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Abstract 

Background There is increasing evidence that artificial intelligence (AI) breast cancer risk evaluation tools using digi-
tal mammograms are highly informative for 1–6 years following a negative screening examination. We hypothesized 
that algorithms that have previously been shown to work well for cancer detection will also work well for risk assess-
ment and that performance of algorithms for detection and risk assessment is correlated.

Methods To evaluate our hypothesis, we designed a case-control study using paired mammograms at diagnosis 
and at the previous screening visit. The study included n = 3386 women from the OPTIMAM registry, that includes 
mammograms from women diagnosed with breast cancer in the English breast screening program 2010–2019. 
Cases were diagnosed with invasive breast cancer or ductal carcinoma in situ at screening and were selected if they 
had a mammogram available at the screening examination that led to detection, and a paired mammogram at their 
previous screening visit 3y prior to detection when no cancer was detected. Controls without cancer were matched 
1:1 to cases based on age (year), screening site, and mammography machine type. Risk assessment was conducted 
using a deep-learning model designed for breast cancer risk assessment (Mirai), and three open-source deep-learning 
algorithms designed for breast cancer detection. Discrimination was assessed using a matched area under the curve 
(AUC) statistic.

Results Overall performance using the paired mammograms followed the same order by algorithm for risk assess-
ment (AUC range 0.59–0.67) and detection (AUC 0.81–0.89), with Mirai performing best for both. There was also a cor-
relation in performance for risk and detection within algorithms by cancer size, with much greater accuracy for large 
cancers (30 mm+, detection AUC: 0.88–0.92; risk AUC: 0.64–0.74) than smaller cancers (0 to < 10 mm, detection AUC: 
0.73–0.86, risk AUC: 0.54–0.64). Mirai was relatively strong for risk assessment of smaller cancers (0 to < 10 mm, risk, 
Mirai AUC: 0.64 (95% CI 0.57 to 0.70); other algorithms AUC 0.54–0.56).

Conclusions Improvements in risk assessment could stem from enhancing cancer detection capabilities of smaller 
cancers. Other state-of-the-art AI detection algorithms with high performance for smaller cancers might achieve 
relatively high performance for risk assessment.
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Introduction
Breast cancer is one of the most prevalent diseases and 
common cause of death in women worldwide, despite 
improvements in treatment and mammography screen-
ing coverage [1]. Early detection of breast cancer 
remains an important objective for population health. 
In recent years, improvements in AI and deep learn-
ing technologies have helped to improve the technical 
accuracy of cancer detection methods [2–4], including 
for breast cancer detection [5, 6]. Real-world evalu-
ations of how these tools might be used effectively in 
practice are ongoing [7]. Coupled with these develop-
ments for cancer detection are ongoing studies to eval-
uate risk-based breast cancer screening. This paradigm 
aims to personalise early detection by directing more 
intensive screening to those at greatest risk of death 
from cancer [8]. Retrospective evidence suggests that 
using AI based on mammograms for risk assessment 
might be more informative over a 1–6-year period than 
classical models, and therefore a potentially important 
component for new risk-based strategies [9–11].

One algorithm that has been evaluated in multiple 
settings for risk assessment is called Mirai [12]. This 
deep-learning algorithm was trained for risk assess-
ment using a large US cohort. A limitation of this 
method compared with classical breast cancer risk 
models using epidemiological risk factors [13] is that 
the AI model is largely a black box, and it is not clear 
why it appears to perform well. In an earlier analysis 
that we conducted of this algorithm using data from 
the OPTIMAM repository, we noted that it performed 
quite well as a cancer detection algorithm, that it was a 
good predictor of advanced (Stage 2+) cancers, and that 
the performance and probability of cancer increased 
as mammograms were taken closer to diagnosis [10]. 
Other algorithms trained for cancer detection have 
also shown potential utility for risk assessment, includ-
ing one called GMIC (globally aware multiple instance 
classifier) [12, 14]. We therefore hypothesized that 
algorithms that have previously been shown to work 
well for cancer detection will also work well for risk 
assessment and further that performance of algo-
rithms for detection and risk assessment is correlated. 
In this paper, we report a study to test this hypothesis 
directly. This is done by evaluating the performance of 
different algorithms for both detection and risk assess-
ment using paired mammograms on the same women 
attending screening in the English program, taken at 
the time cancer was detected at screening, and at a pre-
vious screening appointment three years prior to diag-
nosis when cancer was not detected or detectable by 
radiologists.

Methods
Patients
Patients attended the National Health Service Breast 
Screening Program (NHSBSP) between February 2010 
and September 2019 at sites that are part of the OPTI-
MAM mammography image database (OMI-DB, see sup-
plementary material and Halling-Brown et al. [15]). The 
source data are accessible for other research groups. Our 
manuscript reports new work that has not been under-
taken or reported previously using data from this data-
base [16]. Patients were eligible for inclusion if they had 
standard four-view mammography of ‘for presentation’ 
type and had normal or malignant episode outcomes. 
Screening episodes were excluded if the mammograms 
were not from Hologic machines, or if the woman was 
not 46–74 year at the time of their screening mammo-
gram, or the woman had breast implants. All mammo-
grams were taken using Hologic Lorad Selenia or Hologic 
Selenia Dimensions Mammography Systems, following 
requirements for the MIRAI algorithm [17].

Algorithms
Four open-source algorithms were applied. They were 
designed for breast cancer risk assessment, or breast can-
cer detection. The first algorithm (Mirai version 0.3.1) is a 
risk assessment algorithm. It is composed of four under-
lying modules that process each mammogram separately, 
then combine information before estimating risk annu-
ally for 5 years [18]. In our study, we exclusively provided 
image data as input to the examined algorithm. However, 
it is also equipped to process additional risk factor data 
if available. The other selected algorithms were initially 
designed for the purpose of cancer detection. These were: 
GMIC [14], and two others from a New York (NY) group 
that we call: NY [19], and NY-H, where H denotes heat-
map and the algorithm is an extension of NY model using 
heatmaps [19]. Both the NY and NY-H models, along 
with GMIC, employ deep convolutional neural networks. 
Among them, GMIC operates with the most intricate 
architecture. It produces pixel-level saliency maps high-
lighting potential malignant areas. This innovation finds 
application in screening mammography interpretation, 
specifically in predicting the presence of benign or malig-
nant lesions. In contrast, NY-base and NY-H introduce 
a deep convolutional neural network for breast cancer 
screening examination classification, employing a two-
stage architecture and training approach that strategi-
cally combine multiple input views. All three algorithms 
were trained and evaluated on the same dataset with 
image-level labels comprising over 225,000 examinations 
and more than 1 million images. Due to their develop-
ment process, we a priori expected GMIC to perform 
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better than NY-H for cancer detection and NY-H to 
perform better than NY. The reason for including all 
three algorithms is that the expected variation in perfor-
mance is helpful to test our hypothesis on the correlation 
between algorithm performance for detection and risk 
assessment.

Study design
The target population of our study was women who 
attended the NHS Breast Screening Program 2010–
2019. The primary endpoint was diagnosis of invasive 
or insitu carcinoma, with biopsy-confirmed cancer 
diagnoses as recorded on the National Breast Screening 
System (NBSS). The main predictor variable evaluated 
was probability of cancer according to the algorithm. 
For Mirai we used 3 year risk, corresponding to the tri-
ennial population screening program. Age range was 
restricted because most women have screening age 50 to 
70 years in England; with some starting aged 47 years or 
ending aged 73 years during the study epoch due to the 
age-extension trial (ISRCTN33292440); opportunistic 
screening is available for those older than 73 years. The 
case–control study reported is a sub-study of the case–
control study reported by [10]. Only screen-detected 
cancers were included from the earlier work, restricting 
analysis to matched pairs (case and control) with screen-
ing mammograms taken both at diagnosis and 3 years 
prior to diagnosis (or pseudo diagnosis). The primary 
focus was on the relationship between performance of 
predictions by AI algorithms at the time of detection and 
for risk assessment 3 years prior to detection.

We determined that sample size was sufficient for this 
analysis before running the algorithms. This was because 
previous analysis showed a very strong statistical rela-
tionship between the Mirai algorithm for both detection 
and risk [10].

Statistical analysis
All analysis was adjusted for the site where mammogra-
phy was done, the model of the mammography device, 
and where appropriate, age. Predictive performance was 
measured using the area under the curve (AUC) associ-
ated with the algorithm prediction, after adjustment for 
matching factors with 95% confidence intervals from 
Wilson’s method [20]. Heterogeneity was assessed using 
likelihood-ratio tests for interaction based on condi-
tional logistic regression models. The strength of associa-
tion between risk of breast cancer at diagnosis with risk 
of breast cancer 3 year prior to diagnosis was evaluated 
graphically, sub-categorized by tumor size and type (inva-
sive, size unknown; DCIS; invasive: 0 to < 10 mm; 10 to < 
20 mm; 20 to < 30 mm; 30 mm+), and by grade (1–2 vs. 
3) and estrogen-receptor (ER) status (postive/negative). 

These cutpoints have been used previously [10]. This was 
done by estimating model performance using women 
with mammograms at diagnosis and 3 years prior to 
diagnosis. A further analysis was conducted by sub-cate-
gorizing the data based on the age at which patients were 
diagnosed with cancer. This stratification involved the 
utilization of age subgroups (< 55, 55 to 59, 60 to 64, 65 to 
69, and 70+), which were chosen to keep the age range in 
each group relatively constant.

Results
Women were included in this analysis from the previous 
case–control study if they had mammograms at detec-
tion (or pseudo detection if controls) and their previ-
ous screening visit 3 years earlier. This led to complete 
data on n = 3386 cases and controls, matched 1:1. Basic 
demographic characteristics of those included in the 
study, including matching variables, are shown in Table 1.

Figure  1 reports Spearman correlation between the 
algorithms in controls and cases. In controls, there was 
only a weak correlation between the algorithm prediction 
and age. Correlation was moderate to good between algo-
rithms. Mirai was more correlated with itself for detec-
tion and risk than the other three algorithms; the NY and 
NY-H for risk were more correlated with each other than 
with Mirai or GMIC, as might be expected due to their 
similar architecture and process of development. It is also 
of interest that there was a higher correlation between 
Mirai and age, than the other algorithms. Because age 
is a strong risk factor for breast cancer, and Mirai was 
trained for risk assessment, it appears that it uses age 

Table 1 Baseline characteristics of participants by case/control 
status

a IQR inter-quartile range

Summary Control Case

Age

 < 55 400 (24%) 400 (24%)

 55–64 896 (53%) 896 (53%)

 65+ 397 (23%) 397 (23%)

 Median (IQR)a 60 (55 to 64) 60 (55 to 64)

Site

 Site 1 1247 (74%) 1246 (74%)

 Site 2 446 (26%) 447 (26%)

Model

 Lorad Selenia 1643 (97%) 1643 (97%)

 Selenia dimensions 50 (3%) 50 (3%)

Cancer

 Insitu 420 (25%)

 Invasive 1263 (75%)

 Unknown 10 (1%)
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from mammography scans for risk assessment, whereas 
the other algorithms developed for cancer detection do 
not. A different correlation structure was observed in the 
cases. Here the algorithms were more correlated between 
themselves for risk or detection, than with themselves for 
the other set of mammograms. Overall, there was again 
moderate to good correlation between the algorithms, 
but also some variation indicating lack of agreement in 
the rank ordering of patients.

The association between algorithm performance for 
risk and detection is examined further in Table  2 and 
Fig. 3. Model performance for detection was consistently 
better for larger cancers across all algorithms. In addi-
tion, both within cancer types and size, and across algo-
rithms, there was a pattern whereby better performance 
for cancer detection was associated with better perfor-
mance for risk assessment. A similar but less strong pat-
tern was seen by age subgroup (Additional file 1: Fig. S1). 
On average, the algorithm performed best for risk in the 
age groups where it performed best for detection. Simi-
lar findings were observed by ER subgroups (Additional 
file 1: Fig. S2) and for cancer grade 1 and 2 (Additional 
file 1: Fig. S3). However, there was very little association 
seen for grade 3 cancers, suggesting that different radio-
logical features are observed at detection than at the pre-
vious screening mammogram in faster-growing grade 3 
cancers.

Figure  2 plots receiver operating characteristics 
(ROCs) for risk and detection by algorithm. The same 
ordering of performance by algorithm for both is seen, 
with Mirai having strongest performance for both risk 

Fig. 1 Spearman correlation between algorithms when used on mammograms 3 year prior to diagnosis (risk) or at diagnosis (det)

Fig. 2 Receiver operating characteristics for detection and risk 
by algorithm
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assessment and detection, and the NY algorithm the 
weakest.

Discussion
Our analysis suggests that algorithms that perform bet-
ter for cancer detection are also likely to perform better 
for risk assessment. We found evidence that “easier to 
detect” larger cancers at diagnosis are also likely to be 
given a higher probability of malignancy three years prior 
to diagnosis, i.e., for risk assessment.

There are several implications of our findings. Firstly, 
improvements for risk assessment algorithms for breast 
cancer might be gained by improving their performance 
for cancer detection. For example, analysis by subgroup 
of cancer size showed that GMIC was broadly compara-
ble with Mirai at detection of larger cancers (> 10 mm) 
and DCIS, but worse for smaller cancers both at diag-
nosis and at risk assessment. To achieve similar perfor-
mance for risk assessment therefore, one might suggest 
additional training or developments of the GMIC algo-
rithm to focus on smaller cancers—improvements to 

Table 2 Performance of algorithms for detection and risk overall, by cancer type and tumor size

Subgroup n Detection AUC (95% CI) Risk AUC (95% CI) Phet(detection) Phet(risk)

Mirai

  Overall 3386 0.89 (0.88 to 0.91) 0.67 (0.65 to 0.69)

Size

  Invasive, size unknown 210 (6%) 0.89 (0.81 to 0.93) 0.57 (0.48 to 0.66) < 0.001 < 0.001

  DCIS 840 (25%) 0.88 (0.85 to 0.91) 0.66 (0.62 to 0.71)

  0 to < 10 mm 436 (13%) 0.86 (0.81 to 0.90) 0.64 (0.57 to 0.70)

  10 to < 20 mm 976 (29%) 0.90 (0.87 to 0.93) 0.67 (0.63 to 0.71)

  20 to < 30 mm 524 (15%) 0.92 (0.88 to 0.95) 0.70 (0.64 to 0.75)

  30 mm+ 400 (12%) 0.88 (0.83 to 0.92) 0.74 (0.68 to 0.80)

GMIC

  Overall 3386 0.88 (0.87 to 0.90) 0.63 (0.61 to 0.66)

Size

  Invasive, size unknown 210 (6%) 0.89 (0.81 to 0.93) 0.57 (0.48 to 0.66) < 0.001 < 0.001

  DCIS 840 (25%) 0.93 (0.90 to 0.95) 0.66 (0.61 to 0.70)

  0 to < 10 mm 436 (13%) 0.83 (0.77 to 0.87) 0.56 (0.49 to 0.62)

  10 to < 20 mm 976 (29%) 0.85 (0.82 to 0.88) 0.62 (0.57 to 0.66)

  20 to < 30 mm 524 (15%) 0.89 (0.84 to 0.92) 0.67 (0.61 to 0.72)

  30 mm+ 400 (12%) 0.91 (0.86 to 0.94) 0.70 (0.63 to 0.75)

NY

  Overall 3386 0.81 (0.79 to 0.83) 0.59 (0.57 to 0.61)

Size

  Invasive, size unknown 210 (6%) 0.75 (0.66 to 0.83) 0.57 (0.48 to 0.66) < 0.001 < 0.001

  DCIS 840 (25%) 0.88 (0.84 to 0.90) 0.61 (0.56 to 0.65)

  0 to < 10 mm 436 (13%) 0.73 (0.67 to 0.79) 0.55 (0.48 to 0.61)

  10 to < 20 mm 976 (29%) 0.76 (0.72 to 0.79) 0.55 (0.50 to 0.59)

  20 to < 30 mm 524 (15%) 0.84 (0.79 to 0.88) 0.64 (0.58 to 0.70)

  30 mm+ 400 (12%) 0.88 (0.83 to 0.92) 0.64 (0.57 to 0.70)

NY-H

  Overall 3386 0.87 (0.85 to 0.88) 0.59 (0.56 to 0.61)

Size

  Invasive, size unknown 210 (6%) 0.82 (0.73 to 0.88) 0.58 (0.49 to 0.67) < 0.001 < 0.001

  DCIS 840 (25%) 0.90 (0.86 to 0.92) 0.58 (0.54 to 0.63)

  0 to < 10 mm 436 (13%) 0.78 (0.73 to 0.83) 0.54 (0.47 to 0.61)

  10 to < 20 mm 976 (29%) 0.85 (0.82 to 0.88) 0.55 (0.51 to 0.59)

  20 to < 30 mm 524 (15%) 0.90 (0.85 to 0.93) 0.62 (0.56 to 0.68)

  30 mm+ 400 (12%) 0.92 (0.88 to 0.95) 0.68 (0.61 to 0.74)
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risk assessment are likely to follow. Secondly, our results 
suggest that state-of-the-art algorithms for breast can-
cer detection might be considered to be repurposed for 
risk assessment. In time, AI for mammography is likely 
to become implemented in national screening programs 
such as the UK. Such developments could then enable 
routine risk assessment to help drive new risk-based 
screening regimens. Thirdly, our findings help to explain 
why Mirai works well for risk assessment: it is find-
ing early signs of cancer. These are likely most visible in 
the larger cancers at screen detection because they are 
more likely to have been there at the previous screen 
than smaller cancers which might have only developed 
in the interval between screens. Fourthly, our results sug-
gest that, more generally, deep learning computer vision 
algorithms are able to discern intricate patterns in breast 
scans, which are not currently acted upon by radiologists. 
Their ability to extract latent insights from visual data 
only without the use of any classical risk factors suggests 
that the development of a more sophisticated diagnostic 
models should yield better results for risk assessment.

Strengths of our study include the paired design, 
whereby the mammograms at detection and earlier 
screening rounds were on the same women. Our design 
has not been used before to assess correlation between 
performance for detection and risk assessment. It is also 
little applied in other work on AI algorithms for breast 
cancer risk assessment, where most publications have 
focused on cancer following a single screening visit 
for risk assessment. Using paired data lets us test our 

hypothesis more reliably than indirect comparisons of 
performance for risk and detection using samples of dif-
ferent women. Another strength is that this study was an 
external validation assessment of all the algorithms, with 
no training or fine tuning done. This helps to ensure a 
reliable evaluation.

There are several limitations to our study. Firstly, 
although some algorithms produce heatmaps that can 
provide a more in-depth view of the inner mechanisms, 
the algorithms were applied as a “black box”, and we do 
not know if the higher risk was due to a suspicious area 
in the region where the cancer was found, or something 
else. For example, an alternative explanation for the find-
ings might be that the algorithms identify a field effect in 
the breast, not a specific pattern associated with breast 
cancer. Secondly, our study is a retrospective and obser-
vational case–control study. The area is largely lacking 
evaluation through more prospective designs, and the 
retrospective nature of this work makes it at risk of bias 
including related to the decision to seek publication of 
results. Thirdly, the analysis is limited by when and where 
screening mammograms were recorded (e.g., it was based 
on women attending the English screening program, but 
we do not know the race or ethnicity of those included). 
Fourthly, we were unable to compare directly with other 
domains or risk models, including family history and 
polygenic risk scores; or the other risk factors that may 
be added to Mirai. Fifthly, we were limited by availability 
of code to run pre-defined algorithms for risk or detec-
tion. Other algorithms may perform differently, and this 
is worth further investigating. Lastly, it is important to 
note that this study specifically focused on mammograms 
acquired via Hologic machines, which may constrain the 
applicability of the findings to other types of mammo-
gram machines.

In conclusion, this study evaluated whether the perfor-
mance of an AI model for detection is associated with its 
performance for risk assessment. We did this using four 
open-source algorithms. The analysis suggests that algo-
rithms that excel at cancer detection also perform well 
for risk assessment. The correlation between the ability to 
detect cancer in mammograms and the ability to assess 
the risk of developing cancer suggests that improvements 
in risk assessment algorithms could be obtained by focus-
ing on improving their capabilities for cancer detection. 
For instance, algorithms may need additional training 
on detecting smaller cancers to achieve better perfor-
mance in risk assessment. More generally, current state-
of-the-art detection algorithms might be repurposed 
for risk assessment. This could enable the AI technolo-
gies currently being trialled to aid cancer detection using 
mammograms to play a vital role in future risk-based 
screening programs. For example, it might be advisable 

Fig. 3 Association between AUC for diagnosis and AUC for risk 
by algorithm (Mirai black, GMIC red, NY green, NY-H blue) overall ( + , 
with width of the bars corresponding to the 95% CI) and by type 
and size of cancer when detected
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to recommend more frequent screening for higher-risk 
patients [21]. Finally, the paired mammograms in our 
study were about 3 years apart as per the standard breast 
cancer screening interval in the UK. Therefore, the evi-
dence reported is most relevant to short-term breast can-
cer risk, perhaps due to the detection of indolent breast 
cancers not detected by the human eye. To better inform 
long-term mammography screening patterns, developing 
breast cancer risk prediction models over a longer time 
horizon would be useful. This extension could provide 
a comprehensive understanding of breast cancer risk 
dynamics and contribute to refining strategies for effec-
tive and personalized long-term screening.
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