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Abstract
Background  Nottingham histological grade (NHG) is a well established prognostic factor in breast cancer 
histopathology but has a high inter-assessor variability with many tumours being classified as intermediate grade, 
NHG2. Here, we evaluate if DeepGrade, a previously developed model for risk stratification of resected tumour 
specimens, could be applied to risk-stratify tumour biopsy specimens.

Methods  A total of 11,955,755 tiles from 1169 whole slide images of preoperative biopsies from 896 patients 
diagnosed with breast cancer in Stockholm, Sweden, were included. DeepGrade, a deep convolutional neural 
network model, was applied for the prediction of low- and high-risk tumours. It was evaluated against clinically 
assigned grades NHG1 and NHG3 on the biopsy specimen but also against the grades assigned to the corresponding 
resection specimen using area under the operating curve (AUC). The prognostic value of the DeepGrade model in the 
biopsy setting was evaluated using time-to-event analysis.

Results  Based on preoperative biopsy images, the DeepGrade model predicted resected tumour cases of clinical 
grades NHG1 and NHG3 with an AUC of 0.908 (95% CI: 0.88; 0.93). Furthermore, out of the 432 resected clinically-
assigned NHG2 tumours, 281 (65%) were classified as DeepGrade-low and 151 (35%) as DeepGrade-high. Using a 
multivariable Cox proportional hazards model the hazard ratio between DeepGrade low- and high-risk groups was 
estimated as 2.01 (95% CI: 1.06; 3.79).

Conclusions  DeepGrade provided prediction of tumour grades NHG1 and NHG3 on the resection specimen using 
only the biopsy specimen. The results demonstrate that the DeepGrade model can provide decision support to 
identify high-risk tumours based on preoperative biopsies, thus improving early treatment decisions.
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Background
Breast cancer is currently the most common cancer type 
globally [1]. In the majority of cases, suspicious breast 
lesions are initially identified by mammography screen-
ing, which is recommended in most developed countries 
for early detection of breast cancer [2, 3]. For women 
with a suspicious lesion, a preoperative core needle 
biopsy is performed to histologically assess the breast tis-
sue [4]. Evaluation of the biopsy by pathologists is key to 
diagnose breast cancer, where morphological informa-
tion and biomarker analysis are paramount to guide fur-
ther surgical and oncological therapy decisions [5].

Tumour grading is a cornerstone in the histopatho-
logical assessment of breast cancer, not only in the 
resected tumour specimen but it is also of importance 
in the biopsy specimen [6]. Histological grade reflects 
the degree of differentiation of a tumour by comparing 
the similarity of malignant cells to that of normal breast 
terminal duct lobular units [7]. Currently, the most com-
monly used grading method is the Nottingham Histo-
logical Grade (NHG) adapted by Elston-Ellis following 
work from Bloom-Richardson [8, 9]. Histological grading 
relies on the performance and expertise of pathologists, 
and evaluates three morphological features: the degree 
of tubular formation (gland architecture), nuclear pleo-
morphism (nucleus size and shape) and the mitotic count 
[9]. Each of these three morphological features is given 
a score from 1 to 3 by the pathologist and are then com-
bined to obtain the final NHG grade on a score from 1 to 
3. Histological grade is an important prognostic feature 
of breast cancer, with NHG1 having a good prognosis 
and NHG3 tumours being associated with poor prog-
nosis, independently of the morphological subtype and 
nodal status [10–12]. Therefore, tumour grade plays an 
important role in guiding treatment decisions [13]. How-
ever, about 50% of all resected breast cancer specimens 
are diagnosed as NHG2, which has limited clinical value 
for treatment decisions [14–16]. One of the major chal-
lenges with histological grading is that it relies on the 
experience, expertise and interpretation of the patholo-
gist, and high inter-observer and inter-laboratory vari-
abilities are well described [7, 14].

Histological grade assessment is even more compli-
cated in biopsy specimens with very limited tumour 
material and frequent tissue artefacts [14]. This causes 
significant discrepancies between the biopsy grading and 
the histological grade assigned on the surgically resected 
specimen [17]. These uncertainties are accompanied by 
the fact that a greater number of biopsy samples are not 
even assigned a grade, and that up to 70% of the biopsy 
samples are assigned the intermediate grade, NHG2 [15, 
18, 19].

The recent advances in computational pathology 
based on the availability of large amounts of digitised 

whole-slide histopathological images, as well as the 
development of novel artificial intelligence technologies, 
has enabled model-based grading of tumours in resected 
specimens [20–22]. Wang et al. have also shown by devel-
oping the DeepGrade model using resected NHG1 and 
NHG3 tumours that this technology enabled further risk 
stratification of intermediate-risk NHG2 patients into 
two risk subgroups with independent prognostic value 
[23]. Risk stratification is particularly relevant in patients 
with oestrogen receptor (ER)-positive/human epidermal 
growth factor receptor 2 (HER2)-negative tumours, since 
high-risk (NHG3) patients will typically be provided che-
motherapy in addition to endocrine therapy, and low-risk 
(NHG1) patients would be spared chemotherapy in order 
to avoid overtreatment, whereas the intermediate NHG2 
group is uninformative and has limited clinical value for 
treatment decisions.

In this study, we aim to assess if the DeepGrade model 
[23], developed using resected tumour specimens, could 
be applied to risk-stratify tumours using only the biopsy 
specimens. This would allow earlier identification of 
high-risk tumours from the initial biopsy specimens, 
and further improve information that can be used in the 
treatment planning at the preoperative stage.

Methods
Patients
This retrospective study included female patients who 
underwent a breast biopsy at the Stockholm South Gen-
eral Hospital in Stockholm, Sweden between June 2012 
and May 2018. Patients diagnosed with invasive breast 
cancer as their primary diagnosis and who had under-
gone a surgical removal of their tumour within two 
months following their biopsy without receiving neo-
adjuvant therapy were included in the study. See Fig.  1 
for detailed explanation of the selection criteria. A total 
of 1169 whole slide images (WSI) from 896 patients 
were included in the final analyses. The WSI from the 
resected tumour specimens of 801 of these patients were 
also available and used for comparison of the prediction 
of DeepGrade risk group on this material. Clinical data 
was retrieved retrospectively from the Swedish National 
Breast Cancer (NKBC) Registry as well as from the 
patient’s pathology reports when data on the NHG sta-
tus was not available in the registry. The NKBC registry 
includes data from newly diagnosed patients with pri-
mary in-situ or invasive tumours in Sweden and covers 
both a full pathology report as well as survival based on 
follow-up routines [24]. The patients’ NHG were assessed 
as part of routine clinical care, and separately for the 
biopsy and resected tumour specimens. This study was 
reviewed and approved by the Swedish Ethical Review 
Authority.
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Fig. 1  CONSORT diagram. The data used contained whole slide images (WSI) of biopsies for 896 patients who had a resected tumour Nottingham His-
tological Grade (NHG) and who did not receive neoadjuvant chemotherapy. Out of these, a total of 666 patients had a biopsy NHG, 801 patients had a 
matching resected tumour slide, on which DeepGrade predictions could also be performed, and, survival data was available for 725 patients. A total of 
525 patients (682 WSI) are in all three subanalyses
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WSI and deep learning model
For each patient between one and seven haematoxylin 
and eosin (H&E) stained formalin-fixed paraffin-embed-
ded (FFPE) histopathology slides of biopsy specimens 
were digitised in-house using either Hamamatsu Nano-
zoomer XR or Hamamatsu Nanozoomer S360 scan-
ners (Hamamatsu Photonics K.K., Shizuoka, Japan) at 
40X magnification (0.227  μm/pixel and 0.230  μm/pixel, 
respectively). Methodology for pre-processing of the 
WSI was performed according to the methodology pre-
viously described [23]. Initially, tissue segmentation was 
performed by transforming lower-level representations 
extracted from the WSI’s resolution pyramids obtained 
using OpenSlide [25]. These were then transformed from 
RGB to HSV colour space. Two masks were then gener-
ated for each slide, one for filtering out hue values lower 
than 0.75, the other adding a maximum value of 25 to the 
Otsu’s threshold [26] in order to remove non-tissue areas 
while reducing the removal of the tissue regions due to 
the high threshold value on the transformed saturation 
channel in some cases.

WSI regions included in the tissue mask were tiled 
into image tiles of 598 × 598 pixels with a down-sampled 
resolution equivalent to 20 × (271 μm x 271 μm). Due to 
the small tissue area in biopsy specimens, tiling was per-
formed with 75% overlap on both the vertical and hori-
zontal axes between two consecutive tiles. Next, in order 
to ensure quality of the data, remove unsharp tiles, any 
remaining tiles with background, those with adipose tis-
sue, and blurred tiles were all excluded by measuring a 
variance of the Laplacian filter and excluding the tiles 
with a value lower than 500 [23]. Lastly, to address the 
stain variabilities in WSI, colour normalisation across 
each WSI was performed using the method described 
by Macenko et al [27], and as implemented by Wang et 
al [23]. Colour normalisation was applied with the same 
factor to all tiles within a WSI. Using reference stain 
vectors [28] and slide level stain vectors obtained using 
100 randomly selected tiles per slide, colour normalisa-
tion could be applied to each tile towards the reference 
stain vectors. For the 801 patients with preoperative 
biopsies and a matching resected tumour WSI, a similar 
pre-processing method was performed for the WSI pre-
processing with two significant changes. First, no overlap 
between two consecutive tiles was considered. Secondly, 
after the colour normalisation step, a tumour segmen-
tation model previously developed [23] was applied to 
include only the tiles from the invasive cancer regions in 
the resected specimens for further downstream analysis. 
After pre-processing, a total of 11,955,755 tiles were used 
for predictions from biopsy specimens, and 1,157,871 
were used from the surgical resection specimens.

Histological grade prediction
Prediction of low- (NHG1) and high- (NHG3) risk 
tumours on the biopsy WSI was performed using an 
ensemble of 20 convolutional neural network (CNN) 
models previously developed as the DeepGrade model 
[23]. The DeepGrade models were trained to classify 
NHG1 and NHG3 tumours in WSI from resected speci-
mens. Each model uses Inception V3 model pre-trained 
with ImageNet [29] as the base model. The Inception 
V3 model consists of a stem block constituted of four 
3 × 3 convolutional layers and one 1 × 1 convolutional 
layer as well as two max pooling layers. It then employs 
three inception blocks (A, B and C) each consisting of 
1 × 1, 3 × 3 and 5 × 5 convolutional filters together with 
regularization. Inception blocks A and B also include an 
average pooling layer while block C includes a max pool-
ing layer. Block A is followed by a reduction block that 
includes further convolutional layers and one max pool-
ing layer while block B employs 3 × 3 convolutions with 
strides to downsample the feature maps. Finally, there 
is an auxiliary classifier block to prevent vanishing gra-
dient. A fully connected layer of 1024 hidden units and 
Rectified Linear Unit (RELU) activation function were 
added before the final layer. Stochastic gradient descent 
was used to update parameters from all layers with an 
adaptive learning rate starting from 10− 3 but reduced by 
50% each time the model performance stopped improv-
ing for 10 epochs. Cross-entropy loss was used for the 
binary outcome NHG1 versus NHG3. The initial 20 CNN 
models were trained on 844 WSI, of which 173 patients’ 
biopsy WSI were also included in this study. Each model 
in DeepGrade outputs the two class prediction prob-
abilities for each tile (P(NHG3|tilei) and P(NHG1|tilei)). 
The P(NHG3|tilei) class probability from each of the 20 
models in the ensemble were averaged to provide the 
tile-level prediction. In order to obtain the patient-level 
predictions, all the tile-level predictions of all the WSI 
from each patient and the upper-percentile (99%) of the 
tile level predictions were considered. Regarding resected 
tumour specimens, as tumour detection was previously 
performed, a lower threshold was used with the upper-
quartile (75%) of the tile level predictions being consid-
ered. For NHG1 and NHG3, prediction performance 
of the DeepGrade model was evaluated against clini-
cally assigned NHG by pathologists on both the biopsy 
specimen (biopsy NHG) and on the surgically resected 
specimen (resected tumour NHG). The prediction per-
formances on the patient levels were measured using 
the receiver operating characteristic (ROC) curves and 
the linked area under the curve (AUC) using R pack-
age pROC [30]. The most optimal threshold for binary 
assignment into low- and high-risk groups was then 
determined using the Youden’s J statistic [31] compared 
to the resected tumour grade. A separate threshold 
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was calculated for DeepGrade predictions on resected 
tumour specimens. Agreement between the assigned 
NHG (from the biopsy specimen or the resected tumour 
specimen) and the obtained DeepGrade risk group was 
measured using Cohen’s kappa and the following inter-
pretations: 0-0.20: slight agreement, 0.21–0.40: fair 
agreement, 0.41–0.60: moderate agreement, 0.61–0.80: 
substantial agreement and 0.81-1.00: almost perfect 
agreement [32, 33]. Sensitivity or recall was measured 
as the probability of DeepGrade-high when the patient 
had NHG3, while specificity was measured as the prob-
ability of DeepGrade-low when the patient had NHG1. 
Furthermore, the DeepGrade model was applied on 
NHG2 tumours to sub-stratify the tumours into two 
groups: low- and high-risk groups. The classification per-
formance of the DeepGrade on the biopsy WSI was also 
compared to the classification performed on the resec-
tion WSI.

Survival analyses
Finally, the rates of recurrence-free survival (RFS) as 
defined by the presence of a locoregional or distant 
recurrence or death were compared between patients 
who were assigned in the DeepGrade-high and Deep-
Grade-low groups. The time-to-event was defined as 
the number of days between the date of initial diagnosis 
and either date of recurrence or loss of follow-up. The R 
packages ‘survival’ and ‘survminer’ were used to visual-
ise the survival outcomes between groups, and the ‘for-
estmodel’ package was used to estimate adjusted hazard 
ratios (HRs) using multivariate Cox proportional haz-
ards regression models. The other risk factor used in the 
model was age, considered as the only factor available at 
time of biopsy. Further sub-analyses were performed on 

oestrogen receptor (ER)-positive and human epidermal 
growth factor receptor 2 (HER2)-negative cases as deter-
mined by immunohistochemical and/or in situ hybridisa-
tion staining and available in the pathology report.

Results
Agreement between clinical grades on biopsy and resected 
specimens
First, we assessed the discrepancies between the clini-
cal assignment of NHG on the biopsy and subsequent 
resected specimens (Fig.  2). A quarter of the patients 
did not have a NHG assigned on the biopsy specimen in 
clinical routine, and 72% of the patients who had a biopsy 
NHG available were of NHG2. The overall agreement 
between the clinical grade assignments on the biopsy 
and on the resected tumour specimen was 65.5% when 
including patients for whom we had both diagnoses. 
When considering only cases that had a resected tumour 
NHG1 or NHG3, less than a third (148 out of 463 cases) 
also had a NHG1 or NHG3 in the biopsy specimen, the 
rest being assigned NHG2 or not having a grade at all. We 
observed a fair agreement with the Cohen’s kappa value 
of 0.40 (95% CIs: 0.34;0.46) between specimen types.

Assessment of the DeepGrade classification performance 
on the biopsy specimen
We evaluated the risk classification performance of 
the DeepGrade model on the biopsy specimens. We 
observed an AUC score of 0.962 (95% CI: 0.934; 0.991) 
for DeepGrade predictions compared to biopsy NHG1 
and NHG3 (Fig. 3A). For 168 out of 186 patients (90.3%) 
with biopsy NHG1 or NHG3 (Fig. 3B-C) the DeepGrade 
model and the pathologists were in agreement, repre-
senting an almost perfect agreement with a kappa value 

Fig. 2  Comparison between clinical Notthingham Histological Grade (NHG) assigned by pathologists on the biopsy and surgically resected specimens. 
A. confusion matrix, B. Sankey plot, diagnoses were in agreement when the same NHG was assigned to the biopsy specimen and to the resected tumour 
specimen
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of 0.81. Sensitivity was of 91.7% while specificity was of 
89.1%. Out of all 896 patients, only 0.8% (7) biopsy NHG3 
tumours were assigned to the DeepGrade low-risk group 
(Fig.  3C-D). Out of the 230 patients without a biopsy 
NHG, 135 (58.7%) were classified in the DeepGrade low-
risk group and 95 (41.3%) were classified in the high-risk 
group (Fig.  3C-D). In the ER-positive/HER2-negative 
subgroups, the observed AUC score was of 0.949 (95% 
CI: 0.901; 0.996) (Supplementary Fig. 1A-B).

Assessment of the DeepGrade classification performance 
compared to the clinical grade on the resected tumour 
specimen
To test our hypothesis that not only can the DeepGrade 
model predict the NHG of the biopsy, but also predict 
the clinically assigned NHG1 and NHG3 grades assigned 
on the resected specimens, we compared the predic-
tion results obtained (Fig.  4). An example of the Deep-
Grade prediction results on a biopsy WSI is illustrated 
in Fig. 4A. We observed an AUC score of 0.908 (95% CI: 
0.882; 0.934) when comparing the DeepGrade model 
prediction obtained on the biopsy versus the clinically 
assigned NHG1 and NHG3 on the resected tumour 

(Fig. 4B). Agreement between the risk-group predictions 
obtained using the biopsy and that of the pathologist for 
resected specimens with NHG1 and NHG3 was observed 
for 382 out of 464 patients (82.3%) and the kappa value 
was 0.65 indicating substantial agreement (Fig. 4C). Sen-
sitivity was of 78.8% and specificity was of 86.8%. When 
looking at the patients who were in the DeepGrade-low 
risk group, but who had a resected tumour of NHG3, the 
clinical biopsy grade was either NHG2 or not graded in 
91% of the cases, and only five patients had NHG3 on 
both biopsy and resected tumour specimen (Fig.  4D). 
Out of the 432 patients who had a resected tumour with 
NHG2, 281 (65.0%) were assigned to the DeepGrade-low 
risk group while 151 (35.0%) were assigned to the Deep-
Grade-high risk group from biopsies (Fig. 4D). In the ER-
positive/HER2-negative subgroup the obtained AUC was 
of 0.881 (95% CI: 0.846–0.917) (Supplementary Fig. 1C-
D). The sensitivity in this subgroup was of 81.3% and the 
specificity was of 80.6%.

Fig. 3  DeepGrade prediction results obtained on biopsy specimens compared to the clinical biopsy Nottingham Histological Grade (NHG) assigned 
by pathologists. A. Receiver Operating Curve (ROC) of the patient-level predictions obtained by the DeepGrade model compared to biopsy NHG1 and 
NHG3. B. Sankey plot of the biopsy NHG compared to the obtained DeepGrade risk group for the 186 patients who had a biopsy NHG1 or NHG3. C. 
Confusion matrix for all 896 patients comparing biopsy NHG and predicted DeepGrade risk group. D. Sankey plot for all patients. Diagnoses were in agree-
ment when patients were DeepGrade-low and NHG1 or DeepGrade-high and NHG3. Patients with biopsy NHG2 or with no biopsy NHG were stratified 
as either low-risk or high-risk
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Comparison between DeepGrade risk groups on biopsy 
and resected tumour specimens
To verify whether the results obtained on the biopsy 
specimens were in line with those obtained on the 
resected tumour specimen, we compared the Deep-
Grade risk group for 801 patients for which we had both 
specimens available (Fig. 5). Almost three quarters of the 
patients were assigned the same DeepGrade risk group 
on the biopsy and resected specimens. This proportion 
was even higher when considering only patients with a 
resected tumour of NHG1 or NHG3, with 80.8% of the 
patients assigned the same DeepGrade risk group.

Prognostic performance of DeepGrade on tumour biopsies
The prognostic performance of the DeepGrade model on 
biopsy specimens was measured based on recurrence-
free survival and was visualised using Kaplan-Meier 
curves. The independent prognostic value was measured 
using multivariable Cox proportional hazards model 
adjusting for age, resembling information available at 
the biopsy stage. When including all patients, the biopsy 
DeepGrade model was found to be a predictor of recur-
rence-free survival with an estimated hazard ratio of 2.01 
(p = 0.033, 95% CI: 1.06; 3.79) for patients in the Deep-
Grade-high group compared to those in the DeepGrade-
low group, independently of the patient’s age (Fig. 6A-B). 
Subgroup analyses on patients with ER+/HER2- tumours 

Fig. 4  DeepGrade prediction results obtained on biopsy specimens compared to the clinical Nottingham Histological Grade (NHG) assigned by the pa-
thologist on the resected specimen. A. Example of a whole slide image with prediction results. Red is more likely to be predicted as high risk, or in other 
words the predicted probability for each tile to be classified as high-risk. The patient is classified DeepGrade high as the upper percentile of the mean 
values across all tiles was over the obtained threshold of 0.83. B. Receiver Operating Curve (ROC) of the patient-level DeepGrade model prediction versus 
the resected tumour grades NHG1 and NHG3 assigned by a pathologist. C. Sankey plot of the proportion of patients predicted with DeepGrade-high 
and -low versus the resected tumour grade NHG1 and NHG3. D. Sankey plot with results of all biopsy specimen comparing the obtained DeepGrade 
risk group with both the biopsy NHG and the resected tumour NHG. Diagnoses were in agreement when patients were low-risk biopsy DeepGrade and 
resected tumour NHG1 or high-risk biopsy DeepGrade and resected tumour NHG3. Patients with resected tumour NHG2 were stratified as either low-risk 
or high-risk
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also showed that DeepGrade was a predictor of recur-
rence-free survival with an estimated hazard ratio of 2.12 
(p = 0.044, 95% CI: 1.02; 4.43) for patients in the Deep-
Grade-high group compared to those in the DeepGrade-
low group, independently of the patient’s age (Fig. 6C-D).

Discussion
The aim of this study was to investigate if the DeepGrade 
model, previously developed to risk-stratify patients 
based on resected tumour specimens, could also be 
used to risk-stratify biopsy specimens. We observed a 
high classification performance when comparing the 

DeepGrade predictions on the biopsy specimen to the 
pathologist-assigned biopsy NHG. Most interestingly, the 
DeepGrade model could predict the histological grade 
of the resected tumour specimen while analysing only 
biopsy material. Furthermore, classification of patients 
using the DeepGrade model was predictive of recur-
rence-free survival at point of biopsy.

Neoadjuvant therapy is currently recommended to 
most HER2-positive and triple negative breast cancers, 
of which the vast majority are high-grade tumours. The 
identification of patients with high-grade tumours at 
the time of biopsy is essential for the decision to treat 

Fig. 6  Recurrence-free survival outcomes for breast cancer patients by DeepGrade risk-group obtained on the biopsy specimen. A. Kaplan-Meier curves 
for patients stratified by biopsy DeepGrade-low and -high risk groups. The high-risk group had the worst prognosis. B. Forest plot from multivariable Cox 
proportional hazard regression including the biopsy DeepGrade risk groups and age at diagnosis. Three patients had missing data for age. C. Kaplan-
Meier curves for ER-positive/HER2-negative patients stratified by biopsy DeepGrade-low and -high risk groups. D. Forest plot from multivariable Cox 
proportional hazard regression for ER-positive/HER2-negative patients including the biopsy DeepGrade risk groups and age at diagnosis

 

Fig. 5  Comparison of DeepGrade risk groups on biopsy and resected specimens. A. Confusion matrix for all Nottingham Histological Grade (NHG) grades 
combined. B. Confusion matrix for only resected grades NHG1 and NHG3

 



Page 9 of 11Boissin et al. Breast Cancer Research           (2024) 26:90 

a patient with neoadjuvant chemotherapy [7, 34], and 
especially within the larger ER-positive, HER2-negative 
subgroup [7]. However, conventional histological grading 
of biopsies by pathologists remains challenging and most 
biopsies are assigned the intermediate NHG2, or are not 
graded at all [14, 18]. This lack of precision in biopsy 
grading leads to a discrepancy between pathologists, and 
in one cohort up to 45% of women had a change in diag-
nosis between the biopsy and the resected tumour [18]. 
We found that 41% of patients who were not assigned a 
grade on the biopsy were assigned to the high-risk group 
by DeepGrade, of which 54% were actually assigned as 
NHG3 by pathologists on their resected tumour speci-
men. Earlier diagnosis could assist with earlier treatment 
decisions.

Several studies have developed models to predict 
grade using deep learning models on WSI from resected 
tumour specimens but not using core needle biop-
sies [20–23, 35, 36]. In particular, Wang et al. obtained 
an AUC of 0.907 for DeepGrade in their external data 
regarding resected tumours which is in line with the 
accuracy we obtained on the biopsy specimen when 
comparing to resected tumours of NHG1 versus NHG3 
(0.908) [23]. Others who have predicted grade into two 
groups (low-grade and high-grade) on resected tumour 
specimens obtained agreements around 80%, and kappa 
values between 0.59 and 0.64 [35, 37]. Despite predicting 
the resected specimen grade using only biopsy material, 
we achieved high performance results among NHG1 and 
NHG3 tumours with an agreement of 82% and a kappa 
value of 0.65 between biopsy DeepGrade risk groups and 
pathologist-assigned NHG on resected tumours. As a 
comparison, only 32% of the 463 cases who were NHG1 
or NHG3 on the resected specimen were also assigned 
NHG1 or NHG3 on the biopsy specimen by a patholo-
gist. In the literature, agreement between biopsy and 
resected tumour NHG by pathologists for all three grades 
is usually around 75% and ranges from 59–91% [38]. The 
results presented were obtained without performing 
prior tumour predictions as the biopsy material is smaller 
and the presence of benign tissue should not influence 
significantly the presence of high risk morphological pat-
terns that are identified by the DeepGrade model.

The use of biopsy specimens in computational pathol-
ogy within breast cancer is relatively rare in the literature, 
as opposed to the work performed in prostate cancer 
[39–41]. A number of studies focused on the identifica-
tion of tumour areas [42–45], while others aimed to pre-
dict the response to neoadjuvant therapy, in part using 
grade as their training material [46, 47]. The DeepGrade 
model extracts histological grade-related morphological 
information from images using deep CNN models. To 
date no risk stratification methods for survival predic-
tion have been proposed using biopsy material, however 

different approaches have been suggested related to grade 
[20], grading sub-components [22, 48], and intra-tumour 
heterogeneity [49] using resected tumour specimens only. 
The proposed methodology in this study could be used as 
a decision support tool to complement pathologists and 
treating physicians, as it establishes a risk assessment of 
all tumours, including those that are hard to grade. It also 
has the benefit of providing a solution that is less costly 
and with shorter waiting times, both for the patient and 
for the healthcare providers than other methods used for 
risk stratification such as Oncotype DX (Exact Sciences 
Corp., Madison, WI, USA) or Prosigna (Veracyte Inc., 
South San Francisco, CA, USA) gene expression assays 
[50, 51]. Both have been developed for patient risk strati-
fication and treatment decisions on the resected tumour 
specimens, but have also been applied outside of their 
intended use, for assessment of core needle biopsy speci-
mens with conclusive results [52–55].

This is the first study demonstrating risk stratification 
of NHG2 tumours already at the time of biopsy using 
deep learning. Although several methods are avail-
able and implemented in clinical routine to risk stratify 
patients, most use gene expression profiling assays [52–
55], which are time-consuming methods and remain 
costly [56]. The risk stratification method presented in 
this study has the advantages of providing a result to the 
pathologist in a short time-frame and at a very low cost 
given most pathology laboratories in high-income coun-
tries already use digitised WSI to some extent in routine 
diagnostics [23].

Limitations of this study include the fact that the study 
was based on retrospective material in order to obtain a 
large enough sample size when only including one hospi-
tal. Nonetheless, the small number of recurrence events 
leads to low-powered survival analyses. Even though 
most pathologists would not have direct access to the 
biopsy grade when assigning a grade to the resected spec-
imen, it was possible for them to look into the patient’s 
electronic record and to make a decision based on the 
previously assigned grade. The discrepancies in diagno-
ses observed here as well as in previous work would how-
ever point into the direction that the two grades are given 
independently. Furthermore, a limitation of the present 
study is that a subset of this study, 173 patients (19.3%) 
were included as training data of the initial DeepGrade 
model [23]. However, the biopsy material itself was never 
used for the training of the original DeepGrade model 
representing in itself a fully independent set from the 
original data, and results presented in Supplementary 
Fig. 2 show that performance remains high. In the future, 
further analyses on patients from another hospital would 
be beneficial to confirm the results obtained.



Page 10 of 11Boissin et al. Breast Cancer Research           (2024) 26:90 

Conclusions
In conclusion, we found that the resected tumour grade 
could be predicted by DeepGrade based on using only 
biopsy specimens. With relatively simple implementa-
tion, high-risk tumours could therefore be identified at 
the preoperative stage. Like in resected tumours, Deep-
Grade could also stratify NHG2 tumours on biopsy spec-
imens into low- and high-risk groups. In the future, this 
could provide decision support to pathologists as well 
as treating physicians to improve the quality of relevant 
information for clinical decisions earlier on in the pro-
cess, and thus potentially reduce both over- and under-
treatment of patients in the neoadjuvant setting.
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