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Abstract 

Background Breast cancer is a complex and heterogeneous disease with distinct subtypes and molecular pro-
files corresponding to different clinical outcomes. Mouse models of breast cancer are widely used, but their rel-
evance in capturing the heterogeneity of human disease is unclear. Previous studies have shown the heterogeneity 
at the gene expression level for the MMTV-Myc model, but have only speculated on the underlying genetics.

Methods Tumors from the microacinar, squamous, and EMT histological subtypes of the MMTV-Myc mouse model 
of breast cancer underwent whole genome sequencing. The genomic data obtained were then integrated with pre-
viously obtained matched sample gene expression data and extended to additional samples of each histological 
subtype, totaling 42 gene expression samples. High correlation was observed between genetic copy number events 
and resulting gene expression by both Spearman’s rank correlation coefficient and the Kendall rank correlation coeffi-
cient. These same genetic events are conserved in humans and are indicative of poor overall survival by Kaplan–Meier 
analysis. A supervised machine learning algorithm trained on METABRIC gene expression data was used to predict 
the analogous human breast cancer intrinsic subtype from mouse gene expression data.

Results Herein, we examine three common histological subtypes of the MMTV-Myc model through whole genome 
sequencing and have integrated these results with gene expression data. Significantly, key genomic alterations driv-
ing cell signaling pathways were well conserved within histological subtypes. Genomic changes included frequent, 
co-occurring mutations in KIT and RARA in the microacinar histological subtype as well as SCRIB mutations in the EMT 
subtype. EMT tumors additionally displayed strong KRAS activation signatures downstream of genetic activating 
events primarily ascribed to KRAS activating mutations, but also FGFR2 amplification. Analogous genetic events 
in human breast cancer showed stark decreases in overall survival. In further analyzing transcriptional heterogene-
ity of the MMTV-Myc model, we report a supervised machine learning model that classifies MMTV-Myc histological 
subtypes and other mouse models as being representative of different human intrinsic breast cancer subtypes.

Conclusions We conclude the well-established MMTV-Myc mouse model presents further opportunities for investi-
gation of human breast cancer heterogeneity.
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Background
MYC is a master transcriptional regulator that is ampli-
fied in approximately 15–20% of breast cancers and 
overexpressed in up to 35% of breast cancers [1]. All 
MYC family genes (c-MYC, N-MYC, L-MYC, B-MYC) 
contain basic helix-loop-helix (bHLH) domains, which 
allow for heterodimerization with MYC-associated factor 
X (MAX) to bind consensus E-box sequence motifs on 
core gene promoter regions [2]; this allows for the initia-
tion of transcription of MYC responsive genes, including 
regulation of proliferation, cell growth, differentiation, 
nucleotide biosynthesis, DNA replication, RNA levels, 
and apoptosis [3, 4]. MYC amplification is often enriched 
in high-grade breast cancers [5, 6], triple-negative breast 
cancers [7], and basal-like breast cancers [8]. This is sup-
ported by evidence showing that MYC occupies the pro-
moters of most active genes in tumorigenesis and that 
MYC acts as a non-specific amplifier of whole cell gene 
expression [9]. Triple-negative breast cancer (TNBC) and 
basal-like breast cancer subtypes carry poor prognostic 
clinical outcomes relative to other breast cancer sub-
types [10]. In mouse models, several groups have demon-
strated that overexpression of MYC alone is sufficient for 
the development of spontaneous mammary tumors with 
high penetrance [11–13].

There is a clear, concerted interest to develop mouse 
models of breast cancer that recapitulate the heteroge-
neous features of human breast cancer to better under-
stand disease dynamics. In response, numerous mouse 
models of breast cancer have been created, characterized 
by a wide variety of genetic drivers including constitu-
tive overexpression of endogenous oncogenes specifically 
in the mouse mammary gland (MMTV-Neu, MMTV-
Cyclin D1, MMTV-Akt1 [14]), conditional overexpres-
sion of oncogenes in the mammary gland (MMTV-rtTA/
TetO-NeuNT [15], MTB/TWNT [16]), nonfunctional 
or conditional loss of tumor-suppressor genes  (Stat1−/−, 
MMTV-Cre/BRCA1fl/fl) [14], or overexpression of exog-
enous transforming oncoproteins (MMTV-PyMT [17]). 
Various mouse models of breast cancer have had their 
gene expression profiles characterized [18, 19], with most 
models clustering largely within one human intrinsic 
breast cancer subtype. While many mouse models have 
been generated that model a specific aspect of human 
breast cancer biology, few realize the full spectrum of 
heterogeneity present within human breast tumors or 
accurately model clinical features [20]. Previous studies 
revealed the MMTV-Myc model of breast cancer mim-
ics many human disease parameters, including substan-
tial histological and transcriptional heterogeneity 13]. 
These analyses revealed a close association between the 
transcriptional profile and histological subtype among 
MMTV-Myc tumors. Other studies have also shown that 

tumors derived from different mouse models that share 
the same histological patterns cluster more tightly tran-
scriptionally than they do with tumors of the same geno-
type with different histological features [18]. Importantly, 
MMTV-Myc samples have one of the most varied gene 
expression patterns amongst models, with distinct sub-
sets of MMTV-Myc samples clustering closely with all 
intrinsic human breast cancer subtypes [18].

While the contributions of the tumor microenviron-
ment, epigenetics, tumor metabolome, immune compo-
sition, and other factors have been highlighted recently 
for their roles in cancer [21–23], most often cancers are 
driven by genetic aberrations by activation of oncogenes 
and inactivation of tumor-suppressor genes. The advent 
of anti-estrogenic compounds such as tamoxifen in the 
treatment of hormone-receptor positive breast cancers 
[24] and the monoclonal antibody trastuzumab to treat 
HER2+ breast cancer [25] have demonstrated the util-
ity in targeting breast cancer with therapies based on 
genomic, transcriptomic, and immunohistochemical 
data. In realization of the complex molecular aberrations 
driving all cancers, a concerted effort in the form of The 
Cancer Genome Atlas (TCGA) was created and serves as 
a critical repository of integrated molecular cancer data 
for researchers [26]. Despite the clear relevance of genetic 
aberrations in human breast cancer progression and the 
wide use of mouse models to study human breast cancer 
in vivo, relatively few mouse models of breast cancer have 
been characterized at the genome level, barring MMTV-
PyMT [27, 28], MMTV-Neu [27], and NRL-PRL [29] 
models. Previous whole genome sequencing (WGS)  of 
mouse models has revealed important human disease 
parallels, with sequencing of the MMTV-Neu mouse 
model revealing a conserved coamplification event that 
exists in 25% of human HER2+ breast cancers and 9% of 
all breast cancers. Preclinical functional studies showed 
the presence of this coamplification event increases 
migration in  vitro, increases metastasis in  vivo, and 
reduces distant metastasis free survival in humans [27]. 
In the MMTV-PyMT model, it was found that mutations 
in the phosphatase PTPRH led to increased phosphoryl-
ated EGFR levels and increased EGFR signaling [27], with 
CRISPR ablation and rescue experiments demonstrating 
that PTPRH was normally dephosphorylating EGFR [30]. 
In each model, genomic alterations drove key aspects 
of cellular signaling, altering tumor biology, with key 
similarities to human cancer. These studies underscore 
the importance of characterizing genomic alterations 
in mouse models of cancer and the utility of integrating 
gene expression and DNA sequencing of genetically engi-
neered mouse models (GEMMs) to find clinical parallels 
in human cancers.
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Here, we report our findings of interrogating the heteroge-
neity within the MMTV-Myc mouse model. We performed 
WGS on three common, distinct histological subtypes that 
arose in this model. We hypothesized genomic heterogene-
ity would be present across subtypes but would be conserved 
within each histological subtype. Importantly, each of the 
subtypes have numerous  matched and additional tumors 
that have been previously analyzed for gene expression [13]. 
Integration of both genomic and transcriptomic data ena-
bled the identification of active signaling pathways exploited 
in each histological subtype and their respective genetic ori-
gins. From this, targeted in  vivo preclinical studies can be 
designed for the highest potential clinical translation into 
humans.

Methods
Whole genome sequencing
Flash frozen MMTV-Myc tumors [13] stored at − 80  °C 
were ground using a sterile mortar and pestle under liq-
uid nitrogen. Three randomly selected tumors each from 
the microacinar, squamous, and EMT MMTV-Myc his-
tological subtypes underwent DNA extraction. DNA 
was extracted for each tumor using a Qiagen Genomic-
tip 20/G KIT according to manufacturer specifications. 
Whole genome sequencing was performed at Michigan 
State University’s Research Technology Support Facility 
(RTSF). DNA was sequenced at 40 × depth using Illumina 
HiSeq 2500 paired end 150 base pair reads after TruSeq 
Nano DNA library construction.

Transcriptomics
Gene expression data used in this study have previously 
been published [13] on MMTV-Myc and MMTV-Neu 
tumors and are publicly available in the Gene Expression 
Omnibus (GEO) under accession number GSE15904. 
MMTV-PyMT and MMTV-PyMT E2F knockout tumor 
transcriptional data have been published [31] and are 
available under GEO accession number GSE104397. 
MMTV-Neu E2F knockout transcriptional data were 
previously published [32] and are available under acces-
sion number GSE42533.

Whole genome sequence processing
Raw whole genome sequencing paired end fastq files first 
underwent initial quality control using FASTQC [33]. 
Quality and adapter trimming of reads were performed 
using Trimmomatic [34], with reads reassessed for qual-
ity afterward again using FASTQC. Reads were then 
aligned to the mm10 reference Mus musculus genome 
using BWA-mem [35] with option -M selected for com-
patibility with Picard. After alignment, read groups were 
added using Picard [36]. SAMtools [37] was then used 

to sort bam files, mark PCR duplicated sequences, and 
index bam files. Discordant and splitter read files were 
also generated and sorted using SAMtools for down-
stream somatic variant callers.

Somatic variant calling
Somatic mutations were called using the consensus of 
Mutect2 [38] (GATK suite) and VarScan [39] calls based 
on chromosome, position, reference base, and variant 
base. Variants were then annotated using SnpEff [40]. To 
reduce false positives, filtering included subtracting FVB-
specific mutations from the mm10 C57BL/6 background 
as indicated in the FVB_NJ.mgp.v5.snps.dbSNP142.vcf 
file from the Wellcome Sanger Institute. In addition to 
this, HaplotypeCaller on GATK was used to call germline 
mutations on the FVB_NJ genome REL-1604-BAM avail-
able from the Sanger Mouse Genomes Project [41] FTP 
server. After converting the FVB_NJ.bam WT reference 
to fastq files using SAMtools, these fastq files underwent 
the same whole genome sequence processing as MMTV-
Myc tumors. Germline variants from this wiltdtype FVB 
background against the mm10 reference genome were 
subtracted from somatic variants in each tumor.

Somatic copy number variations were determined 
using multiple methods; discrete copy number variations 
are based on the consensus of Delly [42] and Lumpy [43] 
calls, while whole chromosome ploidy count and seg-
mentations were determined using CNVKIT [44]. For 
discrete CNVs, only those with length above 10,000 base 
pairs, no evidence in the WT background, and a mapping 
quality (MAPQ) score at 60 or above were included for 
analysis. Delly and Lumpy calls were combined by similar 
genome starting and ending positions within a 100 base 
pair margin of error for difference in CNV length using a 
custom Python script.

Inversions were taken as the consensus between Delly and 
Lumpy with the same restrictions and filtering steps imple-
mented for CNVs. Translocations were called under similar 
approaches as CNVs and inversions. The differences are no 
length minimums, position differences between Lumpy and 
Delly calls being a maximum of 1,000 base pairs, and MAPQ 
scores of 50 or greater are included for analysis. To reduce 
false positives, these translocation calls were then merged 
with gene break calls made by CNVKIT by gene name. 
CNVKIT gene breaks were called using the “breaks” option 
under default options.

Every previously discussed somatic variant calling option 
included the FVB_NJ WT reference as the normal sample.

Pathway analysis
Previously published gene expression data from MMTV-
Myc and MMTV-Neu mouse model tumors were down-
loaded from the GEO DataSets under the accession 
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number GSE15904. The gct converted file contain-
ing gene symbols as row names was used as input for 
ssGSEA available as a module in GenePattern [45]. Path-
way analysis was conducted using the MSigDB gene set 
databases c1 (positional), c2 (curated), and c6 (oncogenic 
signature) with default settings. The resulting output data 
matrix with pathway enrichment scores for each sample 
was employed for downstream hierarchical clustering 
and graphical representations.

Mutation verification
Mutations observed in the whole genome sequencing 
analysis for APC, RARA, and KIT genes were screened 
and confirmed by Sanger sequencing for matched tumor 
samples and other tumors for a total of 15 samples (5 
EMT, 5 squamous, and 5 microacinar tumors). Briefly, 
RNA was extracted from mammary tumors using the 
Qiagen RNeasy Midi KIT. cDNA was generated using 
the AppliedBiosystems High-Capacity cDNA Reverse 
Transcription KIT. Genes were amplified under PCR 
using the following primers: c-KIT 5′ ATA GAC TCC 
AGC GTC TTC CG 3′ and 5′ GCT CCC AAT GTC TTT 
CCA AAACT 3′; RARA 5′ TTG TGC ATC TGA GTC 
CGG TT 3′ and 5′ TGG GCA AGT ACA CTA CGA ACA 
3′; APC 5′ CCG CTC GTA TTC AGC AGG T 3′ and 5′ 
CCT GCA GCC TAT TCT GTG CT 3′. PCR parameters are 
standard parameters as listed on New England BioLabs 
PCR protocol (M0273) V1. PCR fragments were puri-
fied using QIAquick PCR Purification KIT or QIAquick 
Gel Extraction KIT. Sanger sequencing was performed 
by GENEWIZ/Azenta under standard premixed condi-
tions, with one of the PCR primers used as the sequenc-
ing primer. Sequence alignment and visualization were 
performed with Geneious Prime-2020.0.5 software.

Circos plots
Representative mouse Circos plots for each histological 
subtype were generated using Circos [46] as a software 
package available on MSU’s high-performance comput-
ing center (HPCC). All mutations, CNVs, inversions, 
and translocations were mapped at exact mm10 genomic 
coordinates of each event.

Working from the outermost region of each plot, it 
begins with a labeled mouse ideogram with chromo-
somes presented in ascending order. The next innermost 
rings consist of SNVs color coded to represent low (yel-
low), moderate (orange), or high (red) predicted impact 
as determined by Mutect2. Following, the next inner ring 
depicts copy number variations as whole integer copy 
number changes, with height corresponding to copy 
number integers of one or two, determined by CNVKIT. 
Copy number gains are depicted in red, while copy num-
ber losses are depicted in blue. In the final innermost 

circle, translocations are colored randomly to one of the 
two chromosomes involved in the translocation event. 
Inversions are colored in black. Only somatic variants 
that satisfy the previous requirements for somatic variant 
calling are included for each tumor.

Copy number and gene expression correlation
Correlation of copy number and gene expression was 
done on CNVKIT. After generating copy ratios and copy 
segments under the “batch” WGS method, discrete copy 
number segments were generated using the “segment” 
method. The “cnv_expression_correlate” method was 
used to generate Kendall rank correlation coefficients 
and Pearson correlation coefficients on discrete copy 
number data for all 9 tumors that underwent WGS and 
gene expression data for all 42 tumors that underwent 
transcriptomic profiling. Correlation coefficients for 
each gene were then mapped onto Circos plots, with sig-
nificant Kendall’s τ coefficients (≥ 0.3) colored blue and 
in the outermost ring. In the innermost ring, significant 
Pearson’s r coefficients (≥ 0.7) are colored red. Non-sig-
nificant values for both metrics were colored black. Cor-
relation coefficients could only be generated for genes 
with discrete copy number changes at ± 1 of ploidy level 
or greater differences, so a majority of the genome will 
show no correlation.

Unsupervised clustering analyses
All unsupervised hierarchical clustering was performed 
using the clustermap function as part of the Seaborn 
Python library. Distance between clusters was computed 
using the Ward variance minimization algorithm.

PCA
Principal component analysis was performed using the 
scikit-learn [47] library, utilizing the StandardScaler and 
PCA packages. The number of principal components 
analyzed was 2 in every instance. Results were visualized 
using a custom scatter plot in matplotlib.

Copy number heatmaps
All heatmaps displaying log2 fold change of copy number 
segmentation data were generated using CNVKIT, both 
for initial copy number segmentation and copy number 
ratio file generation, as well as visualization.

Mutational signatures and mutational burden
Mutational burden plots were generated in matplotlib. 
Mutational signatures were derived using the decon-
structSigs [48] R package and plotted using matplotlib.

WGS data for MMTV-Neu and MMTV-PyMT previ-
ously analyzed in the laboratory and used in mutation 
plots are available under the NIH SRA with BioProject 
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number PRJNA541842. Processing of Neu and PyMT 
WGS fastq reads was done according to the same meth-
ods as the MMTV-Myc samples.

Volcano plot
The volcano plot of ssGSEA c6 oncogenic signatures 
for the EMT subtype compared to both squamous and 
microacinar signatures was plotted in Python using Bio-
infoKIT [49]. The log-fold-change threshold is at 0.4, and 
the p-value threshold is set at 0.05.

Kaplan–Meier curves
Kaplan–Meier plots were made with using the Survminer 
R package. Publicly available and deidentified TCGA 
non-redundant breast cancer patient data were used to 
construct Kaplan–Meier curves using criteria stated for 
each figure.

t‑SNE plot
The t-SNE diagram was created using the t-SNE imple-
mentation inside of scikit-learn. t-SNE was performed 
on the optimized 32 gene subset expression data of the 
PAM50 gene set as determined by RFECV using a sup-
port vector machine classifier. The resulting scatterplot of 
data is generated using matplotlib and colored according 
to the legend.

Supervised machine learning
The supervised machine learning soft voting classifier 
implemented using scikit-learn consists of logistic regres-
sion, support vector machine, random forest, XGBoost, 
and multi-layer perceptron classifier probabilities merged 
together. METABRIC gene expression data for the 32 
genes with matched PAM50 subtypes were shuffled 
and split 70–30 into training and test data sets, respec-
tively. To combat overfitting and training on biased data, 
PAM50 subtype proportions were kept the same between 
training and test sets. Probability predictions were aver-
aged over 15 instantiations.

Other visualizations
Bar chart visualizations and pairplots were generated 
using Matplotlib, Seaborn, and Yellowbrick  Python 
libraries.

Human data usage
Clustering was performed on human breast cancer tran-
scriptional data matched with intrinsic subtypes from the 
anonymized METABRIC dataset, which is readily availa-
ble through cBioPortal. Kaplan–Meier analyses were per-
formed on non-redundant human breast cancer patients 
from all breast cancer studies available in cBioPortal as 

of time of publication that match the criteria specified in 
each plot.

Statistical considerations
Unless otherwise stated, statistical tests with p-value dis-
played are done using a two-sided Student’s t-test.

Software versions
BioinfoKIT-2.1.0, Bokeh-2.4.3, BWA-mem-0.7.17, Cir-
cos-0.69.6, CNVKIT-0.9.9, Delly-0.7.8, FASTQC-0.11.7, 
GATK-4.1.4.1, Lumpy-0.2.13, Matplotlib-3.4.3, Mutect2-2.1, 
NumPy-1.20.3, Pandas-1.3.4, Panel-0.13.1, Picard-2.18.1, 
Python-3.9.7, SAMtools-1.9, scikit-learn-0.24.2, SciPy-1.9.0, 
Seaborn-0.11.2, SnpEff-4.3, ssGSEA-10.0.11, Trimmo-
matic-0.38, VarScan-2.4.1, and Yellowbrick-1.5.

Results
Genomic analyses reveal conserved copy number gains 
in microacinar tumors
Based on the diverse transcriptional and histological 
subtypes observed in the MMTV-Myc tumors [13], we 
hypothesized these phenotypes were due to a divergence 
in genomic changes conserved between each histologi-
cal subtype. To ascertain putative conserved genomic 
changes within each histological subtype, short read 
WGS was performed on randomly selected tumors of 
microacinar, squamous, and EMT histological subtypes, 
later integrated with gene expression data obtained from 
matched samples as well as additional tumors from each 
subtype (Fig.  1). A great deal of genomic heterogene-
ity was observed between the histological subtypes as 
shown by representative Circos plots for the microaci-
nar (Fig.  2A), squamous (Fig.  2B), and EMT (Fig.  2C) 
tumors. Few inversions and translocations were called 
across all tumors, consistent with rates of large structural 
rearrangements in human breast cancer [50]. Most dif-
ferences in genetic aberrations between subtypes were 
confined to single nucleotide variants (SNVs) and copy 
number variants (CNVs).

Strikingly, all microacinar tumors sequenced shared 
the same whole chromosome amplification events on 
chromosomes 15 and 11 as revealed by copy number 
segmentation calls (Fig. 2D). Estimated total ploidy gain 
for chromosome 15 is 2, for a total of 4 gene copies, and 
ploidy gain of 1 for chromosome 11, for a total of 3 gene 
copies. The predicted integer copy number gains were 
consistent across all microacinar tumors. While many 
whole chromosome amplifications and deletions were 
observed in EMT tumors, none were consistent across 
the histological subtype (Additional file  26: Table  S1). 
Interestingly, there were very few focal and whole chro-
mosome CNVs in individual squamous tumors and none 



Page 6 of 24Broeker et al. Breast Cancer Research          (2023) 25:120 

shared across the subtype. The majority of CNVs across 
all tumors sequenced were broad and affected the entire 
chromosome rather than a discrete region within the 
chromosome, despite notable exceptions discussed in 
later figures. This is consistent with human breast cancer 

CNVs, which often affect a whole chromosome arm on 
either side of the centromere [51] except in the cases of 
strong selective pressure over a particular region, such as 
the cases of ERBB2 in breast cancer [52] or AR in pros-
tate cancer [53].

Copy number alterations are highly correlated with gene 
expression
It is well established that CNVs typically correlate 
strongly with changes in gene expression across cancer 
types [54] and have been used to target cancer depend-
encies for therapeutic intervention [55]. Despite this, 
we sought to establish correlation between gene expres-
sion and CNVs in the MMTV-Myc mouse model tumors 
empirically. When correlating the estimated absolute 
integer copy number gain or loss for each gene with their 
matched gene expression sample and extending these 
results to 33 additional samples profiled by microarray, 
we obtained high Pearson’s r and Kendall’s τ correlation 
coefficients broadly across the genome for CNV sites 
(Fig. 3A). Of note, the highest and most consistent cor-
relation for both Pearson’s r and Kendall’s τ occurs on 
chromosomes 15 and 11, suggesting the highly conserved 
ploidy gains across microacinar samples translates well 
into increased gene expression. Correlations between 
copy number and gene expression for EMT (Additional 
file 5: Fig. S1), squamous (Additional file 6: Fig. S2), and 
microacinar (Additional file 7: Fig. S3) specifically limited 
to each histological subtype are also available.

After establishing the link between CNVs and gene 
expression in the histological subtypes, we wanted to 
examine whether gene expression differences localized 
to human defined cytogenetic bands could stratify the 

Fig. 1 Schematic of workflow. Significant histological 
and transcriptional heterogeneity was found in the MMTV-Myc 
mouse model of human breast cancer. To ascertain the genetic 
origins of transcriptional differences and integrate these omics 
data between histological subtypes, we performed short read 
whole genome sequencing at a depth of 40 × for three tumors 
of each unique and predominant histological subtype: microacinar, 
squamous, and EMT like tumors. Somatic single nucleotide variants, 
copy number alterations, inversions, and translocations were profiled 
after alignment and processing of genomic data. Genomic somatic 
variants were integrated with and compared to previously obtained 
Affymetrix microarray gene expression and pathway analysis 
by single sample gene set enrichment analysis (ssGSEA). Integration 
of multi-omic data enables the identification of thematic pathways 
driving tumorigenesis and putative oncogenic drivers for each 
histological subtype. Importantly, these thematic pathways identified 
in the MMTV-Myc mouse model share similarities in human breast 
cancer, impactful analogous genetic events in humans co-occur 
with Myc amplification, and these pathways affect human breast 
cancer patient overall survival significantly (Created with BioRender.
com)

▸
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Fig. 2 Heterogeneous and conserved somatic features revealed by whole genome sequencing. Representative Circos plots are shown for (A) 
microacinar, (B) squamous, and (C) EMT histological subtypes. The outermost ring of each Circos plot depicts an ideogram for the mouse 
chromosomes proportionate with actual chromosome length. The next inner ring shows mutations in genes as stacked blocks at their 
corresponding genomic locations, color coded to their predicted impact by SnpEff [40]—yellow for low impact, orange for moderate impact, 
and red for high impact. The next inner ring shows discrete copy number changes as analyzed by CNVKIT; red regions indicate amplification 
and blue regions indicate deletions. The height of each copy number alteration corresponds to the predicted change in copy number, 
with the lowest level change being ± 1 and showing a max copy number change of ± 2. The innermost ring reveals inversions and translocations 
as determined by the consensus of Delly and Lumpy somatic variant callers. Inversions are colored black, while translocations match the color 
of the ideogram of one of the two chromosomes involved in the translocation event. (D) A CNVKIT heatmap shows the  log2 fold change 
of the estimated normalized copy number segments of each chromosome for each tumor sample relative to the wildtype reference



Page 8 of 24Broeker et al. Breast Cancer Research          (2023) 25:120 

histological subtypes. Indeed, when performing ssGSEA 
on gene expression data using the MSigDB C1 positional 
gene set, we find that unsupervised hierarchical clus-
tering of these data post normalization largely clusters 
histological subtypes separately (Fig.  3B), recapitulat-
ing clustering from raw gene expression data [13]. These 
data suggest CNVs or other events confined to specific 
genomic regions are largely responsible for gene expres-
sion differences between histological subtypes. Principal 
component analysis (PCA) on these same C1 ssGSEA val-
ues reveals a similar clustering pattern among subtypes 
(Fig. 3C). Principal component 1 was able to explain over 
25% of the variance in this population, which largely 
separated the EMT and microacinar subtypes, with squa-
mous tumors infiltrating both clusters or being separated 
mostly by principal component 2.

Differential mutational landscapes between mouse models 
of breast cancer
Having established CNVs as being a critical factor in 
determining gene expression in MMTV-Myc tumors, we 
sought to investigate whether differing mutations within 
these tumors played a role in gene expression changes. 
After limiting gene expression data to genes predicted to 
have moderate or high impact mutations as determined 
by SnpEff, we did not see a statistically significant differ-
ence in the proportion of genes that were differentially 
regulated compared to the overall proportion of all genes 
that are differentially regulated between subtypes (data 
not shown). This is unsurprising as mutations typically 
do not affect self-gene expression, except in the case of 
truncating mutations [56].

Next we examined wholistic mutation patterns 
between each histological subtype and compared them to 
mutation patterns in previously sequenced MMTV-Neu 
and MMTV-PyMT tumors [27]. We found no large dif-
ferences in overall mutational burden between MMTV-
Myc subtypes, although we found trends between mouse 

Fig. 3 Copy number changes drive gene expression changes. 
(A) Circos plot of correlation of copy number changes and gene 
expression across all tumor samples. Significant Kendall’s rank 
correlation coefficient (> = 0.3) shown in blue and significant Pearson 
correlation coefficient (> = 0.7) shown in red. (B) Unsupervised 
hierarchical clustering of the MSigDB C1 positional dataset for ssGSEA 
values closely recapitulates the stratification of histological subtypes 
by gene expression clustering. (C) Principal component analysis 
(PCA) of C1 positional ssGSEA values reveals distinct clustering 
by histological subtype

▸
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models (Fig.  4A). Investigating these trends, we find 
mutational burden did not diverge significantly between 
MMTV-Myc subtypes but varied considerably in the 
MMTV-Neu mouse model. The MMTV-PyMT model 
exhibited the highest overall mutational burden of mouse 
models analyzed, but also demonstrated considerable 
variability between individual tumors.

We hypothesized these differences in mutational bur-
den could arise from separate oncogenic drivers and 
mutational processes within each mouse model given 
the extensive characterization of mutational processes 
in human cancers [57, 58]. To examine mutational pro-
cesses in our mouse models, we utilized deconstructSigs 
[48] to generate different COSMIC single base substitu-
tion (SBS) signatures that take adjacent nucleotides into 
context and ascribes etiologies to different trinucleotide 
mutational patterns. We found that all MMTV-Myc 
tumors regardless of subtype were predominated by the 
homologous recombination deficient (HRR) signature 
(Fig. 4B). The HRR signature is strongly associated with 
germline and somatic mutations in BRCA1 and BRCA2 
mutations in human breast cancer [57]. No mutations in 
BRCA1 or BRCA2 were found in any of the MMTV-Myc 
tumors analyzed, with these signatures possibly the result 
of BRCA1/BRCA2  promoter hypermethylation or other 
factors not analyzed. MMTV-Neu tumors were predomi-
nated by the clock-like aging signatures, while MMTV-
PyMT tumors demonstrated large tobacco smoking 
signatures. Given that all mouse models were raised in 
similar controlled environments, these data suggest an 
unidentified endogenous C > A mutational mechanism 
present in MMTV-PyMT tumors.

While overall mutational burden and mutational signa-
tures cannot parse between histological subtypes of the 
MMTV-Myc tumors, we reasoned that specific muta-
tions may be associated with each subtype. Indeed, we 
find a small number of conserved (≥ 66% of tumors in 
each subtype) and impactful mutations within each sub-
type (Fig. 4C). Notable conserved mutations in the EMT 
subtype include KRAS G12D activating mutations and 
splice variants in SCRIB. This may be significant as others 
have found SCRIB cooperates with MYC for transforma-
tion and mislocalization of SCRIB within the cell, suffi-
cient to promote cell transformation [59]. Interestingly, 
the squamous subtype had no discernible conserved 

and impactful mutations between tumors. There may be 
heterogeneous conservation of signaling pathways acti-
vated at the transcriptional level, though, as each squa-
mous tumor had impactful mutations in transcription 
factors: zinc-finger and BTB domain containing (ZBTB) 
genes, zinc-finger protein (ZFP) genes, or both. For the 
microacinar tumors, we observed conserved missense 
mutations at A538E in proto-oncogene c-KIT (KIT) and 
at A255D for retinoic acid receptor-α (RARA). KIT is a 
well-established oncogene, particularly in acute myeloid 
leukemia (AML) [60] where mutations play a large role in 
pathology, and RARA is involved in embryonic develop-
ment whose disruption is well established in carcinogen-
esis [61].

Interestingly, KIT and RARA mutations were found to 
be mutually inclusive in the tumors sequenced. Of the 9 
tumors sequenced at the genome level, 5 were found to 
have both the A538E KIT and A255D RARA mutations, 
while the other 4 tumors contained no discernible muta-
tions whatsoever in either KIT or RARA. To validate our 
WGS findings and evaluate the extent of these mutations 
further in other MMTV-Myc tumors, we performed 
Sanger sequencing on the tumors that previously under-
went WGS and an additional two tumors from each his-
tological subtype. From these data, we confirmed that 
these KIT and RARA mutations were mutually inclusive 
in a larger population of 7 of the 15 tumors that under-
went Sanger sequencing. From the total populations ana-
lyzed, these mutations were present in 60% of both the 
microacinar and squamous subtypes, while only 20% in 
EMT (Additional Files 1 and 2). These data may suggest 
a link between KIT and RARA given their co-occurrence 
patterns; however, the exact functional implications of 
these mutations are not understood.

To gain a better understanding of the potential func-
tional impact of the co-occurring KIT and RARA muta-
tions, we performed multiple sequence alignment on 
KIT and RARA amino acid sequences from their most 
prevalent isoform using Clustal Omega [62]. Comparing 
between species, A538 KIT in the mouse maps to M535 
in humans with an overall interspecies amino acid iden-
tity of 82.77% for the full protein (Additional file 3). Both 
mutations reside in exon 10 of their respective species, 
where the majority of this exon codes for the transmem-
brane domain in topological space. According to TCGA 

Fig. 4 Oncogenic drivers determine mutational heterogeneity. (A) Total counts of overall somatic mutational burden of MMTV-Myc tumors 
compared to mutational burden of MMTV-Neu and MMTV-PyMT tumors as shown by bar plot. (B) Weights of Catalogue of Somatic Mutations 
in Cancer (COSMIC) mutational signatures derived from each tumor using DeconstructSigs [48] depicted by stacked bar plot. (C) Venn diagram 
of conserved mutations (≥ 66% of tumors) between histological subtypes of moderate or high impact predicted by SnpEff. Putatively impactful 
oncogenes with Sanger sequencing confirmed mutations are listed by their representative histological subtype in which those mutations are 
conserved

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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PanCancer Atlas data shown in cBioPortal, the KIT 
transmembrane domain in humans spans amino acids 
525–545, suggesting that the analogous A538E mutation 
in the mouse occurs directly in the middle of the trans-
membrane domain. Additionally, while TCGA PanCan-
cer data do not show confirmed pathogenic mutations 
in the transmembrane domain of KIT, the transmem-
brane domain resides between two confirmed muta-
tional hotspots labeled as likely oncogenic (Additional 
file 8: Fig. S4). We speculate that the A538E mutation will 
destabilize the transmembrane domain of KIT leading to 
dysregulated KIT signaling. Follow up functional studies 
will need to be performed to ascertain the causal effects 
of this mutation in mice and in humans.

Similarly, A255 RARA in the mouse maps directly to 
A255 RARA in humans. Importantly, exon 6, where the 
mutations reside in both species, shares 100% identity, 
while the whole protein sequences share 89.98% identity 
(Additional file 4). Exon 6 in both species comprises the 
beginning portion of the hormone receptor ligand bind-
ing region of RARA. The TCGA PanCancer cohort does 
not contain A255D RARA mutations and most muta-
tions are not confirmed whether they are pathogenic or 
not (Additional file 9: Supplementary Fig. S5). We spec-
ulate that the A255D mutation interferes with retinoic 
acid binding and heterodimerization with the retinoid X 
receptor, which thus inhibits the transcriptional activa-
tion of downstream genes that would lead to cell differen-
tiation and cell cycle control [63, 64].

Heterogeneous activation of KRAS signaling in the EMT 
subtype
Previous studies on the MMTV-Myc model have shown 
that the EMT subtype often possessed activating KRAS 
mutations and increased RAS signaling [13], whereas 
the squamous and microacinar subtypes largely did 
not (Fig.  5A). This was the case for EMT tumors 222 
and 1938 that underwent WGS, where both had KRAS 
G12D missense mutations, while the squamous tumor 
1066 acquired the less transforming KRAS G13R muta-
tion (Fig.  5B). Consequently, when comparing ssGSEA 
values for the C6 oncogenic signature gene sets between 
the three histological subtypes, EMT tumors consistently 

had upregulation of various KRAS signaling pathways 
across tissue types (Fig.  5C). Investigation of a repre-
sentative KRAS signaling pathway shows the probability 
of KRAS activation is considerably higher in EMT than 
both microacinar and squamous samples (Fig. 5D).

Despite its high ssGSEA KRAS activity scores (Addi-
tional file 27: Table S2), EMT tumor 1356 possessed no 
KRAS mutations or mutations in genes elsewhere in the 
RAS pathway. Copy number segmentation data obtained 
pointed to a high-level amplification event on chro-
mosome 7, encompassing FGFR2 and ATE1 (Fig.  5E). 
Of particular significance is the estimated copy num-
ber gain of this region. EMT tumor 222 had a similarly 
bounded focal amplification event over FGFR2 and ATE1 
that increased both gene copy numbers by 1, but EMT 
tumor 1356 has an estimated copy number gain of 471 
over this region and correlates well with gene expression 
levels of FGFR2 (Additional files 26 and 28: Tables S1 
and S3). The scale of this amplification event suggests a 
strong selective pressure for focal amplification of FGFR2 
in EMT tumor 1356. When examining the pathways of 
FGFR2 in the literature, FGFR2 acts directly upstream of 
RAS-MAPK, PI3K-AKT, and JAK-STAT signaling path-
ways [65] (Fig. 5F). Thus, we propose that the increase in 
KRAS signaling seen in EMT tumor 1356 is due to the 
large, focal amplification of FGFR2 and subsequent acti-
vation of RAS signaling. Stemming from the previous 
assessment, it is likely that the EMT histological pheno-
type is dependent on increased RAS signaling, ostensibly 
through heterogeneous genetic mechanisms.

Squamous tumors represent an intermediate phenotype 
between microacinar and EMT
To this point, there are strong associations between copy 
number amplifications specific to the microacinar sub-
type and heterogeneous genetic events that lead to KRAS 
pathway activation in the EMT subtype. However, there 
are no readily identifiable conserved genetic features that 
can explain the squamous phenotype. Despite this, squa-
mous tumors consistently occupy a gene expression state 
between that of the EMT and microacinar subtypes. PCA 
of C2 curated gene sets (Fig. 6A) and C6 oncogenic sig-
nature gene sets (Fig.  6B) show clustering of squamous 

(See figure on next page.)
Fig. 5 Heterogeneous activation of KRAS pathway in EMT histological subtype. (A) Proportion of each tumor histological subtype with activating 
mutations in KRAS in bar plot format. (B) Sequence variation in KRAS between all tumors sequenced as shown by a logo plot illustrates canonically 
activating mutations in KRAS. (C) A volcano plot of the ssGSEA values from the MSigDB C6 oncogenic signature gene set, showing EMT upregulated 
or downregulated gene sets compared to microacinar and squamous. (D) Violin plot of a representative KRAS pathway signature from the ssGSEA 
values of the C6 oncogenic signature gene set, showing distinct upregulation of KRAS signaling in the EMT subtype. (E) Heatmap of log2 fold 
change in copy number segmentation values showing high-level amplification of FGFR2 in EMT. (F) Canonical molecular pathway signaling reveals 
FGFR2 lies directly upstream of KRAS (Created with BioRender.com)
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Fig. 5 (See legend on previous page.)
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samples between microacinar and EMT, with some squa-
mous samples invading both the microacinar and EMT 
clusters.

From the previous results, we sought to examine the 
relationship between individual pathways in each gene 
set that could explain these differences. To accomplish 

this, we chose the top three differentially expressed rep-
resentative pathways from EMT and microacinar path-
way signatures for C2 (Fig. 6C) and C6 (Fig. 6D) MSigDB 
gene sets. While there were no statistically significant 
correlations within each histological subtype (data 
not shown), likely due to limited numbers of samples, 

Fig. 6 Squamous represents an intermediate phenotype between microacinar and EMT. (A) PCA of the MSigDB C2 curated and (B) C6 oncogenic 
signature gene sets for ssGSEA values of the microacinar, squamous, and EMT tumors recapitulates C1 clustering and explains more variance 
in the data. (C) Pairwise relationship plots for representative C2 gene set and (D) C6 gene set ssGSEA values are shown with linear regression lines 
and a 95% CI. Pearson R correlation values are shown with p-values determined from a two-sided t-test
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pairwise correlations of pathway signatures across all 
three subtypes showed both significant positive and neg-
ative correlations between ssGSEA pathway activities. 
Beyond this, top differentially expressed pathway activi-
ties appear to lie on a continuum, with squamous tumors 
routinely spanning between and infiltrating the microaci-
nar and EMT clusters. Pairwise relationships for the C1 
positional gene sets shows similar patterns (Additional 
file 10: Fig. S6). These data are consistent with the squa-
mous histology occupying an intermediate phenotype 
between that of EMT and microacinar subtypes.

Integrated mouse data stratifies human breast cancer 
subtypes and yields clinical insights
It is clear that the MMTV-Myc mouse model pro-
duces primary mammary tumors that are heterogene-
ous in histology, gene expression, metastatic variance 
[13], and now somatic genomic perturbations that can 
explain many of the transcriptional differences seen in 
this model. However, the significance of these events 
and translational potential to humans is not immediately 
obvious.

To evaluate whether the events seen in MMTV-Myc 
mouse model could have predictive power in clinical out-
comes, we utilized an integrative approach, combining 
gene expression data and somatic genetic events to exam-
ine how they can parse human breast cancer subtypes. 
To this end, we took all genes that were differentially 
expressed between MMTV-Myc histological subtypes 
that were also present in conserved copy number gain or 
loss events to obtain the integrative gene set (Additional 
file  29: Table  S4). Subsequently, we performed unsu-
pervised hierarchical clustering on human gene expres-
sion from the METABRIC breast cancer dataset [66–68] 
limited to the integrative mouse gene set (Fig.  7A). We 
found distinct clusters emerged that well represented the 
intrinsic subtypes of breast cancer. Importantly, cluster-
ing from the same number of genes used but instead ran-
domly selected failed to resolve intrinsic breast cancer 
subtype clusters to the same degree (Additional file 11–
20: Figs. S7–S16). This suggests that the integrated mouse 
gene set represents a diverse set of informative genes 
across all intrinsic subtypes of human breast cancer that 
can effectively differentiate between subtypes rather 
than contributing noise. Clustering by the PAM50 gene 
set showed improved subtype clustering overall relative 
to the mouse integrative gene set but did not resolve the 
luminal A and luminal B subtypes to the same extent 
(Fig. 7B). It is important to note that the PAM50 gene set 
is curated specifically to be able to differentiate between 
human intrinsic breast cancer subtypes, so seeing 
improved performance relative to the integrative mouse 
gene set is expected.

It is clear that genetic events in the MMTV-Myc 
mouse model and their resulting gene expression dif-
ferences can resolve human breast cancer intrinsic 
subtypes. However, it is unclear to what extent these 
genetic events in the MMTV-Myc mouse model repre-
sent genetic events occurring in human breast cancer. 
To address this, we assayed publicly available TCGA 
datasets on breast cancer available through cBioPor-
tal. We assessed prevalence of genetic events in human 
breast cancer first identified to be conserved both in 
genomic alteration status and differential gene expres-
sion in the MMTV-Myc mouse model. Subsequently, 
we examined the effects of these genes on human 
breast cancer overall survival clinical outcomes through 
Kaplan–Meier analysis.

All of the genetic events examined were found to be 
co-occurring with MYC amplification in human breast 
cancer (Additional file 30: Table S5), especially support-
ing the use of the MMTV-Myc mouse model in studying 
MYC-driven human breast cancers. However, because 
of the co-occurring nature of these events and the lim-
ited number of patient samples with genetic events and 
matched clinical outcomes, statistical significance is diffi-
cult to achieve in mutually exclusive populations of MYC 
amplification and identified genetic events. MYC ampli-
fication and overexpression are well described in TNBC 
and basal-like subtypes of breast cancer [1, 69], known as 
the deadliest subtypes of breast cancer currently [70, 71], 
which must be accounted for in survival analysis. To rem-
edy this, we look at relative differences in overall survival 
from MYC amplification compared to analogous genetic 
events in humans identified in the mouse model.

Kaplan–Meier analysis on breast cancer patients 
revealed MYC amplification was present in 18.2% of 
patients surveyed, with median overall survival at 135.2 
months (95% CI: 113.7–148.1) compared to the unaltered 
population with median overall survival at 171.3 months 
(95% CI: 161.2–182.9) (Fig.  7C, Additional files 31 and 
32: Tables S6 and S7). When comparing the patient pop-
ulation of those harboring KRAS activating mutations or 
amplifications, which account for 2.2% of all breast can-
cer cases, we find a marked decrease in overall survival 
compared to the unaltered cohort (Fig. 7D) with median 
overall survival at 77.7-months (95% CI: 61.8–146.4) for 
the KRAS altered population compared to median over-
all survival of 164.3 months (95% CI: 154.3–173.0) for the 
unaltered cohort (Additional files 33 and 34: Tables S8 
and S9). While it cannot be ruled out that MYC amplifi-
cation co-occurrence in the KRAS altered cohort reduces 
overall survival, the KRAS altered population maintains 
a 57.5-month median overall survival deficit to MYC 
amplification alone. Thus, MYC amplification may only 
have a modest additive effect to KRAS amplification or 
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Fig. 7 Mouse model genetic and transcriptional events inform human clinical outcomes. (A) Unsupervised hierarchical clustering of METABRIC 
gene expression values by a list of 453 homologous genes that are in a conserved amplification/deletion event and are differentially expressed 
between MMTV-Myc histological subtypes. (B) Unsupervised hierarchical clustering of METABRIC gene expression values by the PAM50 gene 
set. (C) Overall survival (OS) Kaplan–Meier (KM) analysis of non-redundant TCGA breast cancer patients, accessed through cBioPortal, stratified 
by Myc amplification status. (D) OS KM curve of non-redundant TCGA breast cancer patients stratified by KRAS alteration status. (E) OS KM curve 
of non-redundant TCGA breast cancer patients stratified by FGFR2 amplification status
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activating mutations in this cohort. It is worth noting 
that the unaltered population in the KRAS cohort has 
reduced overall survival compared to the MYC unaltered 
cohort, suggesting most patients with MYC amplification 
are largely shunted to the unaltered group.

Similarly, patients with focal FGFR2 amplifications, 
accounting for 1.5% of all breast cancer cohort patients, 
also exhibit a marked decrease in overall survival com-
pared to the unaltered cohort (Fig.  7E) with median 
overall survival at 87.7 months (95% CI: 62.4–191.0), con-
trasting with the unaltered cohort at 163.5 months (95% 
CI: 154.0–172.9) (Additional files 35 and 36: Tables S10 
and S11). Again, patients with FGFR2 amplification fare 
significantly worse than those with MYC amplification, 
standing at a difference of 47.5-month median overall 
survival difference. While KRAS and FGFR2 alterations 
are infrequent in breast cancer, these alterations may be 
extremely significant in the prognosis and treatment of 
their disease.

Altogether, these analyses reveal conserved genetic 
events between both human Myc-driven breast can-
cer and the MMTV-Myc mouse model of breast cancer. 
Importantly, these somatic genetic events are associated 
with severe drops in overall survival in human breast 
cancer patients in large excess of what Myc amplification 
causes.

Machine learning classifier predicts MMTV‑Myc 
histological subtypes correspond to different human 
breast cancer intrinsic subtypes
Thus far, we have shown that there exist tightly linked 
transcriptional and genomic perturbations in the 
MMTV-Myc model, which are heterogeneous across 
its histological subtypes with clinical implications in 
humans. However, whether these histological subtypes 
are representative of different human breast cancer 
intrinsic subtypes is unclear. Unsupervised clustering 
by the integrative mouse gene set shows modest ability 
to parse human intrinsic breast cancer subtypes, but it 
falls short of being able to discriminate between features 
(genes) that can best exemplify a given class (intrinsic 
subtype). To this end, we employed a machine learn-
ing model classifier trained on human METABRIC gene 
expression data to predict which human breast cancer 
intrinsic subtype each MMTV-Myc histological subtype 
best represents.

To accomplish this, we first combined the raw META-
BRIC microarray gene expression data with the MMTV-
Myc microarray data (GSE15904), along with additional 
mouse microarray cohorts for variations of the MMTV-
Neu mouse model (GSE42533) and the MMTV-PyMT 
mouse model (GSE104397) for comparison. PCA of 
normalized data revealed strong batch effects between 

datasets that would distort causal biological interpre-
tation (Additional file  21: Fig.  S17). In removing batch 
effects, we employed the parametric empirical Bayes 
shrinkage adjustment available from ComBat [72], effec-
tively eliminating non-biological differences between 
datasets (Additional file 22: Fig. S18).

We then sought to narrow down the number of fea-
tures in this dataset to avoid overfitting the model and 
make it more generalizable to new patient data for intrin-
sic subtype prediction. The prediction analysis of micro-
array 50 (PAM50) is a well-established scoring metric of 
gene expression data for 50 genes to stratify breast cancer 
patients into intrinsic subtypes and offer clinical prog-
noses [73]. From here, we employed recursive feature 
elimination with cross-validation (RFECV) with a sup-
port vector machine (SVM) radial basis function (RBF) 
kernel estimator to determine the optimal features in 
the dataset. Surprisingly, 32 specific genes (Additional 
file  37: Table  S12) from the PAM50 subset gave higher 
cross-validation scores than utilizing all 50 genes (Addi-
tional file 23: Fig. S19). In testing various estimators for 
the machine learning classifier model limited to this 32 
gene subset, we found a great deal of variability between 
models in hard classification predictions between model 
instantiations. To alleviate this, we utilized a soft voting 
classifier composed of logistic regression, SVM with RBF 
kernel, random forest, XGBoost, and multi-layer percep-
tron estimators  averaged over 15 k-fold instantiations. 
Pooling multiple estimators together was done to reduce 
bias from any one particular estimator and to increase 
overall accuracy. Subsequently, the highest average prob-
ability of a given class will decide which intrinsic subtype 
a mouse tumor belongs to.

The motivation for developing a supervised machine 
learning model classifier is evident after examining the 
distribution of the combined human and mouse gene 
expression dataset through a scatterplot of t-distributed 
stochastic neighbor embedding [74] (t-SNE) data in two-
dimensional space (Fig. 8A). There are distinct clusters of 
human breast cancer samples forming the intrinsic sub-
types except for claudin-low, which supports the notion 
that claudin-low breast cancers represent an additional 
complex phenotype rather than an intrinsic subtype of 
breast cancer [75]. The mouse samples are well dispersed 
throughout the plot even within the same mouse model, 
pointing to substantial gene expression heterogene-
ity within each model. However, problems arise in that 
it is not immediately obvious which cluster each mouse 
sample belongs to. When using t-SNE, there is also nec-
essarily a loss of information even when performing non-
linear dimensionality reduction, in this case from 32 to 
2 dimensions. This is nothing to say of the tendency for 
gradient descent algorithms such as t-SNE to become 
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stuck in local optima. Additionally, other unsupervised 
methods such as hierarchical clustering equally weight 
all features, which decreases accuracy of the model. 
For these reasons and more, there was a clear need to 
develop a supervised machine learning classifier using 
the 32 gene dataset.

Accuracy scores and F1 scores are often used to evalu-
ate the efficacy of supervised machine learning models. 
However, it has been shown that these metrics can be 
overinflated [76], and so we also report the more robust 
Matthew’s correlation coefficient (MMC) metric, which 
proportionally accounts for true positives, true nega-
tives, false positives, and false negatives. For the soft 
voting classifier used to predict mouse-to-human sub-
types, we obtained an average accuracy score of 80.0%, a 
weighted F1 score of 80.0%, and an MCC score of 74.0% 
after 15  k-fold stratified and shuffled cross-validation 
using a 70% train and 30% test split (Fig. 8B). All metrics 
used to evaluate the machine learning model are in high 
agreement and show the model is effective at predicting 
human breast cancer intrinsic subtypes. To better visu-
alize these predictions on the test data, we constructed 
a confusion matrix showing true classes on the vertical 
axis and predicted class on the horizontal axis (Fig. 8C). 
Many of the most confused classes correspond well to 
the t-SNE visualization where clusters overlap, including 
the overlap of luminal A and luminal B classes, overlap 
of luminal A and normal classes, and the overlap of clau-
din-low and basal classes. All metrics combined show 
that the initial METABRIC gene expression data limited 
to the 32 most predictive genes shared with the mouse 
microarray data has significant power in discriminating 
between intrinsic subtypes of breast cancer using the soft 
voting classifier.

When applying the classification model to mouse gene 
expression data, we obtain heterogeneous subtype pre-
dictions across the various MMTV-Myc-, MMTV-Neu-, 
and MMTV-PyMT-based mouse models (Fig.  8D). Our 
initial hypothesis postulated that the MMTV-Myc model 
would enrich for claudin-low and basal-like tumors, simi-
lar to how human breast cancer patients with amplified 

MYC are preferentially basal-like or claudin-low. Indeed, 
for MMTV-Myc tumors overall, 30% are predicted as 
claudin-low, 24% are luminal A, 16% are luminal B, 11% 
are basal, 11% are HER2+, and 8% are normal-like. Large 
differences in intrinsic subtype proportions are evi-
dent across all mouse models tested in comparison with 
human intrinsic breast cancer subtype proportions, with 
METABRIC intrinsic subtype proportions at 35% lumi-
nal A, 24% luminal B, 11% HER2+, 11% claudin-low, 11% 
basal, and 8% normal-like. The claudin-low subtype is 
especially enriched across all mouse models examined.

Though, ratios of each intrinsic subtype vary consider-
ably between histological subtypes for the MMTV-Myc 
model (Fig.  8E). Adenocarcinoma tumors are primarily 
categorized as claudin-low at 57%, with luminal B and 
basal subtypes trailing at 15% and 14%, respectively. Pap-
illary tumors maintain roughly similar proportions of 
basal (17%), claudin-low (25%), HER2+ (19%), and lumi-
nal B (24%) subtypes. EMT tumors are overwhelmingly 
claudin-low (44%) and luminal B (33%). Microacinar 
tumors show the most enrichment for the HER2+ sub-
type at 21% and tied for most basal enriched with papil-
lary at 17%. Squamous tumors are considerably variable, 
with 33% classified as luminal A, 22% as claudin-low, and 
21% as normal-like, corroborating previous pathway sig-
natures showing squamous tumors are not confined to a 
specific localized cluster.

These results have the potential to inform mouse model 
use when investigating different subtypes of breast cancer 
or examining breast cancer heterogeneity more generally. 
For instance, the MMTV-Neu mouse model is often used 
as a model of HER2+ breast cancer, but most MMTV-
Neu tumors show gene expression similar to luminal A 
and claudin-low human tumors. While other groups have 
predicted MMTV-PyMT tumors to correspond to the 
luminal B subtype [19], we predict only 13% of PyMT 
based mouse models fall into this category, with PyMT 
tumors overall being quite heterogeneous.

In summary, we have created an accurate supervised 
machine learning classification model that can stratify 
human breast cancer intrinsic subtypes. When applied 

Fig. 8 MMTV-Myc histological subtypes are representative of different human breast cancer intrinsic subtypes. (A) t-distributed stochastic neighbor 
embedding (t-SNE) performed on human METABRIC and mouse model gene expression samples using the 32 homologous gene subset of PAM50 
as determined by recursive feature elimination with cross-validation. (B) Normalized scoring metrics for the soft voting classifier including accuracy 
for measuring true positives, a weighted F1 scoring metric for balancing precision and recall, and a Matthews correlation coefficient (MCC) metric 
for taking into account false positives and false negatives even in the case of unbalanced classes. (C) A confusion matrix where true positives 
lie along the diagonal from top left to bottom right and false values occupy all other boxes. (D) Bar chart of proportional probabilities of each 
model representing human intrinsic breast cancer subtypes as determined by the soft voting classifier. Human intrinsic subtype proportion 
was determined directly from proportions of METABRIC breast cancer patients subtyped. (E) Bar chart of MMTV-Myc histological subtypes 
and proportional probabilities of each subtype corresponding to different human breast cancer intrinsic subtypes determined by the soft voting 
classifier

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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to batch effect corrected mouse transcriptional data, we 
observe diverse intrinsic subtype profiles assigned to dif-
ferent histological subtypes from the MMTV-Myc mouse 
model.

Discussion
The utility of mouse models of breast cancer has pro-
gressed from overexpression of a driving oncogene to 
questions as to whether they accurately mimic the heter-
ogeneity and progression of human breast cancer. Here, 
we have described the utility of the MMTV-Myc GEMM 
in recapitulating the histological, transcriptional, and 
genomic heterogeneity of human breast cancer.

Conserved somatic genetic changes across MMTV-
Myc histological subtypes are associated with negative 
effects on overall survival when applied to human breast 
cancer patients. These somatic events have largely been 
overlooked previously due to their low prevalence in 
human breast cancer and resulting lack of statistically sig-
nificant differences in clinical outcomes. Given that MYC 
is frequently amplified in basal-like and TNBCs [1], and 
the current lack of targeted therapies in TNBCs [77], it is 
likely there is no consistent driver of oncogenesis across 
all TNBC patients. Instead, we hypothesize there may 
be low prevalence oncogenic drivers that lead to simi-
lar transcriptional profiles ultimately, but each patient’s 
tumor maintains different genetic drivers. An example 
that arises in this paper is that of activating KRAS muta-
tions or significant ploidy gain of FGFR2. Activation of 
either proto-oncogene will result in increased mitogen-
activated protein kinase (MAPK) signaling, but treating 
the root oncogenic driver will require different thera-
peutic strategies. The most prevalent KRAS mutations in 
breast cancer are G12C/D/V/A mutations, with some 
of these G12C mutant patients potentially benefitting 
from treatment with the recently developed sotorasib 
[78] or adagrasib [79] therapies. However, patients with 
amplified FGFR2 would not respond to these therapies 
and instead would more likely benefit from highly selec-
tive FGFR inhibitors such as AZD4547. A recent clinical 
study found that treating endocrine therapy-resistant 
breast cancer patients with AZD4547 achieved partial 
response in some patients, with differentially expressed 
genes involved in FGFR signaling able to distinguish 
between responders and non-responders [80]. Although 
FGFR1 is amplified more often in breast cancer, both 
FGFR1 and FGFR2 amplified and overexpressing breast 
cancers could likewise benefit from AZD4547 treatment.

OBSCN was identified with conserved mutations 
across all histological subtypes, with OBSCN mutations 
correlating poorly with overall survival in humans (Addi-
tional file 24: Fig. S20, Additional files 38 and 39: Tables 
S13 and S14). However, OBSCN is a large gene where 

mutations often co-occur with other large genes, such as 
TTN, MUC family genes, and FAT family genes (Addi-
tional file 40: Table S15). Therefore, mutations in OBSCN 
are likely biomarkers of hypermutational burden rather 
than OBSCN playing a tumor suppressive or oncogenic 
role. This could still be useful information, as hypermu-
tant individuals are more likely to respond to immune 
checkpoint inhibitors [81].

Aside from direct clinical implications in humans, 
these results reveal human intrinsic subtype analogs 
in the MMTV-Myc, MMTV-Neu, and MMTV-PyMT 
mouse model histological subtypes. Others have classi-
fied mouse models of breast cancer and ascribed them 
to different human intrinsic subtypes of breast cancer 
previously in unsupervised methods [18, 19]. However, 
these analyses are not weighted for genes that are able 
to discriminate between intrinsic subtypes; they may be 
biased toward noise in the dataset rather than predic-
tive signals and do not produce metrics for scoring accu-
racy of the model. To rectify this, we created an accurate 
machine learning classification model trained on human 
gene expression data and applied to batch effect cor-
rected gene expression data of different mouse models of 
breast cancer. From these results, we see there is substan-
tial heterogeneity within the histological subtypes of the 
MMTV-Myc model.

However, the proportions in MMTV-Myc tumors that 
match human intrinsic subtypes are skewed relative to 
their occurrence in humans. We see a general decrease 
in luminal tumors and an increase of claudin-low and 
normal-like tumors. While this is true overall for the 
MMTV-Myc mouse model, it is highly dependent on the 
histology of the tumor. For example, adenocarcinoma 
tumors are 57% claudin-low, while microacinar tumors 
are 11% claudin-low. EMT tumors are largely mapped to 
claudin-low and luminal B intrinsic subtypes. The EMT 
subtype maintains great variability in CNVs, similar to 
that of human luminal B breast cancer [82], but the gene 
expression signatures of EMT tumors overlap with the 
canonical signatures associated with human claudin-low 
breast cancer: high expression of markers for cytotoxic 
T-cell and natural killer (NK) cell infiltration (Granzymes 
C, D, E, F, and G), high expression of dormancy markers 
(NR2F1), and low expression of cell-adhesion proteins 
(CLDN2, GJB1, CEACAM1) [83] (Additional file  25: 
Fig.  S21). These observations may be useful to cancer 
researchers when selecting a mouse model for studying 
a specific subtype of breast cancer, particularly the ade-
nocarcinoma or EMT histological subtypes as there are 
no established spontaneous models of breast cancer that 
exclusively mimic claudin-low breast cancer [19]. These 
data suggest that the adenocarcinoma or EMT histologi-
cal subtypes from the MMTV-Myc GEMM could be a 
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reliable immunocompetent model for claudin-low breast 
cancer.

It is clear that the copy number changes identified 
among the MMTV-Myc tumors sequenced, particularly 
the conserved ploidy gains on chromosomes 11 and 15 in 
the microacinar tumors, correlate with gene expression 
changes. ERBB2 and related genes lie on chromosome 
11, which may explain the propensity of microacinar 
tumors to be HER2-like than other histological subtypes. 
It is likely these CNVs are causal in driving gene expres-
sion changes between histological subtypes, although 
we cannot confirm that with these limited data. CRISPR 
knockout followed by gene addback experiments could 
be used to validate these findings. The highly conserved 
copy number gains seen in the microacinar tumors sug-
gest a strong selective pressure for amplification and 
overexpression of genes in these regions. Upon exam-
ining the human homologs and their syntenic chromo-
somal regions for the integrated mouse gene set, we find 
the two largest high synteny regions are the entirety of 
chromosome 17 following from the mouse chromosome 
11 amplification and the long arm of chromosome 8 
(8q) following from the mouse chromosome 15 ampli-
fication (Additional file  41: Table  S16). It is interesting 
to note that human chromosome 8q contains the MYC 
locus and chromosome 17q contains the ERBB2 locus, 
with amplification of these two loci highly correlated 
in human breast cancer (Additional file  42: Table  S17). 
Regions 8q and 17q are among the most frequently 
amplified regions in human breast cancer [84, 85]. How-
ever, given the small sample size of microacinar tumors 
used and experimental setup, it is impossible to deter-
mine whether either of these amplifications has causal 
implications for the other. It should also be noted that 
chromosome 17p is often deleted in many human breast 
cancers while the entirety of chromosome 17 in humans 
is able to be mapped to mouse chromosome 11. Mouse 
chromosomes are telocentric, and given that these fre-
quent large amplifications lie on either side of the cen-
tromere in humans, it is possible that amplification of 
the analogous genes from region 17q is of higher selec-
tive consequence than deletion of the analogous genes 
from region 17p. Comparative genomics between the 
MMTV-Myc histological subtypes and MYC-driven 
human breast cancers may be an important area of 
future study.

Conclusions
A significant hurdle in the study of breast cancer in vivo 
has been the limitations of mouse models recapitulat-
ing the heterogeneity found in human breast cancer. 
Here we report that the MMTV-Myc GEMM reca-
pitulates the histological, transcriptional, and genomic 

heterogeneity found in human breast cancer, with 
important clinical parallels identified. We find different 
MMTV-Myc histological subtypes preferentially repre-
sent different human intrinsic breast cancer subtypes, 
further solidifying the MMTV-Myc model as an appro-
priate in  vivo method for examining the multi-faceted 
aspects of human breast cancer heterogeneity even 
down to the gene expression level.
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Additional file 1: Aligned sanger sequencing results of 5 microacinar, 5 
squamous, and 5 EMT tumors over KIT. Sequencing shows a conserved C 
to A mutation at consensus sequence position 100 and present in tumors 
525-1, 598-1, 864-1, 1052-1, 1356-2, 1445-1, and 1576-1. An electrophero-
gram of some sequences is included.

Additional file 2: Aligned sanger sequencing results of the same 5 
microacinar, 5 squamous, and 5 EMT tumors over RARα. Shows a con-
served C to A mutation present at position 132 in the electropherogram. 
These mutations occur in the same tumors as the KIT C to A mutations 
(525-1, 598-1, 864-1, 1052-1, 1356-2, 1445-1, and 1576-1).

Additional file 3: Human (NP_000213.1) and mouse (NP_001116205.1) 
KIT protein sequence alignment using Clustal Omega 1.2.4. The percent 
identity matrix calculated by Clustal 2.1 is shown at the bottom. The per-
cent identity between human and mouse KIT protein is 82.77%.

Additional file 4: Human (NP_000955.1) and mouse (NP_001169999.1) 
RARA protein sequence alignment using Clustal Omega 1.2.4. The percent 
identity matrix calculated by Clustal 2.1 is shown at the bottom. The per-
cent identity matrix between human and mouse RARA protein is 89.98%.

Additional file 5: Fig. S1. Circos plot of Pearson correlation coefficient 
values for integer copy number and gene expression float value for the 
EMT histological subtype alone. Red indicates that the correlation value is 
above 0.7, while being colored black means the correlation value is below 
0.7.

Additional file 6: Fig. S2. Circos plot of Pearson correlation coefficient 
values for integer copy number and gene expression float value for the 
squamous histological subtype alone. Red indicates that the correlation 
value is above 0.7, while being colored black means the correlation value 
is below 0.7.

Additional file 7: Fig. S3. Circos plot of Pearson correlation coefficient 
values for integer copy number and gene expression float value for the 
microacinar histological subtype alone. Red indicates that the correlation 
value is above 0.7, while being colored black means the correlation value 
is below 0.7.

Additional file 8: Fig. S4. Lollipop plot for human KIT (isoform 1) protein 
obtained from cBioPortal. Patient samples are from the TCGA PanCancer 
Atlas. The lollipops represent different mutations, with light green repre-
senting missense mutations of unknown pathology. Dark green mutations 
are confirmed pathologic missense mutations. Gray mutations represent 
truncating mutations of unknown pathology. Beige mutations represent 
splice variants of unknown pathology. Brown mutations represent inframe 
deletions or insertions of unknown pathology. Dark brown mutations 
represent confirmed pathologic inframe deletions or insertions. The 
annotation tracks below the plot correspond to the labels designated on 
the left. Each dot on the annotation track maps back to that location on 
the protein.

Additional file 9: Fig. S5. Lollipop plot for human RARA (isoform 1) 
protein obtained from cBioPortal. Patient samples are from the TCGA 
PanCancer Atlas. The lollipops represent different mutations, with light 
green representing missense mutations of unknown pathology. Dark 
green mutations are confirmed pathologic missense mutations. Gray 
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mutations represent truncating mutations of unknown pathology. Beige 
mutations represent splice variants of unknown pathology. Brown muta-
tions represent inframe deletions or insertions of unknown pathology. The 
annotation tracks below the plot correspond to the labels designated on 
the left. Each dot on the annotation track maps back to that location on 
the protein.

Additional file 10: Fig. S6. Pairwise correlation plots of MSigDB C1 
positional gene sets for EMT, microacinar, and squamous tumors using 
gene sets (from top to bottom and from left to right): chr22q11, chr8p21, 
chr17q22, chr11q23, chr8p12, and chr3q12. Generated using the Seabron 
pairplot function with Python.

Additional file 11: Fig. S7. METABRIC gene expression data with 446 ran-
dom genes selected as the feature set and then undergoing unsupervised 
hierarchical clustering using Seaborn’s clustermap function within Python. 
This is the first random instantiation.

Additional file 12: Fig. S8. METABRIC gene expression data with 446 ran-
dom genes selected as the feature set and then undergoing unsupervised 
hierarchical clustering using Seaborn’s clustermap function within Python. 
This is the second random instantiation.

Additional file 13: Fig. S9. METABRIC gene expression data with 446 ran-
dom genes selected as the feature set and then undergoing unsupervised 
hierarchical clustering using Seaborn’s clustermap function within Python. 
This is the third random instantiation.

Additional file 14: Fig. S10. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the fourth random instantiation.

Additional file 15: Fig. S11. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the fifth random instantiation.

Additional file 16: Fig. S12. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the sixth random instantiation.

Additional file 17: Fig. S13. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the seventh random instantiation.

Additional file 18: Fig. S14. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the eighth random instantiation.

Additional file 19: Fig. S15. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the ninth random instantiation.

Additional file 20: Fig. S16. METABRIC gene expression data with 446 
random genes selected as the feature set and then undergoing unsuper-
vised hierarchical clustering using Seaborn’s clustermap function within 
Python. This is the tenth random instantiation.

Additional file 21: Fig. S17. PCA plot of Z-scaled data for METABRIC 
gene expression data, and also MMTV-Myc, MMTV-Neu, and MMTV-PyMT 
primary mammary mouse tumors and visualized using a matplotlib scat-
terplot in Python. The first principal component accounts for 44.6% of the 
variance within the dataset, with three distinct clusters that correspond 
to different sampling groups appearing. The second principal component 
accounts for 8.6% of variance within the dataset.

Additional file 22: Fig. S18. PCA plot of Z-scaled and batch corrected 
METABRIC, MMTV-Myc, MMTV-Neu, and MMTV-PyMT primary mammary 
tumor gene expression data. Batch correction was performed using 
ComBat with settings defined in the main text methods section. Principal 

components are plotted using a scatterplot in matplotlib within Python. 
The first principal component in the batch corrected dataset accounts 
for 5.9% of variance, while the second principal component accounts for 
4.5% of variance.

Additional file 23: Fig. S19. Recursive feature elimination with 10-fold 
cross-validation (RFECV) using a support vector machine (SVM) classifier 
with radial basis function (RBF) kernel was performed on Z-scored and 
batch corrected METABRIC gene expression data—all mouse data was 
removed after batch correction and Z-scoring but before RFECV. Gene 
expression data was limited to the remaining PAM50 genes after combin-
ing human and mouse datasets, which was 45 genes. The vertical dashed 
line was placed at the optimal number of features, which is the number 
of features which give the highest average accuracy score over the 10 
iterations the test is performed. The light blue shaded area represents 
one standard deviation away from the mean accuracy score. RFECV was 
performed using the Yellowbrick package in Python.

Additional file 24: Fig. S20. Non-redundant TCGA breast cancer patient 
data for OBSCN mutation status underwent Kaplan-Meier analysis for 
overall survival with 95% confidence intervals shown in light blue for the 
unaltered population and light red for the OBSCN mutated population. 
KM plots were created using the survminer R package. All breast cancer 
datasets with mutation data available were analyzed with redundant 
patients removed from the dataset and the first event occurrence by date 
for each patient was kept.

Additional file 25: Fig. S21. Volcano plot of differentially expressed genes 
of MMTV-Myc EMT tumors compared to microacinar and squamous 
tumors. Log fold change is displayed along the x-axis and -log base 10 of 
the p-value determined by a students’ t-test is displayed along the y-axis. 
Log fold change cut off set at ≥ 3 and negative log base 10 cut off set at ≥ 
1.3, which is equivalent to a p-value ≤ 0.05. Select genes are highlighted. 
The volcano plot is made using bioinfokit as a Python package.

Additional file 26: Table S1. Estimated integer copy number gain or loss 
by gene for all 9 tumors that underwent whole genome sequencing.

Additional file 27: Table S2. ssGSEA values for all available EMT, squa-
mous, and microacinar tumors. Includes test statistics, p-values, and log 
fold changes between groups.

Additional file 28: Table S3. Gene expression and estimated integer copy 
number correlation values by gene with location included in the mm10 
genome across all EMT, squamous, and microacinar samples. Includes the 
Kendall rank correlation coefficient and Pearson correlation coefficient 
values.

Additional file 29: Table S4. Integrative mouse gene set found by taking 
all genes that were differentially expressed between EMT, squamous, and 
microacinar histological subtypes that also had copy number differences 
present from the whole genome sequencing data. The rationale behind 
this is that if the MMTV-Myc histological subtype preferentially represent 
different human intrinsic breast cancer subtypes, the combination of 
genomic and transcriptomic data will limit the number of genes used in 
unsupervised hierarchical clustering to those that matter most.

Additional file 30: Table S5. Contingency table of TCGA breast cancer 
patient copy number data by select genes available through cBioPortal. 
An event for each gene is the presence of either a copy number gain or 
copy number loss. Separate pairwise contingency tables are listed for all 
possible combinations of genes considered: ERBB2, MYC, COL1A1, KRAS, 
and FGFR2. Odds ratios and p-values were determined using Fisher’s exact 
test for each gene combination.

Additional file 31: Table S6. Data for constructing the Kaplan-Meier plot 
of MYC amplified and unaltered breast cancer patients by probability of 
overall survival in months. Includes bounds for 95% confidence intervals, 
number at risk, and standard error calculations.

Additional file 32: Table S7. Raw data obtained from cBioPortal for all 
breast cancer patients separated by MYC amplification status. Redundant 
patient samples have not been removed.
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Additional file 33: Table S8. Data for constructing the Kaplan-Meier 
plot of KRAS with amplification/activating mutation and unaltered breast 
cancer patients by probability of overall survival in months. Includes 
bounds for 95% confidence intervals, number at risk, and standard error 
calculations.

Additional file 34: Table S9. Raw data obtained from cBioPortal for all 
breast cancer patients separated by KRAS amplification/mutation status. 
Redundant patient samples have not been removed.

Additional file 35: Table S10. Data for constructing the Kaplan-Meier 
plot of FGFR2 amplified and unaltered breast cancer patients by prob-
ability of overall survival in months. Includes bounds for 95% confidence 
intervals, number at risk, and standard error calculations.

Additional file 36: Table S11. Raw data obtained from cBioPortal for all 
breast cancer patients separated by FGFR2 amplification status. Redun-
dant patient samples have not been removed.

Additional file 37: Table S12. List of the 32 most important genes as a 
subset of PAM50 for distinguishing between intrinsic subtypes of breast 
cancer as determined through RFECV using an SVM classifier with RBF 
kernel.

Additional file 38: Table S13. Data for constructing the Kaplan-Meier 
plot of OBSCN mutated and unaltered breast cancer patients by prob-
ability of overall survival in months. Includes bounds for 95% confidence 
intervals, number at risk, and standard error calculations.

Additional file 39: Table S14. Raw data obtained from cBioPortal for all 
breast cancer patients separated by OBSCN mutation status. Redundant 
patient samples have not been removed.

Additional file 40: Table S15. Sample level enrichment table for genes 
that are often co-mutated with OBSCN. Samples are ordered from high-
est to lowest for genes with mutations that occur in the altered group 
(OBSCN mutated group).

Additional file 41: Table S16. Human gene homologs and genomic loca-
tion that correspond to genes contained within the conserved microaci-
nar tumor amplification events on mouse chromosomes 11 and 15.

Additional file 42: Table S17. Fisher exact test of ERBB2 and MYC ampli-
fication in human breast cancer patients. MYC and ERBB2 amplification 
trend toward co-occurrence.
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