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Abstract
Background Patients with a Breast Imaging Reporting and Data System (BI-RADS) 4 mammogram are currently 
recommended for biopsy. However, 70–80% of the biopsies are negative/benign. In this study, we developed a deep 
learning classification algorithm on mammogram images to classify BI-RADS 4 suspicious lesions aiming to reduce 
unnecessary breast biopsies.

Materials and methods This retrospective study included 847 patients with a BI-RADS 4 breast lesion that 
underwent biopsy at a single institution and included 200 invasive breast cancers, 200 ductal carcinoma in-situ 
(DCIS), 198 pure atypias, 194 benign, and 55 atypias upstaged to malignancy after excisional biopsy. We employed 
convolutional neural networks to perform 4 binary classification tasks: (I) benign vs. all atypia + invasive + DCIS, 
aiming to identify the benign cases for whom biopsy may be avoided; (II) benign + pure atypia vs. atypia-
upstaged + invasive + DCIS, aiming to reduce excision of atypia that is not upgraded to cancer at surgery; (III) benign 
vs. each of the other 3 classes individually (atypia, DCIS, invasive), aiming for a precise diagnosis; and (IV) pure atypia 
vs. atypia-upstaged, aiming to reduce unnecessary excisional biopsies on atypia patients.

Results A 95% sensitivity for the “higher stage disease” class was ensured for all tasks. The specificity value was 
33% in Task I, and 25% in Task II, respectively. In Task III, the respective specificity value was 30% (vs. atypia), 30% (vs. 
DCIS), and 46% (vs. invasive tumor). In Task IV, the specificity was 35%. The AUC values for the 4 tasks were 0.72, 0.67, 
0.70/0.73/0.72, and 0.67, respectively.

Conclusion Deep learning of digital mammograms containing BI-RADS 4 findings can identify lesions that may not 
need breast biopsy, leading to potential reduction of unnecessary procedures and the attendant costs and stress.
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Introduction
Breast cancer is the most common malignancy of females 
in the United States [1]. Mammography is widely used 
for screening to detect early breast cancer and the ben-
efits have been shown in multiple clinical trials [1, 2]. 
One of the concerns of mammography screening is the 
high rate of detected findings recommended for biopsy 
that are found to be benign. The creation of the Breast 
Imaging Reporting and Data System (BI-RADS) aimed to 
enhance the description and appropriate classification of 
mammographic findings and to enable the monitoring of 
outcomes to elevate the standard of patient care [3]. Most 
(70–80%) BI-RADS 4 findings, which indicate a suspi-
cious abnormality for which biopsy is recommended, are 
found to be benign [3]. It is estimated that over 970,000 
breast biopsies are unnecessary in the United States 
annually [4]. The high false positive rate increases patient 
anxiety/stress, clinical procedures, and medical costs.

Computer-aided diagnosis has been proposed to 
improve breast cancer diagnosis through the analysis of 
mammograms [5]. Recent advancements in deep learning 
techniques empower the implementation of computer-
aided diagnostic models [6]. The ever-increasing com-
putational capacity and the availability of big data offer 
unprecedented opportunities for deep learning modeling 
in multiple image classification tasks [7–9]. Unlike the 
use of hand-crafted imaging features, deep learning mod-
els extract image features automatically through convolu-
tional neural networks (CNNs) [6]. CNN has been shown 
to be effective for various breast imaging applications [7], 
such as risk assessment [10], breast tumor detection [11], 
and breast density classification [12]. In this study, the 
purpose was to build deep learning models using digital 
mammograms to predict biopsy outcomes for BI-RADS 
4 lesions, aiming at reducing unnecessary biopsy rates for 
patients who do not have breast cancer.

Methods and materials
Study cohort and imaging dataset
We conducted an Institutional Review Board (IRB)-
approved retrospective study. Informed consent from 
patients was waived due to the retrospective nature. This 
study included 847 patients from 2016 to 2018 identified 
in the general population breast cancer screening at our 
institution. All patients had a BI-RADS 4 diagnosis and 
biopsy-proven outcomes, including 194 benign lesions, 
198 pure atypia, 200 ductal carcinoma in situ (DCIS), 200 
invasive carcinoma, and 55 atypia that were upstaged to 
malignancy after excisional biopsies. All of the lesions 
were detected with screening mammography. For each 
patient, bilateral craniocaudal (CC) and mediolateral 
oblique (MLO) views of the (diagnostic) mammogram 
images were collected. Subclassifcation of BI-RADS 4 
was being incorporated into our clinical practice during 

this timeframe. This is why some cases are rated as 4 
without subset classification and others have subclass 
information. All mammographic examinations were 
acquired by Hologic/Lorad Selenia (Marlborough, MA) 
full-field digital mammography units.

Classification tasks for biopsy outcome prediction
For BI-RADS 4 patients, standard-of-practice starts with 
core needle biopsy for tissue diagnosis. If an atypia is 
diagnosed on the initial core biopsy, an excisional biopsy 
will be performed to further determine the presence of 
DCIS or invasive malignancy. Based on the clinical work-
flow, we designed the four binary classification tasks 
below (shown in Fig. 1) to classify/predict the biopsy out-
come for the BI-RADS 4 lesions.

Task 1 To distinguish patients with benign lesions from 
all the other lesions (i.e., benign vs. atypia, invasive, and 
DCIS), aiming to identify the potential benign cases for 
which core needle biopsy may be avoided. In our dataset, 
this is to classify 194 benign vs. the combination of 198 
pure atypia, 55 upstaged malignancy, 200 invasive, and 
200 DCIS. This task is directly relevant towards reducing 
unnecessary breast biopsies.

Task 2 To distinguish patients with benign lesions and 
pure atypia from others (i.e., benign and pure atypia vs. 
upstaged malignancy, invasive, and DCIS). This is deemed 
a robustness analysis of Task 1, and it uses a different clini-
cal threshold to distinguish non-malignant vs. malignant 
lesions. This is to classify the combination of 194 benign 
and 198 pure atypia vs. the combination of 55 upstaged 
malignancy, 200 invasive, and 200 DCIS.

Task 3 To distinguish patients with benign lesions with 
each of the malignant outcomes (i.e. benign vs. atypia, 
benign vs. invasive, and benign vs. DCIS, respectively), 
aiming for precision diagnosis. This is to classify 194 
benign vs. the combination of 198 pure atypia and 55 
upstaged malignancy; 194 benign vs. 200 invasive; and 
194 benign vs. 200 DCIS.

Task 4 To distinguish between cases of pure atypia vs. 
cases of atypia in patients exhibiting DCIS or invasive 
malignancy, we rely on excisional biopsy results. In this 
task, we aim to identify pure atypia patients that would 
potentially require no additional excisional biopsy. This 
is to classify 198 pure atypia vs. 55 upstaged malignancy 
patients.

Classification with deep learning
We used CNN to build the classification models using 
mammogram images as input. All mammogram images 
went through a pre-processing step. First, we ran the 
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LIBRA software package version 1.0.4 (Philadelphia, PA, 
2016) [13] to extract the whole breast region (excluding 
non-breast regions in the images). Then the images were 
normalized to a fixed intensity range of 0 to 1 and subse-
quently resampled to the same size of 256 × 256 using the 
bicubic interpolation algorithm.

The structure of the CNN model was a VGG16 net-
work [14], a 16-layer convolutional neural network. The 
network was pretrained with a very large non-medical 
dataset (ImageNet) [15] and then fine-tuned with the 
training set of our mammogram image dataset. Our 
CNN model was implemented using Python (version 
3.6), TensorFlow (version 1.13), and Keras (version 2.1.6). 
The model was run on a TitanX Pascal Graphics Pro-
cessing Unit (GPU) with 12 GB RAM. Adam [16] was 
employed as the optimizer, with a batch size of 32 and a 
learning rate of 0.0001. Dropout with a probability of 0.5 
was applied during the training procedure. Horizontal 
flipping was used for data augmentation. To combine CC 
and MLO view’s prediction, we first generated predic-
tions from individual models on each view with the same 
data split. Then, we organized each model’s predictions 
as feature columns, trained a logistic regression model on 
the training dataset and evaluated its performance on the 
testing set.

Statistical analysis
We performed a patient-wise data split for CNN model 
training and testing. For Task 1–3, we randomly selected 
70% of the data for training, 10% of the data for valida-
tion, and 20% independent data for testing. For Task 4, 
due to the small number of upstaged atypia cases, we 
used 10-fold-cross validation for evaluation. The area 

under the receiver operating characteristic curve (AUC) 
was calculated to measure the model performance. We 
also calculated the specificity rates while maintaining 
a sensitivity rate of 100%, 99%, and 95%, respectively. 
These measures represent the proportion of benign or 
non-malignant lesions that we could potentially identify 
to avoid unnecessary biopsy. We used the bootstrapping 
methods to compute the 95% Confidence Interval (CI) 
[17]. DeLong’s test [18] was used to compare differences 
in AUC values. All statistical analyses were performed 
using MATLAB software, version-R2020a (The Math-
Works, Natick, MA).

Results
Patient characteristics
Table 1 shows the key characteristics of the 847 patients. 
BI-RADS 4/4A/4B/4 C spans the study cohort, including 
179 (21.1%) BI-RADS 4 patients, 257 (30.3%) BI-RADS 
4 A patients, 217 (25.6%) BI-RADS 4B patients, and 120 
(14.2%) BI-RADS 4 C patients. The mean age ± standard 
deviation (SD) of patients was 59 ± 12 years old for the 
entire cohort, with 56 ± 13 for patients with benign lesion, 
56 ± 10 for patients with pure atypia lesion, 62 ± 11 for 
patients with DCIS breast cancer, 61 ± 12 for patients 
with invasive breast cancer, and 63 ± 11 for patients with 
atypia lesion that were upstaged to malignancy, respec-
tively. Among all the tumor cases, 307 (67.5%) had a 
tumor size less than 2 cm, 71(15.6%) patients had a tumor 
size between 2 and 5  cm, and 11 (2.4%) patients had a 
tumor size larger than 5 cm. 56.2% of the patients were 
post-menopausal and 58.3% of the patients had a family 
history of breast cancer.

Fig. 1 Clinical workflow of the BI-RADS 4 patients and the 4 classification tasks
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Model performance
The ROC curves for the highest performance of each task 
are shown in Fig. 2. The results of Tasks 1 to 3 are shown 
in Table  2. For Task 1 (benign vs. atypia + DCIS + inva-
sive), the AUC was 0.66 (95% CI, 0.58–0.74) using CC 
view images and 0.70 (95% CI, 0.60–0.78) using MLO 
view images. When combining CC and MLO views, 
the model AUC was 0.72 (95% CI, 0.62–0.80). For Task 
2 (benign + pure atypia vs. DCIS + invasive + atypia with 
DCIS or invasive), the AUC was 0.66 (95% CI, 0.58–0.74) 
using images from CC view and 0.67 (95% CI, 0.60–0.74) 
using images from MLO view. When combining CC 
and MLO views, the AUC was 0.67 (95% CI, 0.60–0.74). 
Given a breast cancer sensitivity of 95%, the specificity 
for Task 1 and Task 2 was 33% and 25%, respectively. This 
indicates that 33% and 25% of biopsies could potentially 
be avoided while maintaining a 95% sensitivity for breast 
cancer diagnosis.

Similarly, given a breast cancer sensitivity of 99%, 
the specificity for Task 1 and Task 2 was 16% and 16%, 
respectively. When given a sensitivity of 100%, the speci-
ficity for Task 1 and Task 2 was 16% and 9%, respec-
tively; this indicates that without missing any breast 
cancer patients, our model is able to identify 16% and 9% 

benign patients. As can be seen, there is a slight drop in 
the performance of Task 2 compared to Task 1, possibly 
due to mixing pure atypia patients with benign patients 
increasing the difficulty of the classification. For Task 3, 
the highest AUC was 0.70 (95% CI, 0.58–0.79) on benign 
vs. atypia; and conditioned at the 95% sensitivity for dis-
ease, the specificity was 30%; the highest AUC was 0.73 
(95% CI, 0.62–0.81) on benign vs. DCIS, and conditioned 
at the 95% sensitivity for disease, the specificity was 25%; 
the highest AUC was 0.72 (95% CI, 0.61–0.81) on benign 
vs. invasive; and conditioned at the 95% sensitivity for 
disease, the specificity was 46%.

Table  3 shows the results of Task 4. We observed a 
mean AUC of 0.67 ± 0.14 and the highest specificity of 
35% using images from MLO view, which indicates 35% 
of the unnecessary excisional biopsies in atypia patients 
may be avoided based on the prediction of our models. 
Note that here the specificity remains the same at the 
malignancy sensitivity of 95%, 99%, or 100%, due to the 
small size of the samples in this task. In comparing the 
AUC values of the different views (i.e., CC vs. MLO view, 
CC vs. CC + MLO view, and MLO vs. CC + MLO view) in 
Tables  2 and 3, all p-values (ranging from 0.12 to 0.77) 
were not statistically significant.

Table 1 Patient and imaging key characteristics of the study cohort
Benign (n = 194) Pure atypia 

(n = 198)
DCIS (n = 200) Invasive 

(n = 200)
Upstaged atypia 
(n = 55)

Total 
(n = 847)

Age (years)± Std: 57 ± 13 56 ± 10 62 ± 11 61 ± 12 63 ± 11 59 ± 12
Menopausal status: Number (%)
Premenopausal 44 (22.7) 0 (0) 30 (15) 18 (9) 24 (43.6) 116 (13.7)
Postmenopausal 41 (21.1) 65 (32.8) 165 (82.5) 175 (87.5) 31 (56.4) 477 (56.3)
Unknown/Missing 109 (56.2) 133 (67.2) 5 (2.5) 7 (3.5) 0 (0) 254 (30)
Family history: Number (%)
No family history 150 (77.3) 87 (43.9) 36 (18) 45 (22.5) 7 (12.7) 325 (38.4)
With family history 38 (19.6) 110 (55.6) 154 (77) 144 (72) 47 (85.5) 493 (58.2)
Unknown/Missing 6 (3.1) 1 (0.5) 10 (5) 11 (5.5) 1 (1.8) 29 (3.4)
Density: Number (%)
Fatty 8 (4.1) 1 (0.5) 7 (3.5) 1 (0.5) 0 (0) 17 (2)
Scattered fibroglandular tissue 82 (42.3) 69 (34.8) 88 (44) 88 (44) 33 (60) 360 (42.5)
Heterogeneously dense 91 (46.9) 116 (58.6) 96 (48) 93 (46.5) 22 (40) 418 (49.4)
Extremely dense 1 (0.5) 3 (1.5) 2 (1) 2 (1) 0 (0) 8 (0.9)
Unknown/Missing 20 (10.3) 10 (5.1) 7 (3.5) 17 (8.5) 0 (0) 54 (6.4)
BI-RADS score: Number (%)
4 18 (9.3) 51 (25.8) 55 (27.5) 28 (14) 27 (49.1) 179 (21.1)
4A 107 (55.2) 89 (44.9) 41 (20.5) 13 (6.5) 7 (12.7) 257 (30.3)
4B 59 (30.4) 42 (21.2) 63 (31.5) 41 (20.5) 12 (21.8) 217 (25.6)
4C 6 (3.1) 12 (6.1) 26 (13) 71 (35.5) 5 (9.1) 120 (14.2)
5 2 (1) 0 (0) 0 (0) 13 (6.5) 0 (0) 15 (1.8)
Unknown/Missing 2 (1) 4 (2) 15 (7.5) 34 (17) 4 (7.3) 59 (7)
Tumor size: Number (%)
< 2 cm N/A 126 (63) 157 (78.5) 24 (43.6) 307 (67.5)
2–5 cm 34 (17) 36 (18) 1 (1.8) 71 (15.6)
5 cm 7 (3.5) 4 (2) 0 (0) 11 (2.4)
Unknown/Missing 33 (16.5) 3 (1.5) 30 (54.5) 66 (14.5)
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Discussion
In this study, we built deep learning models on mam-
mogram images aiming to reduce potentially unneces-
sary breast biopsies. We collected a BI-RADS 4 patient 
cohort that consists of five categories of outcomes, 
namely, benign, pure atypia, DCIS, invasive, and atypia 
that were upstaged to malignancy. We designed four 
classification tasks, each with an implication for clinical 

considerations. We also reported the specificity of the 
models given a high sensitivity to measure the magnitude 
of potential avoidance of unnecessary biopsies. By ensur-
ing 100% (or 99%) sensitivity of the “higher stage disease” 
(atypia, DCIS, and invasive breast cancer), our models 
can identify 5% (or 14%) of patients who may poten-
tially avoid unnecessary core needle biopsies, and 7% (or 
10%) of patients who may potentially avoid unnecessary 

Fig. 2 ROC curves for the biopsy outcome prediction models. Shown here are the settings with the highest AUCs. a) ROC curve of Task 1 and Task 2. Task 
1 curve is based on CC+MLO view; Task 2 curve is based on CC+MLO view. b) ROC curve of Task 3. For benign vs. atypia, the curve is based on MLO view; 
for benign vs. DCIS, the curve is based on CC+MLO view; for benign vs. invasive, the curve is based on MLO view. c) ROC curve of Task 4 based on CC view
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excisional biopsies. As a preliminary work, this study 
proves the concept that deep learning analysis of breast 
mammogram imaging can provide additional informa-
tion to improve the assessment of the BI-RADS 4 patients 
in breast cancer screening. If fully validated using larger 
datasets, our models may enhance clinical decision-mak-
ing on breast biopsy for BI-RADS 4 patients.

Among all the four tasks, Task 1 (benign biopsy out-
come vs. all the others) is the most important one to help 
achieve the goal of reducing unnecessary biopsy, as it is 
directly useful to identify potential benign lesions. The 
other three tasks provided additional insights for preci-
sion diagnosis. The AUC of Task 2 is slightly lower than 
that of Task 1, which is as expected, because the mixture 
of pure atypia and benign lesions as a single class in Task 
2 make it more difficult for the model to learn, espe-
cially when the sample size is not large. Task 3 (benign 
vs. each malignancy outcome) provides a closer look at 

distinguishing the several subcategories, where the AUCs 
show that it is harder for machine learning to distinguish 
benign vs. atypia, compared to distinguishing benign vs. 
DCIS and benign vs. invasive cancer. For Task 4, the AUC 
is relatively low, which may reflect the difficulty of learn-
ing further nuances of imaging features of initial atypia 
lesions, and/or the limitations of the smaller sample size 
for this task.

Looking at different views of the mammogram, we 
observe that both CC and MLO views have predictabil-
ity for all the  tasks, indicating both views contain infor-
mation related to the biopsy outcome. In Task 1, Task 2, 
and Task 3, the MLO view had slightly higher AUCs than 
the CC view, but the differences were not significant. For 
Task 4, it is the opposite that the CC view may be more 
related to predicting excisional biopsy outcome than the 
MLO view. In general, combining CC and MLO views 
increased AUC values but did not reach statistical signifi-
cance, which may also have to do with the sample sizes. 
The effects of CC and MLO views merit further investi-
gation in future work.

Some previous studies pertaining to BI-RADS 4 lesions 
have been reported, including using breast MRI [19], 
plasma microRNA [20], proteomic biomarkers [21, 22], 
etc. Henderson and colleagues showed by integrating 
breast serum proteomic markers into the clinical analy-
sis process, 45% of unnecessary biopsies in BI-RADS 4 
lesions may be spared. It should be noted that 204/540 
benign subjects in that study were not biopsy-proven 
[23]. Tiancheng He and colleagues [24] built a biopsy 
decision support system for BI-RADS 4 lesions using 
deep learning, where both atypia and lobular carcinoma 

Table 2 AUC and specificity of Task 1–3: Task 1: benign outcome vs. all the other outcomes. Task 2: benign outcome and pure atypia 
outcome vs. all the other outcomes. Task 3: benign outcome vs. each of the other outcome respectively
Task View AUC AUC 95% confi-

dence interval
Specificity (%)
Given disease 
sensitivity = 100%

Given disease 
sensitivity = 99%

Given 
disease 
sensitiv-
ity = 95%

Task1 CC 0.66 [0.58 0.74] 5 9 25
MLO 0.70 [0.60 0.78] 14 16 33
CC + MLO 0.72 [0.62 0.80] 16 16 33

Task2 CC 0.66 [0.58 0.74] 7 9 19
MLO 0.67 [0.60 0.74] 7 10 25
CC + MLO 0.67 [0.60 0.74] 9 16 23

Task3 Benign vs. Atypia CC 0.62 [0.50 0.73] 0 0 18
MLO 0.70 [0.58 0.79] 17 17 30
CC + MLO 0.68 [0.57 0.78] 17 17 30

Benign vs. DCIS CC 0.70 [0.61 0.79] 5 5 25
MLO 0.71 [0.60 0.81] 7 7 30
CC + MLO 0.73 [0.62 0.81] 6 6 25

Benign vs. Invasive CC 0.64 [0.60 0.80] 9 9 22
MLO 0.72 [0.61 0.81] 5 5 46
CC + MLO 0.72 [0.61 0.81] 5 5 43

Table 3 AUC and its standard deviation (STD), specificity of Task 
4: pure atypia outcome vs. upstaged atypia outcome. 10-fold 
cross-validation was used for model training
Task View AUC 

(STD)
Specificity (%)

Given 
disease 
sensitiv-
ity = 100%

Given disease 
sensitiv-
ity = 99%

Given 
disease 
sensitiv-
ity = 95%

Task4 CC 0.67 
(0.14)

35

MLO 0.58 
(0.16)

18

CC + MLO 0.65 
(0.14)

18



Page 7 of 8Liu et al. Breast Cancer Research           (2024) 26:82 

in situ (LCIS) were classified as “benign”. In most clinical 
settings, patients with atypia and LCIS may still require 
biopsy or may be candidates for possible chemopreven-
tion using anti-estrogen therapy [25]. It is thus critical to 
distinguish pure atypia from atypia that are upstaged to 
malignancy. In our study, the deep learning models may 
identify 35% of the pure atypia that may potentially spare 
excisional biopsies conditioned on 100% sensitivity.

In addition to digital mammograms, it will be also 
important to explore how other breast imaging modali-
ties and/or clinical variables may influence the accurate 
assessment of the BI-RADS 4 patients. For example, 
additional ultrasound screenings have demonstrated 
improved detection rates for breast cancer [26]. Digital 
breast tomosynthesis depicts multiplicity of some masses 
that may otherwise have been unnoticed in other image 
modalities [27]. Some of these imaging modalities are 
often performed before biopsy and thereby they may pro-
vide additional information to improve the performance 
of the proposed deep learning models. In future stud-
ies, we plan to build advanced machine learning models 
using multi-modal imaging data and clinical variables.

Our study has limitations. First, the dataset was col-
lected retrospectively from a single institution and the 
sample size is relatively small. This preliminary study is 
to prove the concept, and it is warranted to further evalu-
ate our models using external and larger patient cohorts 
to increase the generalizability across different practice 
types and screening populations of different regions. 
Our study cohort is representative of the local screening 
population of our region, but we notice that the mean age 
of our cohort is ∼ 60 years old, which may suggest lower 
breast density and possibly higher sensitivity of mam-
mography, when compared to the age group of 40–50 
years old women in the screening population. In addi-
tion, we employed the simple VGG16 network in our 
deep learning model backbone for this preliminary study. 
More sophisticated deep learning modeling techniques 
may further improve the model performance. Finally, 
following a similar approach to examine the effects of 
digital breast tomosynthesis will be worthy of further 
investigation.

In summary, this study shows that deep learning mod-
els on mammogram images can classify breast biopsy 
outcomes for BI-RADS 4 patients. While this is a pre-
liminary study that needs further evaluation, it shows 
the deep learning approach has the promise to improve 
decision-making for breast biopsies to potentially reduce 
unnecessary biopsies and the attendant costs and stress 
for the BI-RADS 4 patients.
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