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Abstract 

Purpose  Survivin/BIRC5 is a proliferation marker that is associated with poor prognosis in breast cancer 
and an attractive therapeutic target. However, BIRC5 has not been well studied among racially diverse populations 
where aggressive breast cancers are prevalent.

Experimental design  We studied BIRC5 expression in association with clinical and demographic variables and as a 
predictor of recurrence in 2174 participants in the Carolina Breast Cancer Study (CBCS), a population-based study 
that oversampled Black (n = 1113) and younger (< 50 years; n = 1137) participants with breast cancer. For comparison, 
similar analyses were conducted in The Cancer Genome Atlas [TCGA N = 1094, Black (n = 183), younger (n = 295)]. 
BIRC5 was evaluated as a continuous and categorical variable (highest quartile vs. lower three quartiles).

Results  Univariate, continuous BIRC5 expression was higher in breast tumors from Black women relative to non-
Black women in both estrogen receptor (ER)-positive and ER-negative tumors and in analyses stratified by stage 
(i.e., within Stage I, Stage II, and Stage III/IV tumors). Within CBCS and TCGA, BIRC5-high was associated with young 
age (< 50 years) and Black race, as well as hormone receptor-negative tumors, non-Luminal A PAM50 subtypes, 
advanced stage, and larger tumors (> 2 cm). Relative to BIRC5-low, BIRC5-high tumors were associated with poor 
5-year recurrence-free survival (RFS) among ER-positive tumors, both in unadjusted models [HR (95% CI): 2.7 (1.6, 
4.6)] and after adjustment for age and stage [Adjusted HR (95% CI): 1.87 (1.07, 3.25)]. However, this relationship 
was not observed among ER-negative tumors [Crude HR (95% CI): 0.7 (0.39, 1.2); Adjusted HR (95% CI): 0.67 (0.37, 1.2)].

Conclusion  Black and younger women with breast cancer have a higher burden of BIRC5-high tumors than older 
and non-Black women. Emerging anti-survivin treatment strategies may be an important future direction for equita‑
ble breast cancer outcomes.
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Introduction
Black women suffer 41% higher breast cancer mortal-
ity compared to White women [1]. Differences in tumor 
biology at diagnosis (either due to differential risk fac-
tors or differences in detection) may contribute to this 
underlying disparity [2–8]. While research and treatment 
advances have significantly lowered breast cancer mor-
tality rates over the years, declines in mortality among 
Black women continue to lag behind [1]. Therefore, there 
is a vital need for novel targets for therapeutic response 
in diverse breast cancer patients. Survivin is a protein in 
the inhibitor of apoptosis protein family encoded by the 
BIRC5 gene, and its mechanisms of action include inhibi-
tion of apoptosis, dysregulation of mitosis, cell cycle pro-
gression, carcinogenesis, and DNA repair [9].

Survivin is a marker of poor prognosis [10, 11] and is 
commonly associated with enhanced proliferative index 
[12], reduced levels of apoptosis [13], resistance to chem-
otherapy [14–16], and increased rate of tumor recurrence 
[17] across multiple tumor types, including breast can-
cer. Survivin/BIRC5 is already included as a proliferation 
marker in two clinically utilized RNA-based prognostic 
assays in breast cancer, including the Oncotype DX assay 
[18] and Prosigna assay [19]. Prior studies have shown 
that high survivin expression is associated with estrogen 
receptor (ER)-negative [20, 21], high grade, and lymph 
node-positive breast tumors [22, 23]. However, most 
studies investigating survivin have been conducted in 
smaller cohorts of predominantly White women or that 
did not report on race [10, 11, 20–24], and little is known 
about survivin in tumors from young and Black breast 
cancer patients, who are more frequently diagnosed with 
advanced disease, higher grade, and aggressive molecular 
subtypes [25, 26]. Currently, there are various methods of 
targeting survivin therapeutically, including small mol-
ecule inhibitors that block the function of survivin, inter-
ference with survivin gene expression, or survivin-based 
immunotherapy [27], making this a promising candidate 
for addressing disparities in outcomes.

Given that survivin/BIRC5 may be an attractive target 
for aggressive and resistant malignancies that lack effec-
tive therapies, we evaluated RNA expression of BIRC5 
according to clinical and demographic variables in a large 
and diverse study population, the Carolina Breast Cancer 
Study (CBCS; N = 2174 cases: 1113 Black and 1061 non-
Black; 1137 < 50 and 1037 ≥ 50  years of age) and com-
pared these findings to those in the Cancer Genome Atlas 
(TCGA; N = 1095 cases: 183 Black and 816 non-Black; 
295 < 50 and 798 ≥ 50 years of age). We hypothesized that 
in a diverse patient population, BIRC5 would be associ-
ated with aggressive disease and recurrence, suggesting 
potential value in targeted therapy.

Methods
Study population
The Carolina Breast Cancer Study (CBCS) [28] is a pop-
ulation-based study that utilized rapid case ascertain-
ment with the North Carolina Central Cancer Registry 
to identify women aged 20–74  years across 44 counties 
diagnosed with first primary breast cancer. Recruitment 
occurred in three phases: 1993–1996 (Phase 1), 1996–
2001 (Phase 2), and 2008–2013 (Phase 3). Black women 
and younger women (< 50  years of age) were oversam-
pled using randomized recruitment [28], such that the 
final study population is 50% Black and 50% < 50  years 
old at diagnosis. Out of 4806 invasive breast cancer cases 
enrolled across all phases, 2174 bulk tumor samples 
were profiled by Nanostring (Phase 1: N = 259; Phase 2: 
N = 491; Phase 3: N = 1424). Exclusions included sam-
ples with depleted tissue (n = 1188, predominantly from 
CBCS1/2) or samples with low-quality or insufficient 
RNA (n = 241). This study was approved by the Univer-
sity of North Carolina at Chapel Hill (UNC-CH) School 
of Medicine Institutional Review Board in accordance 
with the revised U.S. Common Rule, and participants 
provided written informed consent.

Demographic and clinical characteristics
Health history and demographic variables were collected 
by a nurse during in-home interviews. Race was self-
reported and categorized as Black and non-Black; > 94.7% 
of non-Black participants self-reported as White 
(n = 1005), while < 5.3% self-identified as either multi-
racial (n = 9, 0.85%), Hispanic (n = 15, 1.41%), American 
Indian/Eskimo (n = 8, 0.75%), Asian or Pacific Islander 
(n = 23, 2.17%) or Arab (n ≤ 5, < 1%). Importantly, we 
interpret race herein under a cells-to-society framework 
[29, 30], that defines race as a social construct, represent-
ing the culmination of biological, social (individual and 
community-level), and environmental exposures that dif-
fer by self-reported race. Tumor size, AJCC stage, estro-
gen receptor (ER), progesterone receptor (PR), and HER2 
receptor status were abstracted from medical records and 
pathology reports.

Recurrence data were available for CBCS Phase 3 
(2008–2013; n = 1424). Recurrence-free survival (RFS) 
was defined as the time between the date of diagnosis to 
the first local, regional, or distant breast cancer recur-
rence and verified through medical record review. Recur-
rence data are complete through October 2019, with a 
5-year follow-up completed for all study participants. 
Among 1424 eligible women, 50 participants were stage 
IV at diagnosis and excluded from the recurrence analy-
sis. Among 1374 patients with Stage I-III breast cancer, 
159 recurrences were identified within 5 years.
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Gene expression data
Normalization, molecular subtyping, and BIRC5
RNA was isolated from bulk tumor tissue using the 
Qiagen FFPE RNeasy isolation kit (Germantown, MD), 
assayed using Nanostring nCounter technology (Seattle, 
Washington), and normalized using Remove Unwanted 
Variation (RUV) as previously described [31–33]. PAM50 
molecular subtyping was performed using a research 
version of the predictor to classify tumors as Luminal 
A, Luminal B, HER2-Enriched, Basal-like, or Normal-
like, and to generate proliferation and risk of recurrence 
scores (ROR-PT) incorporating tumor size, proliferation 
and subtype [31, 34].

BIRC5 was considered as both a continuous and cate-
gorical variable. For continuous measures of BIRC5, log2-
transformed gene expression was utilized in all analyses. 
Standardized clinical cutpoints do not exist for survivin/
BIRC5, and while it is a target of both OncotypeDX [18] 
and Prosigna [19] multi-gene assays, single gene levels are 
not established. Therefore, for use as a categorical varia-
ble, BIRC5 expression was dichotomized into BIRC5-low 
and BIRC5-high expression categories using the upper 
limit of the third expression quartile as a cut point (Log2 
3rd quartile cutpoint: CBCS = 7.6; TCGA = 9.4). Differ-
ences in the expression of BIRC5 between CBCS and 
TCGA are likely a result of the different mRNA platforms 
used in each study (i.e., NanoString in CBCS, RNAseq in 
TCGA). All tumors were treatment naïve at the time of 
collection and prior to NanoString assay assessing BIRC5 
mRNA expression.

Statistical analysis
Continuous BIRC5 expression levels were compared 
across race and clinical tumor characteristics using 
Welch’s two-sample t-tests. Generalized linear models 
(glm) with binomial distribution and the identity link 
function were used to calculate relative frequency dif-
ferences (RFDs) and 95% confidence intervals (CIs) as 
the measure of association between BIRC5 expression 
categories and covariates of interest in CBCS. RFDs are 
defined as the percentage difference between index and 
referent groups, namely, the relative frequency of BIRC5-
high tumors across demographic and clinical variables. 
With smaller sample sizes, RFDs could not be computed 
for TCGA because several models failed to converge. 
Thus, to measure the strength of association between 
BIRC5-high and covariates of interest in both CBCS and 
TCGA, multivariate logistic regression was used to calcu-
late odds ratios (ORs) and 95% CIs. Multivariable models 
were adjusted for age and race according to the CBCS 
randomized recruitment design in reduced models, and 
additionally adjusted for ER status and tumor stage in full 

models. In models comparing age or race, age compari-
sons were only adjusted for race, and race comparisons 
were only adjusted for age. Similarly, in models addition-
ally adjusting for ER status and stage, ER comparisons 
were only adjusted for stage, and stage comparisons 
were only adjusted for ER status. Multivariable analyses 
relied on complete case analysis as rates of missingness 
were < 1.3% for all covariates. Normal-like tumors were 
excluded from analyses because this subtype arises from 
insufficient tumor cellularity [31].

Kaplan–Meier curves and log-rank tests were used to 
compare mean time to recurrence across BIRC5 catego-
ries in stage I-III cases (n = 1374). Recurrence analyses 
were stratified according to clinical breast cancer sub-
types (i.e., ER-positive/Her2-, and TNBC) and were per-
formed across all tumor subtypes, overall. Hazard ratios 
(HR) and 95% CI were calculated using crude and mul-
tivariate Cox proportional hazard models adjusted for 
patient age and tumor stage. The Wald p-value was used 
to assess the assumption of proportionality. While there 
was evidence of non-proportional hazards, point esti-
mates did not differ substantially between models. All 
statistical analyses were performed in R version 4.0.3.

Data availability
RNA sequencing and clinical data from TCGA breast 
cancer dataset, including 1095 primary tumors, were 
used to compare and validate BIRC5 relationships iden-
tified in CBCS. These data are publicly available under 
dbGaP accession  phs000178.v1.p1, with additional data 
available at https://gdc.cancer.gov/about-data/publica-
tions/PanCan-CellOfOrigin35. CBCS data are available 
upon request (https://unclineberger.org/cbcs).

Results
BIRC5 expression, patient and tumor characteristics
The distribution of clinical and demographic character-
istics in CBCS reflects its population-based sampling 
schema, with higher proportions of Black participants, 
higher proportions of participants < 50 years of age, and 
higher proportions of ER-negative, Basal-like, and Stage 
I cases compared to TCGA (Table  1). However, in both 
TCGA and CBCS, BIRC5-high tumors were more com-
mon among Luminal B (LumB), Her2-enriched, Basal-
like, ROR-PT-high and ER-negative tumor subtypes, 
as well as higher-stage tumors, and were more frequent 
among cases from Black women and younger women 
(< 50 years of age). BIRC5 is one of the genes used in the 
PAM50 subtype predictor, so we also performed a sen-
sitivity analysis excluding BIRC5 from the algorithm 
and found that the distribution of BIRC5-high tumors 
remained very similar across PAM50 subtypes (Addi-
tional file 1: Table S1). Figure 1 shows that in univariate 
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Table 1  Characteristics of the study population

TCGA: the Cancer genome atlas; CBCS: Carolina breast cancer study; LumA: Luminal A; LumB: Luminal B; HER2: Her2-Enriched; Basal: Basal-like; ER: Estrogen Receptor; 
NA: not available; ROR-PT: PAM50 Risk of Recurrence Score; Missing values not included in percentages

CBCS TCGA​

Total BIRC5-Low BIRC5-High Total BIRC5-Low BIRC5-High

(n = 2174) (n = 1630) (n = 544) (n = 1095) (n = 820) (n = 274)

n(%) n(%) n(%) n(%) n(%) n(%)

Age

 < 50 years 1137 (52.3) 787 (48.3) 350 (64.3) 295 (27) 203 (24.8) 92 (33.6)

 ≥ 50 years 1037 (47.7) 843 (51.7) 194 (35.7) 798 (73) 616 (75.2) 182 (66.4)

 Missing 2 2

Race

 Non-Black 1061 (48.8) 860 (52.8) 201 (36.9) 816 (81.7) 647 (86.7) 169 (66.8)

 Black 1113 (51.2) 770 (47.2) 343 (63.1) 183 (18.3) 99 (13.3) 84 (33.2)

 Missing 96 75 21

ER status

 Positive 1389 (64.2) 1196 (73.7) 193 (35.7) 807 (77.2) 683 (87.2) 124 (47.1)

 Negative 774 (35.8) 427 (26.3) 347 (64.3) 239 (22.8) 100 (12.8) 139 (52.9)

 Missing 11 7 4 49 38 11

PR status

 Positive 1159 (53.8) 1003 (62) 156 (29) 347 (33.2) 607 (77.6) 91 (34.6)

 Negative 996 (46.2) 614 (38) 382 (71) 698 (66.8) 175 (22.4) 172 (65.4)

 Missing 19 13 6 50 39 11

Her2 status

 Positive 329 (15.2) 244 (15.1) 85 (15.8) 164 (17.9) 127 (18.5) 37 (16.1)

 Negative 1829 (84.8) 1375 (84.9) 454 (84.2) 752 (82.1) 559 (81.5) 193 (83.9)

 Missing 16 11 5 179 135 44

PAM50 subtype

 LumA 986 (45.4) 954 (58.5) 32 (5.9) 565 (51.7) 540 (65.9) 25 (9.1)

 LumB 330 (15.2) 206 (12.6) 124 (22.8) 216 (19.8) 137 (16.7) 79 (28.8)

 HER2 195 (9.0) 130 (8.0) 65 (11.9) 82 (7.5) 55 (6.7) 27 (9.9)

 Basal 583 (26.8) 263 (16.1) 320 (58.8) 190 (17.4) 50 (6.1) 140 (51.1)

 Normal 80 (3.7) 77 (4.7) 3 (0.6) 40 (3.7) 37 (4.5) 3 (1.1)

Tumor stage

 Stage I 722 (33.6) 605 (37.6) 117 (21.8) 182 (17) 154 (19.3) 28 (10.4)

 Stage II 1056 (49.2) 741 (46) 315 (58.7) 619 (57.9) 446 (55.8) 173 (64.1)

 Stage III 299 (13.9) 214 (13.3) 85 (15.8) 249 (23.3) 186 (23.3) 63 (23.3)

 Stage IV 71 (3.3) 51 (3.2) 20 (3.7) 20 (1.9) 14 (1.8) 6 (2.2)

 Missing 26 19 7 25 21 4

Tumor size

 ≤ 2 cm 978 (45.6) 824 (51.2) 154 (28.7) NA NA NA

 2–5 cm 924 (43.1) 629 (39.1) 295 (54.9) NA NA NA

 > 5 cm 244 (11.4) 156 (9.7) 88 (16.4) NA NA NA

 Missing 28 21 7

ROR-PT

 Low 532 (24.8) 527 (32.8) 5 (0.9) 237 (22.3) 236 (29.6) 1 (0.4)

 Medium 1079 (50.3) 906 (56.3) 173 (32.2) 587 (55.1) 493 (61.9) 94 (35.1)

 High 535 (24.9) 176 (10.9) 359 (66.9) 241 (22.6) 68 (8.5) 173 (64.6)

 Missing 28 21 7 30 24 6
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analyses among both CBCS and TCGA, continuous 
BIRC5 expression differs by race, even after stratification 
by tumor stage (I, II, III/IV; Fig. 1A) and ER status (posi-
tive or negative; Fig. 1B). 

We next evaluated associations between categories of 
BIRC5 expression (i.e., tumors classified as BIRC5-high 
vs. BIRC5-low, defined as the upper quartile of RNA 
expression vs. all other quartiles) across the full CBCS 
and TCGA study populations. In both CBCS and TCGA, 
similar associations were observed for age at diagno-
sis, race, ER/PR/HER2 status, PAM50 subtype, tumor 
stage, and tumor size (Fig.  2, Table  2). To characterize 
these associations, we estimated relative frequency dif-
ferences, defined as the difference between the propor-
tions of participants with BIRC5-high tumors in each 
index group compared to the referent category. In the 
CBCS, BIRC5-high tumors were 12.1% more frequent 
among younger participants (< 50 years of age) and 11.7% 
more frequent among tumors from Black participants. 
In addition, BIRC5-high displayed strong relationships 

with aggressive tumor characteristics, with higher fre-
quency among hormone receptor (HR)-negative tumors 
(BIRC5-high RFD for ER-negative: 27.3%, PR-negative: 
21.1%) and aggressive PAM50 subtypes (BIRC5-high 
RFD for LumB: 33.0%, HER2-Enriched: 28.4%, and Basal-
like 49.8%). After additional adjustment for tumor char-
acteristics (e.g., ER status and tumor stage), BIRC5-high 
remained significantly associated with young age, Black 
race, ER status, and tumor size (Fig. 2, left panel; Table 2). 
We also observed that stage II tumors had a higher fre-
quency of BIRC5-high (compared to Stage I), although 
similar associations with Stage III/IV tumors were atten-
uated after additional adjustment. We performed a sensi-
tivity analysis excluding non-Black participants that did 
not self-report White race [N = 56 (2.6%)] and the magni-
tude of associations in Table 2 were unchanged. 

We also present odds ratios from multivariate logis-
tic regression models, which converge better with the 
smaller cell sizes present in TCGA. Figure  2 displays 
odds ratios for the association between BIRC5-high, 

Fig. 1  BIRC5 Expression by Stage and Estrogen Receptor Status in Black and non-Black Patients in CBCS and TCGA. Boxplots displaying continuous 
log-2 BIRC5 mRNA expression among Black and non-Black breast cancer patients in CBCS (upper panels) and TCGA (lower panels) stratified by (A) 
tumor stage and (B) estrogen receptor status. Welsh’s two-sample t-test p values listed within each plot. ER: estrogen receptor
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CBCS TCGA 
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Fig. 2  Association between BIRC5-high, patient and tumor characteristics in CBCS and TCGA. Forest plot displaying relative frequency differences 
and 95% confidence intervals (left panel) and odds ratios (center and right panels) for patient age, race, estrogen receptor/progesterone receptor/
Her2 receptor status, PAM50 subtype, stage and tumor size across BIRC5 expression categories in CBCS (left and center panels, red circles) and TCGA 
(right panel, blue circles). Reduced models were adjusted for age and race according to the CBCS randomized sampling design (solid circles), 
and additionally adjusted for tumor stage and estrogen receptor status in full models (open circles). RFD: relative frequency difference; OR: odds 
ratio; 95% CI: 95% confidence interval; ER: estrogen receptor; PR: estrogen receptor; Ref.: Referent; BIRC5 referent group = BIRC5-low for all models. 
Dashed line represents the null value for each model
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patient, and tumor characteristics in CBCS (center panel) 
and TCGA (right panel), which mirrored relationships 
observed across CBCS. In both studies, younger partici-
pants and Black participants had higher odds of BIRC5-
high, as did tumors with HR-negative status, aggressive 
PAM50 subtypes, advanced stage, and larger size. These 
relationships, including associations between young age 
and Black race, remained significant after additional 
adjustment for tumor characteristics, but associations 
with Stage III/IV were attenuated. No relationship was 
observed between BIRC5 and clinical Her2 status in 
either CBCS or TCGA, which may be due to the low pro-
portion of Her2-positive cases in each dataset (Her2-pos-
itive cases: CBCS n = 329; TCGA n = 164). Thus, BIRC5 

is highly correlated with aggressive tumor features. Fur-
ther, age and race seem to be important factors contrib-
uting to BIRC5 levels, even after adjusting for tumor 
characteristics.

Prognostic utility of BIRC5
We hypothesized that BIRC5 is associated with early 
(5-year) recurrence. The CBCS Phase 3 identified 
159 recurrences during the first 5  years of follow-up. 
Among all tumors, BIRC5-high tumors had higher 
recurrence in univariate models, but not in multi-
variate models [Crude HR (95% CI): 1.68 (1.20, 2.37); 
Adjusted HR (95% CI): 1.41 (0.99, 2.0)] (Fig. 3A). How-
ever, in stratified analyses, BIRC5-high was significantly 

Table 2  Associations between BIRC5-High, clinical, and demographic variables in the Carolina breast cancer study and cancer 
genome atlas

TCGA: The Cancer Genome Atlas; CBCS: Carolina Breast Cancer Study; Lum A: Luminal A; LumB: Luminal B; ER: Estrogen Receptor; 95% CI: 95% confidence interval; 
DNC: does not converge; NA: Not available; RFD: relative frequency difference; OR: Odds Ratio. Ref.: Referent; Referent group = BIRC5-Low for all models. Null value for 
RFD models = 0.0; Null value for OR models = 1.0
a Models adjusted for race and age. b Models adjusted for race, age, tumor stage and ER status

CBCS CBCS TCGA​

RFD (95% CI)a RFD (95% CI)b OR (95% CI)a OR (95% CI)b OR (95% CI)a OR (95% CI)b

Age

 ≥ 50 years Ref Ref Ref Ref Ref Ref

 < 50 years 12.1 (8.5—15.6) 6.8 (3.6—7.9) 2.0 (1.7—2.5) 2.0 (1.6—2.4) 1.5 (1.1—2.0) 1.5 (1.0—2.1)

Race

 Non-Black Ref Ref Ref Ref Ref Ref

 Black 11.7 (8.2—15.1) 4.2 (1.0—7.6) 1.9 (1.6—2.4) 1.4 (1.1—1.7) 3.2 (2.3—4.5) 2.8 (1.9—4.1)

ER status

 ER-Positive Ref Ref Ref Ref Ref Ref

 ER-Negative 27.3 (23.1—31.4) 26.6 (22.4—30.8) 4.3 (3.5—5.3) 4.2 (3.4—5.2) 6.5 (4.7—9.2) 6.3 (4.4—8.9)

PR status

 ER-positive Ref Ref Ref Ref Ref Ref

 ER-negative 21.1 (17.4—24.9) 6.8 (2.3—11.7) 3.5 (2.8—4.4) 1.7 (1.3—2.3) 6 (4.3—8.3) 3 (1.9—4.6)

Her2 status

 Her2-Negative Ref Ref Ref Ref Ref Ref

 Her2-Positive 0.71 (-3.75—5.54) DNC 1.0 (0.7—1.3) 0.9 (0.7—1.2) 1 (0.6—1.5) 0.8 (0.5—1.3)

PAM50 subtype

 LumA Ref Ref Ref Ref Ref Ref

 LumB 33.0 (27.6—38.5) DNC 16.7 (11.1—25.7) 16.7 (11.1—25.7) 13.9 (8.3—23.9) 13.5 (8.1—23.2)

 HER2-enriched 28.4 (21.9—35.3) DNC 13.1 (8.3—21.2) 11.5 (7.0—19.2) 10.6 (5.5—20.6) 9.7 (4.9—19.0)

 Basal 49.8 (45.4—54.2) DNC 31.9 (21.8—48.2) 26 (16.3—42.5) 53 (31.4—93.2) 51.7 (30.3—91.7)

Tumor stage

 Stage I Ref Ref Ref Ref Ref Ref

 Stage II 9.5 (5.8—13.2) 6.2 (2.8—9.7) 1.8 (1.4—2.4) 1.7 (1.3—2.1) 2.1 (1.4—3.4) 2.1 (1.3—3.5)

 Stage III/IV 7.3 (2.3—12.7) 4.8 (0.2—9.8) 1.6 (1.2—2.2) 1.4 (1.0—2.0) 1.7 (1.0—2.8) 1.8 (1.0—3.2)

Tumor size

 ≤ 2 cm Ref Ref Ref Ref NA NA

 > 2–5 cm 12.7 (9.0—16.4) 9.1 (5.7—12.7) 2.2 (1.7—2.7) 2 (1.6—2.5) NA NA

 > 5 cm 14.7 (8.5—21.3) 9.9 (4.0—16.2) 2.4 (1.7—3.3) 2 (1.4—2.8) NA NA
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associated with recurrence only among ER-positive/
Her2-negative tumors [Crude HR (95% CI): 2.73 (1.61, 
4.63); Adjusted HR (95% CI): 1.94 (1.11, 3.36)] (Fig. 3B). 
No significant associations with recurrence were 
observed among TNBC cases [Crude HR (95% CI): 
0.7 (0.39, 1.24); Adjusted HR (95% CI): 0.68 (0.38, 
1.22)] (Fig. 3C).  In a sensitivity analysis, we addition-
ally adjusted recurrence models for race and found that 
BIRC5-High remained significantly associated with 
recurrence only among ER-positive/Her2-negative 
tumors, although hazard ratios were slightly attenu-
ated [Adjusted HR (95% CI), All tumors: 1.34 (0.94, 
1.91); ER + /Her2-: 1.91 (1.10, 3.32); TNBC: 0.67 (0.37, 
1.21)]. However, adjusting for race, herein considered 
a social construct, is difficult to interpret due to differ-
ential distribution of multiple biological treatment, and 
health care access factors. We also performed sensitiv-
ity analyses restricting to participants that were chemo 
treated (ER + /HER2-: 54.5%; TNBC: 94.1%) or restrict-
ing to those who initiated endocrine therapy (ER + /
HER2-: 90.3%), and the magnitude of the HRs were not 
substantially altered.

Discussion
In this analysis, BIRC5/survivin was investigated as a bio-
marker in two large studies representing 3269 patients 
with breast cancer, including TCGA and the CBCS, a 
large and diverse population-based study enriched for 
Black and younger patients. In both studies, BIRC5 was 
associated with high-risk populations, including partici-
pants with aggressive tumor subtypes, advanced stage 
and larger tumors. Young women and Black women also 
had higher frequencies of BIRC5-high tumors. These 
differences persisted after adjustment for ER status and 
tumor stage, suggesting that BIRC5 associations are not 
driven exclusively by subtype and stage and may reflect 
additional biological, genetic or environmental influ-
ences. Higher BIRC5 was also prognostic for early recur-
rence among ER-positive participants in the CBCS, 
which is important given that the disparities in recur-
rence between Black and White women are greatest 
among ER-positive breast cancer [25, 36–40].

The results of our study aligns with prior work demon-
strating an association between high survivin expression 
and aggressive breast tumor features including hormone 
receptor negativity, higher stage, larger size, and non-
Luminal A subtype [20–23, 40], all of which remained 
significantly associated, independent of estrogen receptor 
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status. BIRC5/survivin expression has also previously 
been reported as an independent marker of poor prog-
nosis in breast cancer [24, 41] however, the findings of 
the current analysis extend those prior investigations to a 
large and diverse patient population. The prognostic rela-
tionship with poorer RFS persists in this study. Given our 
finding of higher BIRC5/survivin and a previous study 
showing increased survivin phosphorylation in tumors 
from Black women [42], the burden of BIRC5-high may 
be particularly important for Black patients.

Our findings also shed light on previously reported 
BIRC5 associations with breast cancer clinical outcomes 
[24, 41, 43, 44], which have seldom been stratified by 
clinical subtype. While BIRC5-high was more prevalent 
among TNBC tumors, BIRC5 had the strongest prog-
nostic value among ER-positive/Her2-negative disease. 
This was also seen in the METABRIC cohort presented 
by Oparina et  al., [40] where BIRC5 was only prognos-
tic in the ER + group and not the ER- group. In contrast, 
Zhang et al [43] showed that survivin predicted survival 
in 136 TNBC patients. These inconsistent findings across 
studies highlight that variables mediating BIRC5/sur-
vivin responses remain poorly understood. One hypoth-
esis is that in TNBC — a truly distinct disease with its 
own set of hallmark mutations [35], levels of genomic 
instability, and underlying tumor immune microenviron-
ment — BIRC5/survivin has a distinct relationship with 
survival. Elucidating mediating events will be essential 
to understanding the treatment prospective of anti-sur-
vivin therapies. Based on our current results, BIRC5-
targeted therapies may be valuable, especially for patients 
with  ER-positive tumors, the subtype with the largest 
Black-White outcomes disparity [25, 36–40].

There is high feasibility of translating anti-survivin 
therapy to breast cancer, as it has already been pur-
sued as a cancer therapeutic target by various strate-
gies [27, 45–47], and is already measured in the clinic 
on the validated prognostic assays, Prosigna [19] and 
Oncotype DX [18]. A strength of our study was the 
ability to exclude BIRC5 from the PAM50 algorithm 
(the research version of the Prosigna assay) to indepen-
dently assess BIRC5/survivin as a high-risk biomarker 
in breast cancer and its relationship with tumor sub-
type. Another strength was the use of a large, diverse 
population-based cohort that represents the natural 
distribution of breast cancer in the population, and 
for which RNA expression profiling was optimized for 
FFPE specimens. However, our analysis also had limi-
tations. A limitation of our findings is that while we 
observed differences in BIRC5 expression by race, we 
are unable  to evaluate the differential effects of BIRC5 
in context of the social construct of race. Our targeted 
approach also does not allow for the investigation of 

survivin splice variants, which have been suggested to 
differ in function and according to prognostic signifi-
cance [48, 49]. Further studies investigating the role of 
different survivin splice variants in diverse populations 
may be necessary for therapeutic stratification. Another 
limitation was the low number of HER2-positive 
tumors in our dataset, which did not allow for assess-
ment of BIRC5-mediated recurrence among HER2-pos-
itive cases. Future studies should also consider longer 
follow-up times and detailed chemotherapy data to 
further disentangle the relationship between race, age, 
tumor subtype and survivin. Our results fill a research 
gap in understanding the potential role of survivin in 
breast cancer disparities, and possibly provide future 
insight into treatment strategies for a cohort of women 
with unmet clinical needs. Further studies are needed 
to help close this gap which constitutes the largest dis-
parity among cancer-specific diseases.
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