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Abstract 

Background Patient‑derived xenograft (PDX) models serve as a valuable tool for the preclinical evaluation of novel 
therapies. They closely replicate the genetic, phenotypic, and histopathological characteristics of primary breast 
tumors. Despite their promise, the rate of successful PDX engraftment is various in the literature. This study aimed 
to identify the key factors associated with successful PDX engraftment of primary breast cancer.

Methods We integrated clinicopathological data with morphological attributes quantified using a trained artificial 
intelligence (AI) model to identify the principal factors affecting PDX engraftment.

Results Multivariate logistic regression analyses demonstrated that several factors, including a high Ki‑67 labeling 
index (Ki‑67LI) (p < 0.001), younger age at diagnosis (p = 0.032), post neoadjuvant chemotherapy (NAC) (p = 0.006), 
higher histologic grade (p = 0.039), larger tumor size (p = 0.029), and AI‑assessed higher intratumoral necrosis 
(p = 0.027) and intratumoral invasive carcinoma (p = 0.040) proportions, were significant factors for successful PDX 
engraftment (area under the curve [AUC] 0.905). In the NAC group, a higher Ki‑67LI (p < 0.001), lower Miller‑Payne 
grade (p < 0.001), and reduced proportion of intratumoral normal breast glands as assessed by AI (p = 0.06) collectively 
provided excellent prediction accuracy for successful PDX engraftment (AUC 0.89).

Conclusions We found that high Ki‑67LI, younger age, post‑NAC status, higher histologic grade, larger tumor size, 
and specific morphological attributes were significant factors for predicting successful PDX engraftment of primary 
breast cancer.

Keywords Breast cancer, Patient‑derived xenograft, Engraftment, Deep learning, Artificial intelligence, 
Morphometrics, Neoadjuvant chemotherapy, Young age, Triple‑negative breast cancer

Introduction
Breast cancer is one of the most commonly diagnosed 
cancers in women worldwide and it continues to be a 
significant cause of morbidity and mortality. Despite the 
numerous advancements in cancer treatment, the hetero-
geneity and complexity of breast tumors have presented 
significant obstacles in identifying effective therapies 
for individual patients. Patient-derived xenograft (PDX) 
models offer a promising solution to this problem by ena-
bling the testing of novel therapies in preclinical mod-
els that more accurately reflect the genetic, phenotypic, 
and histopathological features of the original tumors. 
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However, establishing PDX models remains a challeng-
ing and resource-intensive process. Many factors impact 
the success of PDX models, including the quality of the 
tumor sample, the choice of engraftment site, the use of 
immune-deficient mice, and the timing and method of 
engraftment [1]. In particular, the low engraftment rate 
of PDX models has been a major obstacle to their wide-
spread use in preclinical studies [2].

Among all types of tumors, breast cancers have been 
shown to be particularly challenging when it comes to 
establishing PDX engraftment. Breast cancer has his-
torically exhibited relatively low but diverse engraftment 
success rates, ranging from 8 to 77% [3, 4]. Factors asso-
ciated with successful breast cancer PDX engraftment 
include applying hormonal supplementation (e.g., estro-
gen pellets) and using tumor samples with: a higher his-
tologic tumor grade, from specific tumor subtypes (e.g., 
triple-negative breast cancer [TNBC]), or from meta-
static tumors [3, 5–7]. Additionally, selecting appropriate 
host strains for the specific xenograft type can contribute 
to improved engraftment outcomes [1].

Artificial intelligence (AI) is emerging as a powerful 
tool in breast cancer research. Its ability to extract mor-
phometric features from breast cancer histopathology is 
increasingly being recognized as having great potential 
[8–11]. Some studies have demonstrated the efficacy of 
AI in accurately classifying various types of breast cancer, 
including the automatic detection of invasive ductal car-
cinoma (IDC) [8, 11].

In this study, we analyzed clinicopathologic factors and 
quantitatively assessed morphometric features extracted 
by AI to identify features associated with the success of 
PDX engraftment of primary breast cancer.

Materials and methods
Ethics statement
This research was approved by the Asan Medical Center 
review board (2016-0935 and 2020-0980). All patients 
signed informed consent forms prior to participation. All 
animal studies were conducted in compliance with the 
guidelines established by the Institutional Animal Care 
and Use Committee (IACUC) at Asan Medical Center 
and Ulsan University College of Medicine (2015-12-189, 
2018-12-059, and 2020-14-211).

Patient population and case selection
Patients enrolled in this study had histologically con-
firmed invasive breast cancer with tumors larger than 
1 cm that were detected through physical examination or 
imaging. Those who achieved radiologic complete remis-
sion or a significant reduction in tumor mass following 
neoadjuvant chemotherapy (NAC) were excluded. A total 
of 380 surgically resected tumor samples were collected 

from 2016 to 2021 at Asan Medical Center. These sam-
ples were obtained from patients who consented to 
undergo breast-conserving surgery, mastectomy, axillary 
lymph node dissection, or metastasectomy. Eight cases 
were subsequently excluded due to premature deaths of 
the engrafted mice, leaving 372 breast cancer cases for 
the final evaluation.

Clinicopathologic data acquisition
Clinicopathological features were gathered from the 
patients’ medical records, including surgical pathology 
reports. The histopathological findings were retrospec-
tively reviewed for all 372 surgical specimens. The pT and 
pN categories were evaluated based on the 8th edition of 
the American Joint Committee on Cancer cancer stag-
ing system [12]. When NAC was conducted, the residual 
cancer burden (RCB) and Miller-Payne grade were also 
assessed.

Estrogen receptor (ER) and progesterone receptor (PR) 
status were determined through immunohistochemi-
cal staining of formalin-fixed, paraffin-embedded tumor 
tissue sections. Positive staining was defined as nuclear 
staining in at least 1% of the tumor cells, and the hor-
mone receptor-positive (HR +) type was defined as ER 
and/or PR IHC-positive.

HER2 status was determined using both immuno-
histochemistry and, in equivocal cases, silver in  situ 
hybridization according to the guidelines from the Amer-
ican Society of Clinical Oncology/College of American 
Pathologists [13]. HER2 positivity was defined as IHC 
2 + or 3 + , or a SISH amplification ratio of HER2 gene 
signals to chromosome 17 signals greater than 2.0.

The percentage of tumor cells showing any degree 
of nuclear staining for Ki-67LI was recorded for each 
tumor. These percentages were recorded in increments 
of 10% as follows: 0 for 0–10%, 10 for 10–20%, 20 for 
20–30%, 30 for 30–40%, 40 for 40–50%, 50 for 50–60%, 
60 for 60–70%, 70 for 70–80%, 80 for 80–90%, and 90 for 
90–100%.

TNBC was defined as a subtype of breast cancer in 
which the tumor cells did not express ER or PR and also 
did not exhibit overexpression or amplification of HER2.

Histological TIL levels were estimated for all cases 
using the methods previously published by a TILs work-
ing group [14]. TILs were determined by calculating the 
percentage of the area occupied by mononuclear inflam-
matory cells within the stromal area of the invasive car-
cinoma. They were graded with 10% increments as for 
Ki-67LI.

In vivo tumor implantation and histopathological analysis
All experiments were performed in accordance with 
the approved protocol and relevant guidelines and 
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regulations. Detailed procedures are provided in the Sup-
plement Methods section (see Additional file 1).

AI‑assisted morphometric analysis
We developed an AI model for morphometric analysis to 
extract features for the prediction of PDX engraftment. 
The model was trained on WSIs of H&E stained surgically 
resected tissues from 64 breast cancer patients, scanned 
at 400 × magnification. The dataset was randomly parti-
tioned into a training set (65%) and a testing set (35%). 
The ResNet50 architecture, pre-trained on the ImageNet 
dataset, was implemented. Image augmentation tech-
niques such as color normalization, random rotation, and 
color jittering were applied solely to the training set. The 
model was trained using a batch size of 256 with a learn-
ing rate of 0.0003 and involved fifteen epochs using the 
Adam optimization algorithm. Fifteen epochs were per-
formed using the Adam optimization algorithm.

The model processed WSIs into 112 × 112 pixel non-
overlapping patches based on morphological simi-
larity. These patches were classified by a consensus 
meeting between two board-certified pathologists (J.L. 
and H.L.) into various tissue types, including adipose 
tissue (Fig.  1A), background (Fig.  1B), and necrosis 
(Fig. 1C).

Furthermore, we employed a unified classification, cat-
egorizing both carcinoma in situ and invasive carcinoma 
under the umbrella patch label ’carcinoma’ (Fig. 1D–G). 
In terms of other normal structures of the breast paren-
chyma, patches of stroma (Fig. 1H) and terminal ductal 
lobular units (TDLUs) (Fig. 1l) were also labeled.

To evaluate TILs, specialized segmentation training 
was applied to 15 representative breast cancer WSIs. A 
representative H&E slide was scanned (Fig. 1J, left side), 
de-stained, and re-stained with a cocktail of immune cell 
markers (Fig.  1J, middle): CD3 (1:50, Novocastra Labo-
ratories, Leica Biosystems, Nussloch, Germany), CD20 
(1:500, Novocastra Laboratories), and CD79 (1:200, 
Dako, Agilent Technologies, Santa Clara, CA, USA), 
using a Ventana ES automated immunohistochemistry 
(IHC) stainer according to the manufacturer’s protocols 

(Ventana ES automated IHC stainer, Tucson, AZ, USA). 
Nuclear immunolabeling in black denoted lymphocytes, 
and they were spatially matched with the H&Es for TIL 
annotation. These slides were utilized for training of the 
segmentation model (Fig.  1J, right side) which utilized 
the ResNet-based DeeplabV3 + . The model was trained 
for 50 epochs with a learning rate of 0.001 and a batch 
size of 16. The segmentation model utilized a combina-
tion of the ResNet50 architecture for feature extraction 
and the DeepLabV3 Plus architecture for semantic seg-
mentation. The learning rate was set to 0.001, the batch 
size was 16, and the model was trained for 50 epochs.

Upon completing the training phase, our AI model was 
applied to WSIs obtained from 329 out of the 353 surgi-
cally resected primary breast cancers that were used for 
PDX engraftment. The slides were spatially reconstructed 
for patch interpretation results and color-coded accord-
ingly (Fig. 1K, L). They were then compared to the origi-
nal H&E stained tumor slides by two pathologists (H.L. 
and J.L.) for evaluation of the AI-predicted features. 
The AI model exhibited an F1 score of 0.846 when com-
pared to human pathologists; however, nine slides were 
excluded from the final analysis because the model had 
difficulty accurately interpreting carcinoma components; 
specifically, low histologic grade and sparse cellularity 
carcinomas were mistakenly identified as TDLU (Addi-
tional file  2: Fig.  1A, B) or as stroma (Additional file  2: 
Fig. 1C).

Finally, 320 slides were selected as candidates for 
further statistical evaluation. The AI model identi-
fied patches within the boundaries of the largest tumor, 
delineating its edges (Fig. 1M). The proportions of these 
patches relative to the total number of patches within the 
tumor perimeter were calculated for the different tissue 
types, including adipose tissue (adipose tissue intratu-
moral proportion, AP), necrotic tissue (necrotic tissue 
intratumoral proportion, NP), terminal ductal lobular 
units (TDLU intratumoral proportion, TDLUP), stro-
mal tissue (intratumoral proportion of stromal tissue, 
SP), and invasive carcinoma (invasive carcinoma intra-
tumoral proportion, ICP). ICP was determined by taking 

Fig. 1 Artificial intelligence‑assesed classification of patches. A. Adipose; B. Background; C. Necrosis; D. Ductal carcinoma in situ, classified 
as carcinoma; E. Lobular carcinoma in situ, classified as carcinoma; F. Invasive ductal carcinoma, classified as carcinoma; G. Invasive lobular 
carcinoma, classified as carcinoma; H. Stroma; I. Terminal ductal lobular unit; J. Tumor‑infiltrating lymphocytes trained with a segmentation model. 
Left, hematoxylin and eosin (H&E) stained slide, X100, original magnification. Middle, Cocktail immunohistochemistry (IHC) for identification 
of lymphocytes, X100, CD3, CD20, and CD79 cocktail IHC, original magnification. Right, red annotation indicating the area of cocktail IHC‑stained 
lymphocytes in the H&E slides (annotated digitally processed image, original magnification, X100). K‑L. Representative H&E from successful (K) 
and failed (L) PDX graft cases and their corresponding AI‑model applied images. K. Abundant intratumoral necrosis and carcinoma proportions 
in the H&E are also highlighted in sky‑blue and green in the AI‑model applied image, respectively (right); L. Abundant intratumoral TILs, stroma, 
and TDLU identified in the H&E slide (left) are also highlighted in the AI‑categorized image (right). M. algorithm applied to the carcinoma (left side) 
generated a tumor boundary (right side, yellow) encircling the carcinoma component (right side, green)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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the initial estimate of the intratumoral proportions of 
patches labeled as carcinoma and multiplying by a true 
invasive carcinoma fraction, which pathologists assessed 
after a consensus meeting and reviewing all 320 H&E 
slides.

Tumor-infiltrating lymphocytes intratumoral propor-
tion (TILP) was separately calculated using the afore-
mentioned segmentation model applied within the tumor 
boundary to determine the area of TILs. The areas iden-
tified as lymphocytes were divided by the total area of 
intratumoral patches. To facilitate statistical analysis and 
interpretation, these proportions were multiplied by a 
factor of 10,000 due to the large denominators involved.

Statistical analysis
Statistical analyses were performed to assess the clinico-
pathological data regarding the success of PDX engraft-
ment. Independent sample t-tests and Chi-square tests 
were used to conduct an exploratory analysis of the 
data. Following this analysis, logistic regression analy-
ses were used to evaluate the clinicopathologic factors 
that were associated with PDX engraftment. Initially, 
all potential predictors were included in the univari-
ate logistic regression analyses. A multivariate logistic 
regression model was subsequently constructed using 
a backward stepwise elimination process with the goal 
of optimizing the Akaike Information Criterion (AIC). 
All variables with a p-value less than 0.2 in the univari-
ate analysis were considered for inclusion in the mul-
tivariate model. The final multivariate model retained 

only the variables that contributed to a lower AIC 
value, ensuring a more parsimonious yet explanatory 
model. To assess the discriminative ability of the logis-
tic regression models for predicting PDX engraftment, 
we computed ROC curves and their corresponding area 
under the curve (AUC) for each model.

Also, recursive partitioning and regression tree clas-
sification, as described by Mantzaris et  al. [15] were 
established using the R software package “RPART”. To 
simplify the model and prevent overfitting, a pruning 
process was conducted on the initial decision tree. The 
complexity parameter (CP) was selected based on the 
printcp output, which evaluated the cross-validated 
error for different CP values. For our tree analyses, 
a CP value of 0.03 was chosen for pruning, balancing 
the model complexity, and the predictive accuracy. In 
the decision tree models, the variable importance was 
quantified based on the degree of information gain or 
impurity reduction each variable contributed to the 
splits at various nodes, which did not necessarily cor-
respond to the most important variables at each node 
as displayed in the plotted decision trees.

To evaluate the reliability and stability of the logistic 
regression models and the RPART tree, bootstrap analy-
ses were conducted. A total of 1000 bootstrap replicates 
were generated. This resampling procedure was used 
to estimate the distribution of the AUC. Bias-corrected 
accelerated (BCa) bootstrap methods were employed to 
calculate confidence intervals for the AUC. All statistical 
analyses were conducted using R software version 4.2.1.

Fig. 1 continued
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Code availability
The underlying code for this study and training,validation 
datasets is not publicly available but may be made avail-
able to qualified researchers on reasonable request from 
the corresponding author.

Results
Factors affecting the engraftment success rates of primary 
breast cancer
The clinicopathological characteristics of the primary 
breast cancer patient population, including both chemo-
naive and NAC groups, in relation to the PDX engraftment 
are summarized in Table 1, and the detailed PDX engraft-
ment success rates across multi-passages are described in 
Additional file 1 and Additional file 2: Fig. 2. In the cohort 
of 353 primary breast cancer patients, the mean age in 
the engraftment success group was 45.8 ± 11.0 years, sig-
nificantly younger than the 50.9 ± 12.2  years observed 
in the engraftment failure group (p = 0.003). A higher 
prevalence of TNBC was observed in the success group, 
accounting for 88.1% (52/59) compared to 32.3% (95/294) 
in the failure group (p < 0.001). Ki-67LI  (%) was signifi-
cantly elevated in the success group, with a mean value 
of 73.2 ± 14.9, compared to 39.0 ± 29.1 in the failure group 
(p < 0.001). In terms of NAC treatment, 79.7% (47/59) of 
the success group was from the NAC group, which was 
significantly higher than the 37.1% (109/294) in the failure 
group (p < 0.001). Tumor size was also significantly differ-
ent, with the success group averaging 4.1 ± 2.6 cm and the 
failure group averaging 3.3 ± 2.2 cm (p = 0.019). The histo-
logic grade was also notably associated with PDX engraft-
ment success, with 91.5% (54/59) of successful cases 
being histologic grade 3 compared to 48.0% (141/294) in 
the failure group (p < 0.001). Other variables, including 
diagnosis, LVI, number of positive LNs, TIL%, and AJCC 
stages showed no significant differences between the suc-
cess and failure groups.

AI-assessed morphometric features in the cohort 
of 320 primary breast cancer patients, including both 
chemo-naive and NAC group patients, were also ana-
lyzed, and significant differences were observed between 
the failure (n = 270) and success groups (n = 50) (Table 2). 
The success group exhibited a significantly lower aver-
age AP (p = 0.006). Conversely, the success group had a 
significantly higher NP compared to the failure group 
(p < 0.001), along with a significantly lower TDLUP 
(p < 0.001). Similarly, the success group had a lower SP 
than the failure group (p = 0.007). Although the ICP was 
higher in the success group, statstical significance was 
not reached (p = 0.096). There were no significant differ-
ences in TILP between the groups.

Both univariate and multivariate logistic regres-
sion analyses were conducted, incorporating a range 

of clinicopathological variables as well as AI-analyzed 
morphometric features (Table  3). In univariate analysis, 
several clinicopathologic factors were found to be signifi-
cantly related to successful PDX engraftment, including 
younger age (OR 0.96, CI 0.94–0.99, p = 0.005), higher Ki-
67LI (OR 1.06, CI 1.04–1.08, p < 0.001), TNBC subtype 
(OR 9.78, CI 1.27–75.23, p = 0.028), histologic grade 3 
(OR 16.62, CI 5.05–54.71, p < 0.001), larger invasive tumor 
size (OR 1.23, CI 1.09–1.38, p < 0.001) and more positive 
metastatic LNs (OR 1.04, CI 1.00–1.08, p = 0.031). 

 Also in the univariate logistic regression analyses, sev-
eral  morphological attributes  showed statistical sig-
nificance. A 0.1% increase in NP increased the odds of 
PDX engraftment by 58% (NP: OR 1.58, CI 1.39–1.80, 
p < 0.001). Conversely, a  0.1% increase in AP was asso-
ciated with a 39% decrease in the odds of PDX engraft-
ment (OR 0.61, CI 0.47–0.79, p = 0.035). A 0.1% increase 
in TDLUP resulted in an 82% decrease in PDX engraft-
ment odds (OR 0.18, CI 0.08–0.41, p = 0.006), and a 0.1% 
increase in SP led to a 37% reduction in engraftment 
odds (OR 0.63, CI 0.46–0.86, p = 0.007).

In multivariate logistic regression analysis of primary 
breast cancer patients, including the chemo-naïve and 
NAC groups, variables such as age, Ki-67LI, NAC sta-
tus, tumor size, histologic grade, NP, ICP, and SP were 
selected using the stepwise elimination method to 
achieve the optimal AIC. In the clinicopathologic analy-
sis, significant factors for PDX engraftment included 
younger age (OR 0.96, CI 0.92–1.00, p = 0.032), higher 
Ki-67LI (OR 1.05, CI 1.02–1.07, p < 0.001), NAC sta-
tus (OR 3.27, CI 1.41–7.60, p = 0.006), larger tumor size 
(OR 1.20, CI 1.02–1.41, p = 0.029), and histologic grade 
3 (OR 4.34, CI 1.08–17.53, p = 0.039). In the analysis of 
morphometric features, a 0.1% increase in NP increased 
the odds of success by 92.7% (OR 1.927, CI 1.077–3.449, 
p = 0.027), and a 0.1% increase in ICP increased the odds 
of success by 82.0% (OR 1.820, CI 1.028–3.223, p = 0.040). 
A bootstrap analysis was conducted to validate the multi-
variate logistic regression analysis predictive model with 
the generation of 1000 replicates to assess its reliability. 
The initial AUC was 0.905, with a bias of 0.0079 and a 
standard error of 0.0184. The 95% BCa confidence inter-
val for the AUC ranged from 0.8337 to 0.9296. The opti-
mal cutoff point, determined by Youden’s J statistic, was 
0.129. At this cutoff, the PPV was 0.40 and the NPV was 
0.99 (Fig. 2A).

We also generated a decision tree model using the 
RPART algorithm by incorporating both AI-analyzed 
morphometric and clinicopathological variables for the 
primary breast cancer group. The model was pruned at 
various CPs, and the optimal CP was selected based on 
the minimized cross-validation error.
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Table 1 Characteristics of the primary breast cancer patient population based on the success of PDX engraftment

Variable All (n = 353) NAC group (n = 156)

Failure (n = 294) Success (n = 59) p‑value* Failure (n = 109) Success (n = 47) p‑value*

Age 50.9 ± 12.2 45.8 ± 11.0 0.003 50.4 ± 10.7 45.2 ± 11.0 0.007
Subtype < 0.001 < 0.001

 HER2 + 20 (6.8%) 1 (1.7%) 8 (7.3%) 1 (2.1%)

 HR + 147 (50.0%) 5 (8.5%) 48 (44.0%) 4 (8.5%)

 HR + /HER2 + 32 (10.9%) 1 (1.7%) 16 (14.7%) 1 (2.1%)

 TNBC 95 (32.3%) 52 (88.1%) 37 (33.9%) 41 (87.2%)

Ki‑67LI (%) 39.0 ± 29.1 73.2 ± 14.9 < 0.001 33.9 ± 32.3 74.0 ± 15.1 < 0.001
NAC < 0.001

 Yes 109 (37.1%) 47 (79.7%) – –

 No 185 (62.9%) 12 (20.3%) – –

Diagnosis 0.474 0.176

 IDC 262 (89.1%) 53 (89.8%) 198(94.7%) 43(91.5%)

 ILC 7 (2.4%) 0 (0.0%) 2(0.96%) 0(0.0%)

 Adenoid cystic carcinoma 1 (0.3%) 1 (1.7%) 0(0.0%) 0(0.0%)

 Invasive apocrine carcinoma 1 (0.3%) 0 (0.0%) 0(0.0%) 0(0.0%)

 Micropapillary carcinoma 8 (2.7%) 2 (3.4%) 5(2.4%) 2(4.3%)

 Metaplastic carcinoma 8 (2.7%) 3 (5.1%) 1(0.5%) 2(4.3%)

 Mucinous carcinoma 7 (2.4%) 0 (0.0%) 3(1.4%) 0(0.0%)

Size (cm) 3.3 ± 2.2 4.1 ± 2.6 0.019 4.3 ± 2.7 4.6 ± 2.7 0.542

LVI 0.376 0.280

 Not identified 163 (55.4%) 37 (62.7%) 53 (48.6%) 28 (59.6%)

 Present 131 (44.6%) 22 (37.3%) 56 (51.4%) 19 (40.4%)

Number of positive LNs 2.7 ± 8.5 3.2 ± 7.3 0.646 5.6 ± 13.1 4.0 ± 8.0 0.336

TIL (%) 11.0 ± 17.9 9.3 ± 13.6 0.43 4.8 ± 10.3 6.6 ± 9.6 0.303

HG < 0.001 < 0.001
 2 153 (52.0%) 5 (8.5%) 55 (50.5%) 4 (8.5%)

 3 141 (48.0%) 54 (91.5%) 54 (49.5%) 43 (91.5%)

pT 0.099 0.433

 1 74 (25.2%) 10 (16.9%) 16 (14.7%) 5 (10.6%)

 2 170 (57.8%) 36 (61.0%) 57 (52.3%) 29 (61.7%)

 3 47 (16.0%) 10 (16.9%) 33 (30.3%) 10 (21.3%)

 4 3 (1.0%) 3 (5.1%) 3 (2.8%) 3 (6.4%)

pN 0.396 0.093

 0 154 (52.4%) 35 (59.3%) 34 (31.2%) 25 (53.2%)

 1 85 (28.9%) 12 (20.3%) 35 (32.1%) 10 (21.3%)

 2 32 (10.9%) 5 (8.5%) 23 (21.1%) 5 (10.6%)

 3 23 (7.8%) 7 (11.9%) 17 (15.6%) 7 (14.9%)

M 1.000 1.000

 0 291 (99.0%) 58 (98.3%) 106 (97.2%) 46 (97.9%)

 1 3 (1.0%) 1 (1.7%) 3 (2.8%) 1 (2.1%)

AJCC stage 0.55 0.213

 I 55 (18.7%) 7 (11.9%) 12 (11.0%) 4 (8.5%)

 II 162 (55.1%) 35 (59.3%) 43 (39.4%) 27 (57.4%)

 III 75 (25.5%) 16 (27.1%) 51 (46.8%) 15 (31.9%)

 IV 2 (0.7%) 1 (1.7%) 3 (2.8%) 1 (2.1%)

Miller Payne grade  < 0.001
 1 ‑ ‑ 19 (17.4%) 26 (55.3%)

 2 ‑ ‑ 39 (35.8%) 10 (21.3%)
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In terms of variable importance, cancer subtype was 
the most significant at 20%, followed by tumor size at 
14%, NP at 13%, Ki-67LI at 12%, and patient age at 7%. 
Additional variables such as SP, metastatic LNs, and 
histologic grade each contributed 6% to the model 
(Additional file 3: Table 1 and Fig. 3A).

After bootstrapping with 1000 replicates, the pruned 
decision tree model yielded an AUC of 0.8304, accom-
panied by a bias of 0.0694 and a standard error of 
0.041. The 95% confidence interval for the AUC, cal-
culated using the BCa method, ranged from 0.6815 
to 0.8511. At the optimal cutoff point determined by 
Youden’s J statistic, which was 0.125, the model yielded 
a PPV of 0.398 and an NPV of 0.985 (Fig. 2B).

Factors affecting engraftment success rates of NAC‑treated 
primary breast cancer
Separate statistical analyses were carried out for the 
NAC group with additional inclusion of unique vari-
ables, including the Miller-Payne grade, RCB class, and 

RCB score (Table  1). In the NAC group, samples from 
47 of total 156 patients led to successful PDX engraft-
ment (30.1%, 47/156). A significant difference was noted 
in the mean age between the failure and success groups, 
with younger age at diagnosis significantly related to PDX 
engraftment (50.4 ± 10.7 vs. 45.2 ± 11.0  years; p = 0.007). 
The proportion of the TNBC subtype was higher in the 
success group (87.2%) compared to the failure group 
(33.9%; p < 0.001). Ki-67LI (%)  displayed a significant 
elevation in the success group, registering at 74.0 ± 15.1 
compared to 33.9 ± 32.3 in the failure group (p < 0.001). 
The histologic grade also displayed a significant associa-
tion with PDX engraftment success (p < 0.001). Specifi-
cally, the successful cases featured a high prevalence of 
histologic grade 3, accounting for 91.5% (43 out of 47), 
in contrast to 49.5% (54 out of 109) in the failure group. 
No significant differences were detected in variables such 
as diagnosis, LVI, the number of positive LNs, TIL%, 
tumor size, or AJCC stages between the success and 
failure groups. The Miller-Payne grade was significantly 

PDX Patient-derived xenograft, NAC Neoadjuvant chemotherapy, HER2 HER2 positive breast cancer, HR + , hormone receptor-positive breast cancer, TNBC Triple-
negative breast cancer, Ki-67LI Ki-67 labeling index, IDC Invasive ductal carcinoma, ILC Invavsive lobular carcinoma, LVI Lymphovascular invasion, LN Lymph node, TIL 
Tumor-infiltrating lymphocytes, HG Histologic grade, pT Pathological tumor stage, pN Pathological nodal stage, M Metastasis stage, AJCC American Joint Committee 
on Cancer, RCB Residual cancer burden
* Bold: significant at p-value < 0.05

Table 1 (continued)

Variable All (n = 353) NAC group (n = 156)

Failure (n = 294) Success (n = 59) p‑value* Failure (n = 109) Success (n = 47) p‑value*

 3 ‑ ‑ 46 (42.2%) 11 (23.4%)

 4 ‑ ‑ 5 (4.6%) 0 (0.0%)

RCB score ‑ ‑ 3.1 ± 1.0 3.2 ± 1.2 0.659

RCB class 0.052

 I ‑ ‑ 4 (3.7%) 0 (0.0%)

 II ‑ ‑ 44 (40.4%) 28 (59.6%)

 III ‑ ‑ 61 (56.0%) 19 (40.4%)

Table 2 AI‑analyzed intratumoral image patch proportions and PDX engraftment success in primary breast cancers

AP Adipose proportion, NP Necrosis proportion, BP Background proportion, TDLUP Terminal ductal lobular unit proportion, SP Stroma proportion, TILP Tumor-
infiltrating lymphocyte proportion, ICP Invasive carcinoma proportion;
* Values scaled up by 10,000
** Bold: significant at p-value < 0.05

Variable * All (n = 353) NAC group (n = 131)

Failure (n = 294) Success (n = 59) p‑value** Failure (n = 93) Success (n = 38) p‑value**

AP 639.9 ± 727.1 409.0 ± 484.0 0.006 517.3 ± 622.2 450.9 ± 528.0 0.564

NP 740.7 ± 981.9 1575.0 ± 1264.1  < 0.001 901.3 ± 1101.4 1642.8 ± 1358.9 0.001
TDLUP 504.4 ± 692.5 219.8 ± 233.3  < 0.001 475.2 ± 730.2 201.6 ± 213.9 0.001
SP 3377.5 ± 1265.9 2855.3 ± 1094.8 0.007 3512.4 ± 1523.4 2855.7 ± 1180.3 0.019
TILP 17.8 ± 22.8 15.0 ± 15.9 0.285 10.2 ± 14.0 11.3 ± 13.3 0.678

ICP 4208.0 ± 1450.8 4571.6 ± 1201.5 0.096 3056.0 ± 1470.1 3271.5 ± 1174.1 0.423
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associated with PDX success (p < 0.001). While the RCB 
score did not show a significant difference, the RCB class 
showed a statistical trend toward success (p = 0.052).

A cohort of 131 NAC-treated primary breast cancers 
were analyzed using AI-detected morphometric features. 
These morphometric features were compared between 
the failure (n = 93) and success (n = 38) groups (Table 2). 
A notable statistical significance was observed for NP, 
which was considerably higher in the success group 
(1642.8 ± 1358.9 vs. 901.3 ± 1101.4; p = 0.001). TDLUP 
showed a significant decrease in the success group com-
pared to the failure group (201.6 ± 213.9 vs. 475.2 ± 730.2; 
p = 0.001). Similarly, SP was significantly lower in the suc-
cess group (2855.7 ± 1180.3 vs. 3512.4 ± 1523.4; p = 0.019).

Univariate and multivariate logistic regression analyses 
were conducted, incorporating both clinicopathologic 
factors and AI-analyzed intratumoral image patch data 
from 131 NAC-treated primary breast cancers (Table 3). 
In univariate analysis, higher Ki-67LI, histologic grade 3, 
and lower Miller-Payne grade were found to be signifi-
cantly associated with PDX engraftment, with odds ratios 
(ORs) of 1.06 (95% CI 1.03–1.09, p < 0.001), 9.20 (95% 
CI 2.64–32.05, p < 0.001), and 0.34 (95% CI 0.20–0.57, 

p < 0.001), respectively. For the morphometric features, 
higher NP, lesser TDLUP, and lesser SP were significantly 
associated with PDX engraftment. Specifically, a 0.1% 
increase in NP was associated with higher odds of suc-
cessful engraftment (OR 1.60, CI 1.38–1.85, p = 0.003), 
while 0.1% increase in, TDLUP and SP indicated a 
decreased chance of engraftment (OR 0.22, CI 0.18–
0.27, p = 0.034 and OR 0.71, CI 0.60–0.84, p = 0.022, 
respectively).

In multivariate logistic regression analysis for the NAC 
group, the variables TDLUP, Ki-67LI, and Miller-Payne 
grades were selected as the variables that optimized the 
AIC. A higher Ki-67LI and lower Miller-Payne grade 
resulted in successful PDX engraftements with ORs of 
1.068 (95% CI 1.034–1.102, p < 0.001) and 0.303 (95% CI 
0.158–0.577, p < 0.001), respectively. A lesser TDLUP 
was associated with PDX success, with 0.1% increase in 
TDLUP yielding an OR of 0.998 (95% CI 0.033–1.000, 
p = 0.062), showinga statistical trend.

To evaluate the robustness of the logistic regression 
model, a bootstrap analysis was conducted using 1000 
samples. The original AUC was 0.889, with an associ-
ated 95% BCa confidence interval ranging from 0.8204 

Fig. 2 Receiver‑operated curves for predictive models of engraftment success. A. Multivariate logistic regression of primary breast cancer patients 
(chemo‑naïve and neoadjuvant chemotherapy (NAC)‑treated groups), incorporating the selected variables from both AI‑evaluated morphometric 
features and clinicopathological findings. B. Pruned decision tree prediction model using clinicopathological and AI‑derived morphometric features 
for primary breast cancer patients (chemo‑naïve and NAC‑treated groups). C. Multivariate logistic regression model for the NAC‑treated group. 
incorporating the selected variables from both AI‑evaluated morphometric features and clinicopathological findings. D. Pruned decision tree 
prediction model in the NAC group, utilizing both clinicopathological and AI‑derived morphometric features
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to 0.9348. The optimal cutoff value for the model, deter-
mined by Youden’s J statistic, was 0.2863. At this cutoff, 
the PPV was 0.6034 and the NPV was 0.9589 (Fig. 2C).

In the decision tree for the NAC group incorporating 
both AI-derived and clinicopathological factors, the tree 
was pruned at two different CPs, with the optimal CP 
being 0.0395 as determined by the lowest cross-valida-
tion error. The root node error was evaluated at 0.2901, 
based on 93 failures and 38 successes among the observa-
tions (Fig. 3B).

When assessing variable importance, Ki-67LI emerged 
as the most influential factor, contributing 22% to the 

model’s predictive power. This was followed by Miller-
Payne grade (13%), subtype (12%), SP (11%), and his-
tologic grade (9%). Other variables like NP, size, RCB 
score, and ICP each contributed less than or equal to 5%, 
whereas variables like LVI, metastatic LNs, TILP, TIL, 
and age had minimal impact (Additional file 3: Table 2).

The decision tree model for the NAC group demon-
strated an AUC of 0.8967, with a bias of 0.0065 and a 
standard error of 0.0419. The BCa 95% confidence inter-
val for the AUC ranged between 0.7680 and 0.9524 after 
bootstrapping with 1000 replicates. The recommended 
cutoff point based on Youden’s J statistic was 0.2863, at 

A

B

Fig. 3 Pruned decision tree analyses. A Primary breast cancer, including both chemo‑naive and NAC groups (n = 320) and B NAC‑treated group (n = 131)
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which the model yielded a PPV of 0.6034 and an NPV of 
0.9589 (Fig. 2D).

Engraftment success across sequential PDX 
passages and associated clinicopathological factors: 
metastatectomy cases (n = 19)
The characteristics of the metastatic breast cancers in 
relation to the success of PDX engraftment are summa-
rized in Additional file 3: Table 3, and Additional file 1. 
A statistically significant difference was observed in the 
distribution of cancer subtypes between PDX engraft-
ment success and failure groups (p = 0.013). Specifically, 
all successful engraftments occurred for tumors with 
the TNBC subtype (4 out of 4, 100%) while none of the 
HR + cases (0 out of 11, 0%) or HR + /HER2 + cases (0 out 
of 1, 0%) were successful.

The distribution of histologic grade between the unsuc-
cessful and successful PDX groups, although not reach-
ing statistical significance (p = 0.134), demonstrated a 
higher prevalence of grade 3 tumors in the success group 
at 75% (3/4) compared to 20% (3/15) in the failure group. 
Although the anatomical site of metastatectomy did not 
significantly impact PDX engraftment (p = 0.207), the 
successful group displayed a more diverse distribution of 
metastasis sites: bone at 25% (1/4), axillary lymph nodes 
at 50% (2/4), and lung at 25% (1/4).

Discussion
Previous studies on PDX have focused on clinicopatho-
logic or technical parameters for predicting the success 
of PDX engraftment. In this study, we found that higher 
Ki-6LI, younger age at diagnosis, NAC treatment status, 
larger tumor size, and higher proportions of intratumoral 
necrosis and invasive carcinoma (as quantified by AI) 
were significant variables predictive of PDX engraftment 
success.

In this study, high Ki-67LI, a cellular proliferation 
marker [16–18], emerged as a crucial factor for PDX 
engraftment. High histologic grade and TNBC subtype, 
often associated with elevated Ki-67LI, were consistently 
linked to increased PDX engraftment rates in prior stud-
ies [3, 5–7, 19]. These tumors, particularly prevalent in 
younger patients, reportedly exhibit aggressive behavior 
and high cancer stem cell (CSC) levels [20, 21].

Increased PDX engraftment rates in the NAC group 
were also noted in current study. NAC, involving cyto-
toxic agents, seemed to select cancer cells with survival 
traits which would largely include CSCs, resistant to 
NAC due to their ability to evade reactive oxygen species 
and their non-proliferative nature, as suspected by Diehn 
and Phi et  al. [20, 22]. Substantiating the allegations, 
post-NAC breast cancer cells showed genetic markers 
associated with CSCs and high tumorigenic potential 

in a study by Creighton et  al. [23]. Moreover, NAC was 
observed to modify the tumor microenvironment, 
including the vascular architecture, which may enhance 
tumor growth [24]. However, the impact of NAC on PDX 
engraftment rates in breast cancer remains a subject of 
debate in the scientific literature. McAuliffe et  al. [19] 
found a significantly higher PDX engraftment rate in the 
NAC group at 41.7% (10/24) versus 8.3% (2/24) in the 
chemo-naïve group (p = 0.02). Furthermore, in the same 
study, within the NAC group, patients with progres-
sive disease exhibited higher engraftment rates (85.7%, 
6/7) compared to those with a stable or partial response 
(29.4%, 5/17). However, Goetz et  al. [5] found no sig-
nificant difference in engraftment success between the 
NAC group and the chemo-naïve group. Cottu et al. [3] 
also did not find preoperative treatment to significantly 
influence engraftment success. Thus, factors affected the 
success of post-NAC cancer PDX grafts should be further 
evaluated.

While some studies have indicated that metastatic 
cancers generally have higher PDX engraftment rates 
compared to their nonmetastatic counterparts [25, 26]., 
the success rate of PDX engraftment of breast cancer 
according to region of harvest remains a subject of ongo-
ing debate. Cottu et  al. [3] reported higher engraftment 
success rates with primary breast tumors compared to 
metastatic samples, while conversely, Marangoni et  al. 
[7] observed increased engraftment success with sam-
ples of metastatic origin. Given the limited number of 
studies comparing primary to metastatic tumors, further 
research is essential to clarify the role of tumor origin in 
PDX engraftment success rates. This will provide more 
comprehensive insights into the factors predictive of suc-
cessful PDX modeling.

While our study offers valuable insights into the fac-
tors affecting PDX engraftment, several limitations 
need to be acknowledged. First, we faced challenges in 
differentiating between IDC and DCIS due to the small 
patch size utilized in our AI model. Given the critical 
role of tumor boundaries in assessing invasiveness, and 
thereby differentiating IDC from DCIS, our research 
necessitated manual intervention. Our approach 
acknowledges the inherent challenges of integrating 
machine learning techniques with histopathology [27]. 
Moving forward, we are committed to refining our 
strategies in future studies, which will include the use 
of larger patches to overcome these limitations. Second, 
our AI model struggled to distinguish between invasive 
lobular carcinoma, scattered histologic grade 2 IDCs, 
stromal components, and TDLU. The histopathologi-
cal complexity and subtle invasion patterns of invasive 
lobular carcinoma present challenges even for experi-
enced pathologists [28, 29]. These limitations could be 
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addressed in future iterations of our model through the 
utilization of a larger dataset that encompasses finer 
patterns of invasive carcinomas and by integrating 
more sophisticated machine learning techniques.

Our study has shown that the incorporation of spe-
cific clinicopathological variables and morphometric 
features can effectively predict PDX engraftment. The 
efficacy of our multivariate logistic regression model 
(AUC = 0.905) is excellent. Additionally, the statisti-
cal analysis of the NAC group, which included TDLUP, 
Miller-Payne grade, and Ki-67LI in the multivariate 
logistic regression analysis, also demonstrated an excel-
lent predictive ability with an AUC of 0.89. Compared 
to the PDX graft studies in the literature, our score 
was higher than that reported by Echeverria et al. who 
incorporated two variables, Ki-67LI and metastatic 
LNs, into a logistic regression model for TNBCs breast 
PDX survival (AUC 0.70) [18]. In the same context, 
Zhuo et  al. [30] used GPC3 expression and KI67LI to 
predict hepatocellular carcinoma PDX engraftment and 
found a good discriminatory power (AUC 0.828), which 
is similar to the score obtained in the current study. 
Our study also effectively selected a few variables in a 
parsimonious manner for predicting PDX engraftment.

In conclusion, our research explored the key factors 
influencing the successful engraftment of breast cancer 
PDX using various clinicopathological, morphometri-
cal, and statistical methods. Potent clinicopathological 
factors, including high Ki-67LI, younger patient age, 
high histologic grade, larger tumor size, and NAC sta-
tus, notably enhanced engraftment success. Higher 
proportions of  AI-assessed  intratumoral necrosis and 
invasive carcinoma were also associated with success-
ful PDX engraftment. Our study provides valuable sug-
gestions for future research aimed at improving PDX 
engraftment success, potentially informing preclinical 
studies and guiding personalized treatment strategies.
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