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Abstract 

Background Generalizability of predictive models for pathological complete response (pCR) and overall survival (OS) 
in breast cancer patients requires diverse datasets. This study employed four machine learning models to predict pCR 
and OS up to 7.5 years using data from a diverse and underserved inner-city population.

Methods Demographics, staging, tumor subtypes, income, insurance status, and data from radiology reports were 
obtained from 475 breast cancer patients on neoadjuvant chemotherapy in an inner-city health system (01/01/2012 
to 12/31/2021). Logistic regression, Neural Network, Random Forest, and Gradient Boosted Regression models were 
used to predict outcomes (pCR and OS) with fivefold cross validation.

Results pCR was not associated with age, race, ethnicity, tumor staging, Nottingham grade, income, and insurance 
status (p > 0.05). ER−/HER2+ showed the highest pCR rate, followed by triple negative, ER+/HER2+, and ER+/HER2− 
(all p < 0.05), tumor size (p < 0.003) and background parenchymal enhancement (BPE) (p < 0.01). Machine learning 
models ranked ER+/HER2−, ER−/HER2+, tumor size, and BPE as top predictors of pCR (AUC = 0.74–0.76). OS was asso-
ciated with race, pCR status, tumor subtype, and insurance status (p < 0.05), but not ethnicity and incomes (p > 0.05). 
Machine learning models ranked tumor stage, pCR, nodal stage, and triple-negative subtype as top predictors of OS 
(AUC = 0.83–0.85). When grouping race and ethnicity by tumor subtypes, neither OS nor pCR were different due 
to race and ethnicity for each tumor subtype (p > 0.05).

Conclusion Tumor subtypes and imaging characteristics were top predictors of pCR in our inner-city population. 
Insurance status, race, tumor subtypes and pCR were associated with OS. Machine learning models accurately pre-
dicted pCR and OS.
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Introduction
Breast cancer is a complex disease with highly hetero-
geneous tumor characteristics and clinicopathological 
profiles [1]. Predicting response to neoadjuvant chemo-
therapy and overall survival in breast cancer patients 
remains a crucial challenge for disease management. In 
addition, racial, ethnic, and socioeconomic disparities 
could also influence breast cancer outcomes [2, 3], high-
lighting the need for diverse and inclusive datasets to 
develop more accurate predictive models.

Molecular subtypes of breast cancer exhibit distinct 
clinicopathological profiles [4]. These subtypes have 
varying responses to different treatment modalities, 
emphasizing the importance of tailoring therapy based 
on tumor subtype [5, 6]. Incorporating molecular sub-
type information into predictive models helps better 
predict treatment response and overall survival, guiding 
clinicians in making informed decisions. Racial and eth-
nic groups differ in their prevalence of tumor subtypes, 
which could contribute to inconsistent prognoses [7]. 
Most breast cancer clinical trials also lack racial and eth-
nic diversity, with Blacks and Hispanics largely underrep-
resented, presenting a barrier to precision medicine for 
these populations [7, 8]. Moreover, socioeconomic status 
could also affect outcomes.

Tumor characteristics, clinicopathological profiles, 
patient profiles, and other variables interact, making 
it challenging to identify independent risk factors that 
predict outcomes. Recent advancements in machine 
learning predictive modeling have shown promise in 
addressing this challenge [9, 10] because machine learn-
ing can deal with complex datasets without the need to 
specify a priori the complex relationship among the large 
number of variables. These models leverage algorithms 
that learn patterns from a vast array of patient data [9, 
10], including demographic information, histopatho-
logical features, treatment regimens, molecular profiles, 
and socioeconomic factors. By harnessing the power of 
machine learning, robust and accurate models that inte-
grate diverse populations and tumor subtypes can be 
developed, aiding in personalized medicine for breast 
cancer patients. However, machine learning also has the 
potential to exacerbate racial and ethnic disparities with 
imbalanced representation of demographics [11].

Pathologic complete response (pCR) serves as a surro-
gate marker for neoadjuvant treatment efficacy in breast 
cancer patients [12–14]. Achieving pCR, defined as the 
absence of invasive carcinoma in the breast and axillary 
lymph nodes following neoadjuvant treatment, is associ-
ated with improved overall survival (OS) [12–14]. Accu-
rate prediction of pCR can guide treatment decisions, 
potentially sparing patients from unnecessary interven-
tions or identifying those who may require additional 

therapies [15]. Overall survival reflects the long-term 
outcomes and effectiveness of treatment strategies [16]. 
Identifying predictors of OS can assist in tailoring esca-
lating therapy or follow-up intervals toward discrete risk 
factors. Machine learning predictive models offer the 
potential to integrate large number of clinical, pathologi-
cal, molecular data and socioeconomic factors to provide 
personalized treatments to improve pCR and OS for indi-
vidual patients [17].

The goals of this study were to employ four machine 
learning models to identify key risk factors among a 
large array of clinicopathological, tumor subtypes, insur-
ance status, income, and imaging characteristics from a 
diverse racial, ethnic, and socioeconomic status and to 
predict pCR and OS at 7.5 years after diagnosis in breast 
cancer patients. Four machine learning models were 
employed to predict pCR and 7.5-year OS.

Methods
Data sources
This retrospective study was approved by our IRB (insti-
tution removed for blinded review but can be identified 
if needed) with waived informed consent (2020-12169). 
The study followed the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) 
reporting guidelines. The patient cohort comprised of 
all patients diagnosed with invasive breast cancer within 
our institution’s health system which serves an inner-city 
urban population between 01/01/2012 and 12/31/2021 
and treated with neoadjuvant chemotherapy followed by 
surgery in our health system. Data were obtained from 
the cancer registry of our institution and via chart review 
of the electronic medical records and radiology reports. 
There were 509 patients and 34 patients excluded due to 
missing pCR outcome, with a final sample size of 475. 
Missing non-MRI data averaged 3.1%. Patients with miss-
ing data were excluded from ML modeling. Only 240 
patients had MRI reports describing all relevant imaging 
elements. The sample size for each analysis is provided in 
respective tables and figures.

The clinicopathological data included age, race (White, 
Black, Asian, others), ethnicity (Hispanic, non-Hispanic), 
clinical tumor (T) and nodal (N) stage by TNM staging, 
Nottingham grade (Nottingham Grade 1 (well differen-
tiated), 2 (moderately differentiated), 3 (poorly differ-
entiated)), tumor subtypes (ER−/HER2+, ER+/HER2+, 
ER+/HER2−, and triple negative), and radiological data 
from MRI radiology reports (background parenchy-
mal enhancement, tumor size, multifocal lesions, skin 
involvement, satellite lesions, pectoralis muscle involve-
ment, lymph node involvement, chest wall involve-
ment, nipple involvement, and multicentric lesions). In 
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addition, income quintiles and insurance status were also 
tabulated. The primary outcomes were pCR and OS.

Logistic regression
Logistic regression was performed to compute the odds 
ratios (ORs) of risk factors associated with outcomes 
(N = 475). Inputs for pCR ORs included demographics, 
tumor subtypes, insurance status, and income quintile. 
Inputs for overall survival ORs included demographics, 
tumor subtypes, insurance status, income quintile, and 
pCR status. Insurance status included private, Medic-
aid, Medicare. Self-pay and uninsured status amounted 
to < 1% of sample size and were not included in OR 
calculation.

Predicting pCR and OS
Four predictive models, Logistic Regression, Neural Net-
work (NN), Random Forest (RF), and Gradient Boosted 
Regressor (GBR), were created to predict pCR in patients 
who received neoadjuvant chemotherapy.

Multivariate logistic regression was used as a baseline 
for comparison. The solver, or the algorithm used by the 
LR model for optimization, was newton-cg which uses 
the second-order Taylor Series to create an approxima-
tion for gradient optimization [18].

For Neural Networks we used a fully connected feed-
forward neural network with one hidden layer and one 
output layer [19]. The hidden layer contains 32 neurons, 
activation function of ReLU, and l2 regularization with 
regularization factor of 0.01. The NN utilizes a mean 
squared error loss function and Adam optimizer with a 
learning rate of 0.01.

A Random Forest Algorithm was utilized with a max 
depth of 1 for the univariate analysis, and max depth of 
10 for multivariate analysis to limit overfitting [20]. The 
algorithm creates multiple decision trees to create a more 
holistic and better result when it comes to multivariate 
analysis.

Gradient Boosted Regression utilizes the Boosting 
ensembling technique which combines multiple weak 
learners, which in this case is a regression model, and 
ensembles them together to create a strong learner, or a 
stronger regression model [21]. In our model, we utilized 
a max depth of 1, 50 estimators, and a learning rate of 
0.001 for the univariate analysis, and a max depth of 3, 
100 estimators, and a learning rate of 0.1.

Hyperparameter tuning was conducted using the 
grid search method. For the neural networks, the grid 
search algorithm combined powers of 2 for the num-
ber of neurons and powers of 10 for the learning rate. 
For the Random Forest, the grid search algorithm com-
bined numbers from 1 to 50 for the max depth. For the 
Gradient Boosted Regression algorithm, the grid search 

algorithm combined numbers from 1 to 100 for the depth 
and estimators and powers of 10 for the learning rate.

These analyses were conducted using Python, spe-
cifically the TensorFlow library for the neural networks 
and the sklearn library for RF, Logistic Regression, and 
GBR models. An 80/20 train validation split was uti-
lized with fivefold cross validation [22, 23]. Performance 
metrics (such as AUCs) were reported for test (valida-
tion) sets only using fivefold cross validation from which 
mean ± SD were obtained. A 50% probability threshold 
was used to calculate sensitivity/specificity. 95% confi-
dence interval was chosen.

Data used to predict pCR included demographics, clin-
ical staging, tumor subtypes, and MRI data. Data used to 
predict OS included demographics, tumor subtypes, clin-
ical staging, tumor subtypes, MRI data, and pCR status. 
OS was determined to be the proportion of patients alive 
7.5  years after diagnosis. Insurance status and income 
quintiles were not used. The top 10 predictors were iden-
tified and used to evaluate performance indices.

Kaplan–Meier survival analysis
Kaplan–Meier survival analysis for patients with breast 
cancer was performed with stratification of pCR status, 
tumor subtypes, insurance, race, ethnicity, and income 
quintiles. For race and ethnicity, outcomes were also sub-
stratified by pCR status.

Statistical analysis
Χ2 tests were performed using R Studio (version 3.1). 
Logistic regression analysis used R studio or Python 
(version 3.10.9) for identifying risk factors and for pre-
dicting outcomes. Hazard ratios were obtained using 
Cox-regression analysis using R studio and Kaplan–
Meier curves were generated using Python. ANOVA 
was used for comparison with three or more groups. A 
p < 0.05 was used to indicate statistical significance unless 
otherwise specified.

Results
pCR
Patient profiles stratified by pCR status are summarized 
in Table 1. pCR was not significantly associated with age 
(≥ 50yo vs < 50yo (p = 0.20), race (p = 0.87) or ethnicity 
(p = 1.0), T-stage (p = 0.09), N stage (p = 0.31), and Not-
tingham grade (p = 0.09), but was significantly associated 
with tumor subtype (p < 0.001), with ER−/HER2+ (56.5%) 
having the highest pCR rate, followed by triple negative 
(31.0%), ER+/HER2+ (23.0%) and ER+/HER2− (8.5%).

pCR was significantly associated with tumor size 
(p = 0.003), with tumors > 5 cm having a lower pCR rate 
(11.1%) compared with tumors measuring ≤ 2  cm and 
2–5  cm (34.2% and 35.1%, respectively). Mild BPE had 
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Table 1 Patient profiles by pCR status (N = 475)

Patient characteristics N (%) % pCR % no pCR p value

All patients with pCR data 475 (100%) 27.4% 72.6% –

Age, years (median 55.7 [IQR 17.57]) 0.20

 ≥ 50 319 (67.2%) 25.4% 74.6%

 < 50 156 (32.8%) 31.4% 68.6%

Race (n, %) 0.87

 Hispanic white 96 (20.2%%) 25.0% 75.0%

 Non-Hispanic white 64 (13.5%) 21.9% 78.1%

 Black 263 (55.4%) 28.5% 71.5%

 Asian 22 (4.6%) 31.8% 68.2%

 Other 30 (6.3%) 33.3% 66.7%

Ethnicity (n, %) 1.0

 Hispanic 164 (34.5%) 27.4% 72.6%

 Not Hispanic 311 (65.5%) 27.3% 72.7%

Clinical T-stage (n, %) 0.09

 T1 66 (14.0%) 30.0% 70.0%

 T2 240 (51.1%) 31.0% 69.0%

 T3 and T4 176 (34.9%) 21.3% 78.7%

Clinical N Stage (n, %) 0.31

 N0 157 (33.0%) 32.5% 67.5%

 N1 243 (51.2%) 24.7% 75.3%

 N2 37 (7.8%) 21.6% 78.4%

 N3 38 (8.0%) 28.9% 71.1%

Nottingham grade (n, %) 0.09

 Grade 1 5 (1.2%) 0.0% 100.0%

 Grade 2 129 (31.5%) 21.7% 78.3%

 Grade 3 276 (67.3%) 29.7% 70.3%

Tumor subtype groups (n, %) < 0.001

 ER−/HER2+ (± PR+) 69 (15.1%) 56.5% 43.5%

 ER+/HER2+ (± PR+) 87 (19.0%) 23.0% 77.0%

 ER+/HER2− (± PR+) 130 (28.4%) 8.5% 91.5%

 ER−/HER2− (PR−) (triple negative) 171 (37.4%) 31.0% 69.0%

BPE pre-NAC (n, %) 0.009

 Mild 163 (63.0%) 35.6% 64.4%

 Moderate 83 (32.0%) 24.1% 75.9%

 Marked 13 (5.0%) 0.0% 100.0%

MRI tumor size (LD, cm) (n, %) 0.003

 Small (≤ 2) 38 (15.8%) 34.2% 65.8%

 Medium (> 2 to 5) 148 (61.7%) 35.1% 64.9%

 Large (> 5) 54 (22.5%) 11.1% 88.9%

Annual income 0.77

 First quintile ($21,846.00–$34.860.00) 87 (21.5%) 33.3% 66.7%

 Second quintile ($34,860.00–$42,639.00) 100 (24.7%) 25.0% 75.0%

 Third quintile ($42,639.00–$58,814.20) 55 (13.6%) 29.1% 70.9%

 Fourth quintile ($58,814.20–$70,107.00) 81 (20.0%) 27.2% 72.8%

 Fifth quintile ($70,107.00–$218,493.00) 82 (20.2%) 30.5% 69.5%

Insurance type 0.58

 Private 139 (34.5%) 28.1% 71.9%

 Medicaid 209 (51.9%) 30.6% 69.4%

 Medicare 51 (12.7%) 23.5% 76.5%

 Uninsured 4 (1.0%) 50% 50.0%

p values indicate comparison between pCR versus non-pCR by χ2 test
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the highest rate of pCR (35.6%) followed by moder-
ate (24.1%) and marked (0.0%) (p < 0.03) BPE. This was 
unexpected and we further investigated and found that 
patients with marked BPE consisted of mostly of ER+/
HER2− and ER+/HER2+, and larger tumor size, and 
poorer differentiation. Income and insurance status were 
not significantly associated with pCR (p > 0.05).

Table  2 shows the composition and pCR for different 
race and ethnicity grouped by tumor subtypes. Blacks 
had higher composition of triple negative (p < 0.05), lower 
composition of the ER+/HER2+ and ER+/HER2− sub-
types. There was however no significant difference due 
to race (p > 0.05) nor ethnicity (p > 0.05) for each tumor 
subtype. Note that there were high proportion of HER2 
positive breast cancers and relatively low proportion of 
ER/PR positive cases because ER/PR positive patients are 
known to be less responsive to neoadjuvant chemother-
apy and they were not given neoadjuvant chemotherapy. 
When data were modeled individually for each of the 
four tumor subtype groups (Additional file 1: Table S1), 
radiographic tumor size and BPE were highly ranked 
among predictors, but T-stage ranked lower as a predic-
tor of pCR.

Table  3 shows the odds ratios for achieving pCR. 
Race (p > 0.05) and ethnicity (p > 0.05) did not contrib-
ute to different odds of achieving pCR. ER+/HER2− 
had the lowest likelihood of achieving pCR (OR = 0.085, 
[0.037,0.194], p < 0.0001), followed by triple negative 
(OR = 0.406, [0.219,0.754], p = 0.004), and ER+/HER2+ 
(OR = 0.285, [0.137,0.593] p < 0.0001) compared to ER−/
HER2+. Patients in different income quintiles, except 

with the 1st quintile, and patients with insurance status 
did not have lower odds of achieving pCR.

Table  4 summarizes the results of four different ML 
models. All 4 models consistently ranked ER+/HER2−, 
ER−/HER2+, radiographic tumor size, and BPE as top 
predictors, but ER+/HER2+ and triple negative were 
not top predictors. Accuracy ranged from 0.697 to 0.731, 
specificity 0.736 to 0.890, sensitivity 0.555 to 0.799 and 
AUC 0.743 to 0.755.

Overall survival
Figure  1 shows the Kaplan–Meier survival analysis 
(N = 475). Patients who achieved pCR had a clear survival 
benefit compared to those who did not (HR = 0.1898, 95% 
CI (0.08275–0.4354), p < 0.0001) (Fig.  1A). Tumor sub-
type was significantly associated with survival probability 
(Fig.  1B). Patients with triple negative disease were sig-
nificantly more likely to die than those with ER+/HER2+ 
(HR = 0.3109, 95% CI: [0.1468–0.6582], p = 0.0023), 
ER+/HER2− (HR = 0.4020, 95% CI: [0.2245–0.7198], 
p = 0.0022) and ER−/HER2+ (HR = 0.5077, 95% CI: 
[0.2487–1.0363], p = 0.0626). There were no significant 
differences in survival probability among ER−/HER2+, 
ER+/HER2+, and ER+/HER2− subtypes (p > 0.05). Insur-
ance status was significantly associated with survival 
probability (Fig.  1C). Patients on Medicaid (HR = 3.29 
95% CI: [1.39–7.77], p = 0.007) and Medicare (HR = 6.93 
95% CI: [2.824–17.01], p < 0.0001) showed higher odds 
of mortality compared to those on private insurance. 
Note that patients on Medicare were significantly older 
(p < 0.05 ANOVA). There were no significant differences 

Table 2 Percent of patients and pCR for race and ethnicity grouped by molecular subtypes (N = 475), (B) AUCs for all four univariate 
models across all 4 tumor subtypes

Note that percentages do not add up to 100% because “other” race due to small sample sizes were not included
a Indicates p < 0.05 between race or ethnicity
b Indicates p < 0.05 different from ER−/HER2+

ER−/HER2+ ER+/HER2+ ER+/HER2− TN

Percent of patients

 White 18 (11%) 39 (24%) 51 (32%) 49 (31%)

 Black 42 (16%) 39 (15%)a 61 (23%)a 109 (41%)a

Percent with pCR

 White 9 (50%) 9 (23%) 6 (12%)b 14 (29%)

 Black 23 (55%) 8 (21%)b 4 (7%)b 34 (31%)b

Percent of patients

 Hispanic 24 (14%) 33 (17%) 54 (24%) 48 (40%)

 Non-Hispanic 45 (14%) 54 (17%) 76 (24%) 123 (40%)

Percent with pCR

 Hispanic 14 (58%) 6 (18%)b 7 (13%)b 17 (35%)

 Non-Hispanic 25 (55%) 14 (26%) 4 (5%)b 36 (29%)
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in survival probability by race (p > 0.05) and ethnicity 
(p > 0.05) when stratified by pCR (Fig. 1D, E). There was 
no significant difference in survival probability income 
status (p > 0.05) (Fig. 1F).

Patient profiles for OS at 7.5  years after diagnosis are 
summarized in Table  5. OS was significantly lower for 
those who were ≥ 50yo compared to < 50yo (p = 0.04). 
OS was significantly associated with T-stage (p < 0.0001), 
N stage (p < 0.001), and race (p = 0.03), but not ethnicity 
(p = 0.53) or Nottingham grade (p = 0.92). OS was signifi-
cantly associated with tumor subtype (p < 0.001), with tri-
ple negative having the lowest survival (72.5%). OS was 
not significantly associated with BPE (p = 0.89), tumor 
size (p = 0.15), and income (p = 0.39), whereas OS was 

significantly associated with pCR (p < 0.0001), and insur-
ance status (p = 0.0002) by χ2 analysis.

Table  6 shows OS at 7.5  years for different races and 
ethnicities grouped by tumor subtypes. Blacks vs whites 
showed no differences in OS for any subtypes (p > 0.05). 
Hispanics vs non-Hispanics also showed no differences 
in OS across any subtypes (p > 0.05); however, non-His-
panic patients with triple-negative subtype were signifi-
cantly less likely to survive (p < 0.05).

Table  7 shows the OS odds ratios for demographics, 
tumor subtypes, pCR, income quintile, and insurance 
status. Blacks and Asians had worse survival ORs com-
pared to Whites (p < 0.05). Triple negative had worse OR 
compared to ER−/HER2+ (p = 0.025). The other subtypes 
showed no worse odds of OS compared to ER−/HER2+ 
(p > 0.05). OS was not associated with income quintiles, 
but patients on Medicaid and Medicare had worse ORs 
compared to those on private insurance. As noted above 
patients on Medicare were significantly older (p < 0.001, 
ANOVA).

Table 8 summarizes the results of the ML models. The 
top 10 predictors were similar for all 4 models, with high 
accuracy, specificity, and accuracy. AUC ranged from 
0.84 to 0.85. Note that these models which included MRI 
data performed better than those that did not include 
MRI data.

Discussion
This study employed multiple machine learning mod-
els to predict pCR and OS using patient demograph-
ics, clinicopathologic tumor characteristics, and MRI 
radiology report data from a diverse racial and ethnic 
patient population, many of whom had lower socioeco-
nomic status. The major findings are: (1) pCR is asso-
ciated with tumor stage, and tumor size and BPE, but 
not race, ethnicity, income quintile, and insurance sta-
tus, (2) ER−/HER2+ has the highest pCR rate, followed 
by triple negative, ER+/HER2+ and ER+/HER2−, (3) 
all 4 machine learning models consistently rank ER+/
HER2−, ER−/HER2+, radiographic tumor size, and 
BPE as top predictors of pCR (AUC = 0.74–0.76), (4) 

Table 3 Odds ratios for pCR as outcome for demographics, 
tumor subtypes, pCR, income quintile, and insurance status 
(N = 433 out of 475)

(A) Odds ratio for pCR as the 
outcome

OR 2.5% 97.5% p value

Race (white as reference)

 Black versus non-Hispanic White 
(ref )

1.515 0.737 3.114 0.259

 Asian versus non-Hispanic White 
(ref )

2.207 0.898 5.425 0.085

Ethnicity

 Hispanics 1.267 0.809 1.987 0.301

Subtypes (ER− and HER2+ as reference)

 Triple negative 0.406 0.219 0.754 0.004

 ER+ and HER2+ 0.285 0.137 0.593 < 0.0001

 ER+ and HER2− 0.085 0.037 0.194 < 0.0001

Incomes (5th quintile (highest) as reference)

 4th 0.899 0.434 1.862 0.774

 3rd 0.942 0.417 2.219 0.885

 2nd 0.798 0.395 1.614 0.530

 1st 1.204 0.608 2.382 0.001

Insurance status (private as reference)

 Medicaid 0.838 0.502 1.399 0.498

 Medicare 0.724 0.342 1.533 0.399

Table 4 Multivariate analysis of top predictors of pCR (N = 240)

The performance metrics are mean ± standard deviation for four different models: Neural network (NN), random forest (RF), logistic regression (LR), and gradient 
boosted regressor (GBR)

TS tumor size, BPE background parenchymal enhancement, Mu multifocal, SI skin involvement, NG Nottingham grade

(B) Predictors for pCR as the outcome Accuracy Sensitivity Specificity AUC 

NN ER+/HER2−, ER−/HER2+, TS, BPE, Mu, SI, Age, NG, Nstage, T-stage 0.731 ± 0.046 0.799 ± 0.092 0.7360 ± 0.09 0.7540 ± 0.039

RF ER+/HER2−, ER−/HER2+, TS, BPE, Age, Mu, SI, NG, NS, T-stage 0.720 ± 0.056 0.583 ± 0.147 0.774 ± 0.068 0.7520 ± 0.064

LR ER+/HER2−, ER−/HER2+, TS, BPE, Mu, SI, Age, NG, T-stage, Nstage 0.720 ± 0.075 0.555 ± 0.118 0.890 ± 0.052 0.7550 ± 0.043

GBR ER+/HER2−, ER−/HER2+, TS, BPE, Age, Mu, SI, T-stage, NG, Nstage 0.697 ± 0.055 0.666 ± 0.209 0.785 ± 0.054 0.7430 ± 0.084
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OS is associated with pCR status, tumor subtype, tumor 
stage, some MRI data, and insurance status, race and 
ethnicity. All 4 models consistently rank ER+/HER2−, 
ER−/HER2+, radiographic tumor size, and BPE as top 
predictors of OS (AUC = 0.83–0.84), (5) pCR, and cer-
tain tumor subtype, and private insurance status are 
associated with higher survival probability, (6) when 
grouping race and ethnicity by tumor subtypes, neither 

pCR nor OS outcomes was different due to race and 
ethnicity for each tumor subtype.

pCR
Studies evaluating associations between pCR and race 
and ethnicity have reported conflicting results [24–39]. 
Studies utilizing data from the National Cancer Database 
(NCDB), have demonstrated lower pCR rates in Black 

Fig. 1 Kaplan–Meier survival curves for patients with breast cancer (N = 475) by pCR status, tumor subtypes, insurance status, race, ethnicity, 
and income. Patients belonging to Asian and “other” race (n = 19 and n = 26, respectively) were grouped together for comparison with white 
(n = 136) and Black (n = 233) races. The median time to last contact was 3.83 years (IQR: 2.13–6.46). All patients had followed up with a recorded date 
of last contact, among whom there were 85 events
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Table 5 Patient profiles by OS status at 7.5 years (N = 475)

Patient characteristics N (%) % OS % no OS p value

All patients 475 (100%) 82.9 17.1 –

Age, years (median 55.7 [IQR 17.57]) 0.04

 ≥ 50 319 (67.2%) 80.3 19.7

 < 50 156 (32.8%) 88.5 11.5

Race (n, %) 0.03

 Hispanic white 96 (20.2%) 86.5 13.5

 Non-Hispanic white 64 (13.4%) 93.8 6.2

 Black 263 (55.4%) 79.1 20.9

 Asian 22 (4.6%) 90.9 9.1

 Other 30 (6.3%) 76.7 23.3

Ethnicity (n, %) 0.53

 Hispanic 164 (34.5%) 84.8 15.2

 Not Hispanic 311 (65.5%) 82.0 18.0

Clinical T-stage (n, %) < 0.0001

 T1 66 (14.0%) 89.4 10.6

 T2 240 (51.1%) 89.6 10.4

 T3 and T4 164 (34.9%) 71.3 28.7

Clinical N Stage (n, %) < 0.001

 N0 157 (33.0%) 91.7 8.3

 N1 243 (51.2%) 81.1 18.9

 N2 37 (7.8%) 62.2 37.8

 N3 38 (8.0%) 81.6 18.4

Nottingham grade (n, %) 0.92

 Grade 1 5 (1.2%) 80.0 20.0

 Grade 2 129 (31.5%) 83.7 16.3

 Grade 3 276 (67.3%) 80.4 19.6

Tumor subtype groups (n, %)  < 0.001

 ER−/HER2+ (± PR+) 69 (15.1%) 87.0 13.0

 ER+/HER2+ (± PR+) 87 (19.0%) 90.8 9.2

 ER+/HER2− (± PR+) 130 (28.4%) 88.5 11.5

 ER−/HER2− (PR−) (triple negative) 171 (37.4%) 72.5 27.5

BPE Pre-NAC (n, %) 0.89

 Mild 163 (63.0%) 89.0 11.0

 Moderate 83 (32.0%) 88.0 12.0

 Marked 13 (5.0%) 92.3 7.7

MRI tumor size (LD, cm) (n, %) 0.15

 Small (≤ 2) 38 (15.8%) 92.1 7.9

 Medium (> 2 to 5) 148 (61.7%) 90.5 9.5

 Large (> 5) 54 (22.5%) 81.5 18.5

PCR  < 0.0001

 Yes 100 (22.5%) 95.4 4.6

 No 345 (77.5%) 78.3 21.7

Annual income 0.39

 First quintile ($21,846.00–$34.860.00) 87 (21.5%) 90.8 9.2

 Second quintile ($34,860.00–$42,639.00) 100 (24.7%) 87.0 13.0

 Third quintile ($42,639.00–$58,814.20) 55 (13.6%) 89.1 10.9

 Fourth quintile ($58,814.20–$70,107.00) 81 (20.0%) 92.6 7.4

 Fifth quintile ($70,107.00–$218,493.00) 82 (20.2%) 95.1 4.9
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women with triple negative or HER2+ disease. [27, 34, 
40]. However, as the NCDB does not capture specifics of 
treatment, these findings may reflect disparities in access 
to or quality of care between Black and white patients. 
Retrospective evaluations of patients treated at single 
institutions, or treated on multi-institution clinical trials, 
who likely received more uniform care, have shown dif-
fering results, with some demonstrating no association 
between race and pCR [25, 26, 33, 38], and others show-
ing poorer outcomes for Black women [35]. Differences 
in treatment could account for the differing outcomes 
in the various studies. Knisley et  al. found that white 
women more likely completed the recommended course 
of NAC treatment than did African American women 
[41]. Two studies by Griggs et al. demonstrated that black 
women with early stage breast cancer are more likely to 
receive substandard dose of chemotherapy, lower relative 
dose intensity, dose reductions in a treatment cycle, and 
delay in start of chemotherapy relative to white women 
[42, 43]. Black patients experience a higher rate of cardio-
toxicity compared to white patients with adjuvant HER2-
targeted therapy, resulting in incomplete treatment [44]. 
Enhanced cardiac surveillance, cardioprotective strate-
gies, and early referral to cardiology when appropriate 
may be of benefit [44]. A prospective study where Black 
breast cancer patients received the same care as white 

Table 6 OS at 7.5 years for race and ethnicity grouped by tumor subtypes

a Indicates p < 0.05 between race or ethnicity
b Indicates p < 0.05 different from ER−/HER2+ (N = 475)

ER−/HER2+ ER+/HER2+ ER+/HER2− ER−/HER2− (TN)

OS

 White 14 (100%) 32 (89%) 41 (91%) 30 (77%)

 Black 29 (81%) 31 (89%) 44 (85%) 64 (65%)

ER−/HER2+ ER+/HER2+ ER+/HER2− ER−/HER2− (TN)

OS

 Hispanic 17 (81%) 25 (93%) 39 (85%) 30 (71%)

 Non-Hispanic 32 (86%) 44 (88%) 59 (88%) 74 (68%)b

Table 7 Odds ratios for OS at 7.5 years for demographics, tumor 
subtypes, pCR, income quintile, and insurance status (N = 433 out 
of 475)

OR 2.5% 97.5% p value

Race

 Black versus non-Hispanic White 
(ref )

0.254 0.088 0.734 0.011

 Asian versus non-Hispanic White 
(ref )

0.314 0.099 0.813 0.019

Ethnicity

 Hispanics 1.182 0.701 1.993 0.531

Subtypes (ER− and HER2+ as reference)

 Triple negative 0.406 0.184 0.895 0.025

 ER+ and HER2+ 1.584 0.571 4.395 0.377

 ER+ and HER2− 1.200 0.490 2.936 0.690

Incomes (5th quintile (highest) as reference)

 4th 0.599 0.162 2.222 0.444

 3rd 0.377 0.100 1.417 0.149

 2nd 0.308 0.096 0.991 0.05

 1st 0.514 0.148 1.787 0.296

Insurance (private as reference)

 Medicaid 0.281 0.116 0.681 0.005

 Medicare 0.121 0.046 0.320 < 0.0001

Table 5 (continued)

p values indicate comparison between OS versus non-OS (7.5 years). Note that only 4 patients were uninsured and were included in the insurance status section. Note 
there was no missing OS data

Patient characteristics N (%) % OS % no OS p value

Insurance type 0.0002

 Private 139 (34.5%) 96.2 3.8

 Medicaid 209 (51.9%) 88.5 11.5

 Medicare 51 (12.6%) 76.5 23.5

 Uninsured 4 (1.0%) 100.0 0.0
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breast cancer patients demonstrated equivalent dis-
ease specific survival, illustrating that equal outcomes 
between Blacks and whites are achievable when treat-
ment disparities are eliminated [45].

We found no evidence that pCR was associated with 
race or ethnicity per se in our healthcare system, after 
adjusting for covariates such as tumor subtypes. Instead, 
our data showed strong association between tumor sub-
types and pCR, consistent with multiple other prior stud-
ies [46–52], with ER−/HER2+ tumors exhibiting highest 
pCR rates, followed by triple negative, ER+/HER2+ 
and ER+/HER2−. When grouping race and ethnicity by 
tumor subtypes, Blacks showed a higher composition of 
triple negative as expected but there were no differences 
in pCR due to race for each tumor subtypes. Our results 
might reflect relatively equal healthcare access and treat-
ment for breast cancer across the spectrum of racial 
groups in our healthcare system. Larger multi-center 
studies are needed to confirm these findings. Tumor dif-
ferentiation, as expressed by Nottingham grade, was not 
predictive of pCR. Previous studies have reported both 
with and without association between tumor grade and 
pCR [47–52]. Insurance status and income quintile were 
not significantly associated with pCR.

Tumor biology consistently emerges as a factor linked 
to pCR [53, 54]. Previously reported racial disparities in 
survival may be due to factors which are potentially inter-
related and would therefore be difficult to isolate from 
one another, such as socioeconomic differences, differ-
ences in insurance, and differences in treatment. Facili-
tating health care access and standardizing treatments 
across racial groups would help in eliminating such 
disparities.

MRI tumor size and BPE at presentation were sig-
nificant predictors of pCR. Smaller tumor size was 
associated with higher pCR rates, suggesting that 
early detection and intervention may contribute to 

improved treatment outcomes. This is in keeping with 
several other studies [56–58]. Qian et  al. found lower 
T scores and smaller tumor size correlated with higher 
pCR rates [54]. Goorts et  al. reported lower T stages 
had significantly higher pCR and found that cT3/cT4 
were independent risk factors for decreased pCR [55]. 
Another study found tumor size greater than 5 cm had 
a lower likelihood of pCR and that receptor status had 
the greatest impact on pCR, though both receptor sta-
tus and tumor size were important [56]. They also saw 
no significant relationship between tumor size and 
receptor status [56]. Of note, in machine learning anal-
ysis, tumor size was consistently predictive for pCR but 
tumor stage was less predictive. This discrepancy could 
be because between tumor size by longest diameter was 
obtained from radiology report, which was a coarse 
measurement by a radiologist in a clinical setting. Mild 
BPE at presentation also correlated with higher pCR 
rates, indicating that the absence of extensive benign 
tissue may facilitate treatment response. These find-
ings underscore the potential importance of imaging 
features in predicting treatment outcomes. There is no 
consensus in the literature on the association between 
BPE and pCR. One study showed BPE may be associ-
ated with pCR in limited circumstances, and another 
study showed BPE was associated with lower pCR in 
HR+/HER2− breast cancer patients [24, 31]. While 
tumor subtypes are invariant for each patient, tumor 
size, BPE and other imaging characteristics are modu-
lated by treatment across time; thus, the temporal evo-
lution of imaging characteristics can provide additional 
and useful data to predict outcomes.

Four machine learning models consistently identi-
fied and ranked ER+/HER2−, ER−/HER2+, tumor size, 
and BPE as the top predictors of pCR, followed by Not-
tingham grade, nodal and tumor staging. This conver-
gence among the models reinforces the significance of 

Table 8 Multivariate results of top predictors of OS for all 4 models utilizing top 10 predictors including MRI data (N = 240)

Predictors Acc Spec Sens AUC 

Neural network Tumor size, T-stage, nipple involvement, N stage, pCR, triple 
negative, skin involvement, lymph node involvement, ER+/
HER2, pectoralis muscle involvement

0.947 ± 0.022 0.986 ± 0.019 0.062 ± 0.076 0.840 ± 0.117

Random forest Tumor size, T-stage, N stage, pCR, triple negative, age, nipple 
involvement, skin involvement, lymph node involvement, 
ER+/HER2

0.915 ± 0.035 0.932 ± 0.025 0.667 ± 0.209 0.830 ± 0.045

Logistic regression Tumor size, T-stage, pCR, N stage, triple negative, nipple 
involvement, skin involvement, age, ER+/HER2, pectoralis 
muscle involvement

0.898 ± 0.055 0.985 ± 0.012 0.310 ± 0.284 0.850 ± 0.098

Gradient boosted regression Tumor size, T-stage, pCR, triple negative, nipple involvement, 
N stage, skin involvement, lymph node involvement, age, 
ER+/HER2

0.869 ± 0.306 0.953 ± 0.031 0.244 ± 0.167 0.841 ± 0.118
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these variables in predicting treatment response. Given 
the small sample size, there were not sufficient data 
to vigorously test which machine learning model was 
superior. Although many prior studies have reported 
the predictive value of tumor subtypes for pCR, the 
accuracy of these predictions based on tumor subtypes 
alone ranged from modest to moderate [57, 58]. Our 
patient cohort is unique due to its diversity, lower soci-
oeconomic status, and a higher prevalence of triple-
negative cancer. Our institution is a National Cancer 
Institute designated cancer center university hospital 
where patients had access to clinical trials and state-of-
the-art treatment, which may also explain why race was 
not a factor in pCR.

Finally, we noted that the addition of MRI data to the 
model outperformed prediction of pCR without using 
MRI data. Higher AUC was similarly achieved in a prior 
study by combining clinical and imaging data in predict-
ing pCR with ML from a public dataset [37, 59]. Accu-
rately determining which breast cancer patients are 
likely to respond to neoadjuvant chemotherapy can aid 
in targeting type and dosing of medications to likely 
responders while minimizing unnecessary treatment to 
non-responders to maximize favorable outcomes.

Overall survival
OS have also been reported to be worse in minority and 
underserved populations [60, 61]. Reeder-Hayes et  al. 
after adjusting for age, comorbidities, disease character-
istics including type of locoregional therapy, and neigh-
borhood poverty, found that Black women were 25% less 
likely to receive monoclonal antibody treatment than 
white women among Medicare beneficiaries with stage I 
to III HER2+ diagnosed in 2010 and 2011 [62]. We found 
significant differences in OS due to race but not ethnicity 
by logistic regression analysis. OS was also significantly 
associated with tumor subtypes, with triple-negative sub-
type exhibiting worse OS, emphasizing the aggressive 
nature of this subtype and the need for targeted treat-
ment approaches. In addition to race and molecular sub-
types, access to care and other factors could contribute to 
different outcomes. OS was also significantly associated 
with pCR, consistent with multiple clinical trials dem-
onstrating improved breast cancer outcomes in patients 
who achieve pCR, with prognostic value greatest for 
aggressive tumor subtypes [47–52, 63].

When grouping race and ethnicity by tumor subtypes, 
we found no differences in OS that were due to race and 
ethnicity. This is consistent with the observation that 
OS was not associated with race after stratified by pCR 
(Fig.  1), corroborating that tumor subtypes play a more 
important role in pCR, than race and ethnicity per se.

Patients on Medicare and Medicaid had worse OS 
outcomes than those on private insurance. Medicare 
patients were generally older, which could have contrib-
uted to worse outcomes. This is in accordance with prior 
studies that have shown disparities in outcomes based 
on insurance. Avanian et al. showed that women without 
insurance or with Medicaid had worse overall survival 
with 49% and 40% higher risk of death, respectively [64]. 
Underinsured women may not be able to access ancillary 
services that have been shown to improve breast cancer 
outcomes, such as exercise programs, nutrition courses, 
and psychotherapy [65–67]. Additionally, insurance may 
be reflective of socioeconomic factors that may influ-
ence both oncologic and non-oncologic outcomes, such 
as medical insight, income, healthcare access, and nutri-
tional status [68–70].

Our data showed OS was not associated with income 
quintiles. Several studies have reported associations 
between expansion of Medicaid coverage and improved 
survival in cancer patients, and other studies have found 
that greater levels of financial toxicity predict for poorer 
oncologic outcomes [71–73]. Association of income 
inequalities with increased mortality has been noted in 
other studies [74, 75]. One study revealed excess mortal-
ity hazard for breast cancer to be lower for individuals in 
higher income quintiles in their study population after 
adjusting for age, education, and occupation [76].

Machine learning models consistently identified and 
ranked tumor size, nodal stage, and pCR as the top pre-
dictors of OS, following by some tumor subtypes. A 
meta-analysis of 21 studies showed that the number 
of circulating tumor cells detected before NAC in early 
breast cancer patients was markedly associated with 
tumor size and had a detrimental effect on overall sur-
vival and on distant disease-free survival but was not 
associated with receptor status or pCR [77]. This suggests 
that the tumor size and tumor microenvironment exert 
a significant effect on outcomes independent of receptor 
status and pCR [77].

The addition of MRI data outperformed predictions 
of OS without MRI data. This highlights the potential 
of MRI data as non-invasive tools to support treatment 
decision-making and improve prognostic accuracy. Note 
that some tumor subtypes and tumor size (but not clini-
cal staging) were top independent predictors of pCR, 
whereas tumor size and clinical stage (but not tumor 
subtypes) were top independent predictors of OS. These 
could be due to the potential interaction among different 
variables. Note that pCR is not the top predictor of OS 
(only among top 3 to 5, depending on models). Machine 
learning approaches offer a means to account for covari-
ates and interactions among variables.
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Limitations
There are several limitations. Our sample sizes are small 
when stratified further by molecular subtypes; and thus, 
those findings need to be interpreted with caution. The 
sample size for MRI radiology reports was small. We uti-
lized MRI radiology reports as inputs rather than the actual 
images themselves. Future investigations could incorporate 
deep learning analysis of breast cancer images, which may 
further improve prediction accuracy and provide additional 
insights. Our cohort had small proportion of Caucasians 
which could contribute to difference in findings with litera-
ture. Our cohort had small proportion of Caucasians which 
could contribute to difference in findings with literature.

Income data were based on zip codes and individual 
patients’ status might be different for those based on zip 
codes. Some patients might have multiple insurance and 
we only used the primary insurance in our analysis. Attri-
tion rate due to relocation could result in missing mortal-
ity data; and thus, it is possible some patients might have 
expired that were not accounted for.

Changes in neoadjuvant therapies and post neoadjuvant 
treatment may impact the validity of predictive models 
but they were not accounted for in predictive models. For 
example, the addition of immunotherapy to neoadjuvant 
chemotherapy for triple-negative breast cancer was not 
the standard of care at the time that our patient cohort was 
treated; therefore, our findings may not be generalizable to 
patients treated with immunotherapy. Axillary lymph node 
data have been used to predict PCR and OS [78–80].

Conclusion
This study employed multiple machine learning mod-
els to predict pCR and survival in a racially and ethnically 
diverse patient population from an underserved inner-city 
community. Incorporating imaging data alongside tumor 
subtypes enhances the accuracy of predictions. Race, but 
not ethnicity, and insurance status, but not incomes, were 
associated with worse survival. These findings have impli-
cations for personalized cancer treatment strategies and 
emphasize the need for further research in cancer treat-
ment outcomes with respective to health disparity.
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