene 
across cells to standard deviations from the median, and 
then took the average of the signature genes (essential 
and nonessential signatures) within each normalized cell 
profile as the gene signature score for that cell. We ana-
lyzed scRNA-seq and spatial transcriptomics data using 
the Seurat package [64].

Statistical analysis
All p-values were two-sided unless otherwise specified. 
We evaluated the enrichment of GO annotation terms 
[31] and wikiPathways [32] within sets of differentially 
expressed genes was evaluated using SigTerms software 
[65] and one-sided Fisher’s exact tests. Visualization 
using heat maps was performed using both JavaTreeview 
(version 1.1.6r4) [66] and matrix2png (version 1.2.1) [67]. 
Figures indicate exact the value of n (number of tumors 
or cell lines), and the statistical tests used are noted in 
the Figure legends and next to reported p-values in the 
Results section. Boxplots represent 5%, 25%, 50%, 75%, 
and 95%. Figures represent biological and not technical 
replicates.
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BIG	� Breast International Group
GTEx	� Genotype-Tissue Expression Project
DepMap	� The Cancer Dependency Map Project
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TF	� Transcription factor
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Supplementary Table 1.

Supplementary Fig. 1. Analysis of the essential metastasis signature 
in single cell RNA-sequencing (scRNA-seq) and spatial transcriptomic 
datasets. scRNA-seq data for two breast tumors from two separate studies 
are presented here: one from Slyper et al.[57] of a metastatic breast cancer 
(MBC) sample (GSM4186971) and one from Wu et al.[16] of a primary triple 
negative breast tumor (TNBC, sample CID44971). (a) UMAP plots showing 
major cell populations identified from the MBC (left) and the TNBC (right). 
(b) Using the counts matrix, we scored each cell profile for the essential 
gene signature (based on the average normalized expression of genes in 
the signature). Boxplots represent the essential gene signature scoring 
by cell type. For the MBC sample (left), the epithelial cell group shows 
dramatically higher levels of the essential gene signature as compared to 
the non-epithelial cell types, consistent with our notion that the essential 
gene signature would be mostly representative of the metastatic cancer 
cells versus the non-cancer cells comprising the sample biopsy. The 
essential signature also appears elevated in the Ductal carcinoma in situ 
(DCIS) cells of the primary TNBC sample (right), again consistent with the 
notion of the signature patterns being intrinsic to cancer cells, as well as 
the notion that the metastasis signature may also be present and at work 
within primary tumor cells (e.g., as also indicated in main Figs. 3b and 
3c). (c) Similar to part b, but for the nonessential metastasis signature. 
Interestingly, in the MBC sample, the nonessential signature scoring 
appears markedly higher for macrophages as compared to the essential 
signature, where we expect the nonessential signature to represent more 
of the “noise” in the BIG AURORA data. At the same time, epithelial cells 
in the MBC have the highest levels of the nonessential signature, where 
many bona fide metastasis-intrinsic genes could still be present in the 
nonessential signature (while being enriched for non-specific genes, e.g., 
as suggested by Fig. 5c). For the primary TNBC, the nonessential signature 
is also elevated in the DCIS cells. For parts b and c, boxplots represent 5%, 
25%, 50%, 75%, and 95%. (d) Spatial data from the Wu et al.[16] study for 
the TNBC sample CID44971. Left, cells in the tumor are colored according 
to cell type. Right, cells in the tumor are colored according to scoring for 
the essential metastasis signature. Most DCIS cells score moderate to high 
for the signature.

Data File S1. Gene-level correlations and tumor-level sample annotation. 
Provided as an Excel file. For 28,248 unique genes (by Entrez identifier) 
represented in the BIG breast cancer metastasis dataset, paired metastasis 
versus primary tumor statistics are provided, along with other gene-level 
information used in the study (DepMap, GTEx, etc.). Also included are sam-
ple information for the profiles analyzed for the BIG breast cancer metasta-
sis dataset and the compendium dataset of 195 breast metastases versus 
paired primary, representing seven individual studies. The corresponding 
data for the 264 essential metastasis signature genes are provided for 
DepMap breast cell lines and for differential expression in response to 
siRNA knockdown in the GSE27869 dataset.

Data File S2. Pathway and gene set enrichment for the metastasis signa-
ture genes. Provided as an Excel file. For both essential and nonessential 
metastasis signatures, significant enrichment patterns involving GO terms, 
wikiPathways, and TF-bound genes are provided, along with the cor-
responding metastasis gene-to-gene set associations for the significantly 
enriched gene sets.
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