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Abstract 

Background Several studies have indicated that magnetic resonance imaging radiomics can predict survival 
in patients with breast cancer, but the potential biological underpinning remains indistinct. Herein, we aim to develop 
an interpretable deep-learning-based network for classifying recurrence risk and revealing the potential biological 
mechanisms.

Methods In this multicenter study, 1113 nonmetastatic invasive breast cancer patients were included, and were 
divided into the training cohort (n = 698), the validation cohort (n = 171), and the testing cohort (n = 244). The Radi-
omic DeepSurv Net (RDeepNet) model was constructed using the Cox proportional hazards deep neural network 
DeepSurv for predicting individual recurrence risk. RNA-sequencing was performed to explore the association 
between radiomics and tumor microenvironment. Correlation and variance analyses were conducted to examine 
changes of radiomics among patients with different therapeutic responses and after neoadjuvant chemotherapy. 
The association and quantitative relation of radiomics and epigenetic molecular characteristics were further analyzed 
to reveal the mechanisms of radiomics.

Results The RDeepNet model showed a significant association with recurrence-free survival (RFS) (HR 0.03, 95% CI 
0.02–0.06, P < 0.001) and achieved AUCs of 0.98, 0.94, and 0.92 for 1-, 2-, and 3-year RFS, respectively. In the validation 
and testing cohorts, the RDeepNet model could also clarify patients into high- and low-risk groups, and demonstrated 
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AUCs of 0.91 and 0.94 for 3-year RFS, respectively. Radiomic features displayed differential expression between the two 
risk groups. Furthermore, the generalizability of RDeepNet model was confirmed across different molecular subtypes 
and patient populations with different therapy regimens (All P < 0.001). The study also identified variations in radiomic 
features among patients with diverse therapeutic responses and after neoadjuvant chemotherapy. Importantly, a sig-
nificant correlation between radiomics and long non-coding RNAs (lncRNAs) was discovered. A key lncRNA was found 
to be noninvasively quantified by a deep learning-based radiomics prediction model with AUCs of 0.79 in the training 
cohort and 0.77 in the testing cohort.

Conclusions This study demonstrates that machine learning radiomics of MRI can effectively predict RFS after sur-
gery in patients with breast cancer, and highlights the feasibility of non-invasive quantification of lncRNAs using 
radiomics, which indicates the potential of radiomics in guiding treatment decisions.

Keywords Machine learning, Radiomics, Magnetic resonance imaging, Recurrence-free survival, Treatment decisions, 
Long non-coding RNAs, Breast cancer

Background
Breast cancer is a leading cause of cancer-related mor-
tality in women worldwide, with recurrence rates of 
10–15% within 5 years of diagnosis [1, 2]. Currently, the 
70-gene expression profile [3] and 21-gene recurrence 
score assays [4] are recommended in clinical practice to 
predict the risk of recurrence and guide decisions regard-
ing adjuvant chemotherapy [5]. However, the high cost 
of these assays and limited availability of tissue samples 
for assessment pose challenges to their widespread adop-
tion, potentially overlooking the spatial heterogeneity of 
breast tumors. Furthermore, these options are only suit-
able for luminal subtype patients, leaving non-luminal 
subtype patients at risk of over or undertreatment. In 
current clinical practice, patients with hormone receptor 
(HR)-positive or human epidermal growth factor recep-
tor 2 (HER2)-positive tumors receive endocrine therapy 
or HER2-targeted therapy, respectively. However, there 
is considerable variation in survival rates among patients 
within the same treatment strategy. Therefore, a more 
universally applicable and accurate method is needed to 
identify patients at high or low risk of recurrence, facili-
tating personalized treatment decisions and achieving 
precision therapy.

In recent years, deep learning methods, in particu-
lar convolutional neural networks, have become widely 
used for analyzing nonstructural image data and have 
demonstrated their effectiveness in capturing image 
features [6]. For instance, a previous study proposed 
a multi-task deep learning approach for segment-
ing tumors and predicting treatment response based 
on magnetic resonance imaging (MRI) scans of rec-
tal cancer patients [7]. Moreover, in the field of sur-
vival analysis, a deep learning survival neural network 
(DeepSurv) has been developed, which combines the 
Cox proportional hazards model with deep learning 
techniques [8]. These studies indicated that incorpo-
rating the techniques into the field of radiomics could 

lead to significant advancements in personalized med-
icine. This study also demonstrated that DeepSurv has 
the potential to provide treatment recommendations 
that lead to improved survival outcomes.

Although radiomic features have been widely utilized 
for predicting outcomes in cancer patients, the under-
lying biological mechanisms are still not well-under-
stood. A recent study demonstrated that radiomic 
features differ between treated and untreated tumors 
[9], suggesting that these features may reflect changes 
in the tumor microenvironment. Consequently, it is 
imperative to investigate the relationship between radi-
omic features and therapeutic response. Additionally, 
there is a growing research interest in the epigenetic 
changes that occur in cancer, with long non-coding 
RNAs (lncRNAs) gaining recognition for their clinical 
value. However, the detection methods for lncRNAs 
currently limit their clinical application. A previous 
study proposed an artificial intelligence system that 
employed CT images to predict the epidermal growth 
factor receptor (EGFR) genotype and prognosis with 
EGFR-tyrosine kinase inhibitors [10], which reminds 
us the potential for quantifying lncRNA expression 
using radiomics. Due to the association between radi-
omic features and therapeutic response or epigenet-
ics remains uncertain, and prior findings lack robust 
validation, it certainly seems worthwhile to explore the 
possible biological basis of radiomics and develop non-
invasive tools for detecting lncRNA expression.

In this multicenter study, we constructed the inter-
pretable deep-learning-based Radiomic DeepSurv Net 
(RDeepNet) model to predict recurrence risk, and eval-
uated the changes in radiomics before and after therapy 
with consideration of the therapy response status. The 
association between radiomic features and lncRNAs 
was further assessed to explore the potential epige-
netic biological underpinning of nonmetastatic invasive 
breast cancer.
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Methods
Study design and patients
This study was conducted in accordance with the 
STROBE guideline checklist [11]. This study included 
three phases to train and validate the RDeepNet model 
for prediction of recurrence-free survival (RFS) and 
explore the association between radiomics and the 
treatment or epigenetic biological underpinning. In the 
RDeepNet model construction and validation phase 
(phase 1), the RDeepNet model was constructed with a 
combination of the intra- and peritumoral radiomic fea-
tures using contrast-enhanced T1-weighted imaging 
(T1 + C) and T2-weighted imaging (T2WI) sequences, 
which aimed to pinpoint patients with a high or low 
risk of recurrence. The RDeepNet model was validated 
in an independent external validation cohort and a test-
ing cohort. RNA-sequencing (RNA-seq) was performed 
to preliminarily explore the potential molecular mecha-
nisms of radiomics. In phase 2, correlation and variance 
analyses were conducted to examine the changes of radi-
omics in patients before and after neoadjuvant chemo-
therapy with the response status. Based on the above 
findings, the association and quantitative relation of radi-
omics and epigenetic molecular characteristics were fur-
ther analyzed with RNA-seq data in phase 3.

A total of 1,186 nonmetastatic invasive breast cancer 
patients were retrospectively recruited from four institu-
tions in China, of which 73 patients did not pass the qual-
ity control (55 patients were not histologically confirmed 
to have stage I–III invasive breast cancer [12], and 18 
patients lacked an MRI before surgery), and 1113 patients 
were finally enrolled. A total of 698 patients recruited 
from the national hospitals Sun Yat-sen Memorial Hos-
pital of Sun Yat-sen University (Guangzhou, China) 
and Sun Yat-sen University Cancer center (Guangzhou, 
China) between March 23, 2011, and August 26, 2019, 
were assigned to a training cohort. Then, 171 patient 
cases collected from the Shunde Hospital of Southern 
Medical University (Foshan, China) and the Tungwah 
Hospital of Sun Yat-sen University (Dongguan, China) 
between March 09, 2012, and September 21, 2019, were 
used as the validation cohort. A total of 244 patients from 
the Sun Yat-sen Memorial Hospital of Sun Yat-sen Uni-
versity (Guangzhou, China) between April 19, 2013, and 
December 05, 2018, were assigned to the testing cohort. 
We retrospectively collected 92 formalin-fixed paraffin-
embedded (FFPE) biopsy tissues from patients treated at 
the Sun Yat-sen Memorial Hospital of Sun Yat-sen Uni-
versity. All samples were reassessed by two pathologists 
and were found to contain more than 70% tumor cells. 
A total of 72 patients, who had both T1 + C and T2WI 
sequences from The Cancer Genome Atlas (TCGA) and 
The Cancer Imaging Archive (TCIA), were assigned to 

the TCGA cohort for assessing the efficacy of the deep 
learning prediction model.

The inclusion criteria were female patients aged at 
least 18  years with histological confirmation of stage I–
III invasive breast cancer [12], underwent breast tumor 
and axillary MRI scans before surgery and axillary lymph 
node dissection, and who experienced perioperative 
therapy. Cases of patients with other previous or simul-
taneous tumors, incomplete pathological information, 
or unavailable standard MRI scans with or without con-
trast enhancement were excluded. The outcome was RFS, 
calculated from the date of surgery until the date of the 
most recent medical review or diagnosis of recurrence, 
or metastasis, and the association of radiomics with 
lncRNAs.

The four molecular subtypes of breast tumors were 
defined according to the St. Gallen Consensus Confer-
ence 2013 [13], with biomarkers measured by immu-
nohistochemistry or in  situ hybridization. Luminal A 
subtype patients were defined as estrogen receptor (ER)- 
and progesterone receptor (PR)-positive, HER2-negative, 
and Ki-67 level < 14%. Luminal B subtype patients were 
defined as ER-positive and over-expressed/amplified 
HER2, or ER-positive and HER2-negative, with Ki-67 
level > 14%, or PR-negative/low. In contrast, ER- and 
PR-negative, HER2-positive subtype patients had over-
expressed/amplified HER2, and triple-negative breast 
cancer (TNBC) subtype patients were HER2-negative.

Procedures of transcriptome RNA sequencing
Total RNA was extracted from FFPE samples using the 
QIAGEN FFPE RNeasy kit (QIAGEN GmbH, Hilden, 
Germany). RNA was analyzed using an Agilent RNA 
6000 Nano Kit (Aglient Technologies, Santa Clara, CA, 
USA), and RNA integrity numbers were determined to 
evaluate RNA integration using an Agilent Bioanalyzer 
2100 (Aglient Technologies, Santa Clara, CA, USA). 
An input of 500 ng of total RNA was amplified using an 
Ovation FFPE WTA System (NuGEN, San Carlos, CA, 
USA), and a NEBNext® Ultra™ II DNA Library Prep Kit 
(Illumina) was used for fragmentation and labeling. The 
quality and quantity of amplified libraries were evaluated 
using Qubit (Invitrogen, Carlsbad, CA, USA) and Agi-
lent Bioanalyzer 2100 (Aglient Technologies, Santa Clara, 
CA, USA). All libraries were sequenced using a DNB-
SEQ-T7RS (MGI) with 100 bp paired-end reads. Base call 
files were converted to the fastq format using cal2Fastq. 
Raw data were normalized using the fastp (version 0.20.1) 
for data processing.

Radiomic feature extraction
The acquisition protocol of the multiparametric MRI 
(including T1 + C, and T2WI) used across all institutions 
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and the MR scanner parameters are described in Addi-
tional file 1: eAppendix 1 and Additional file 1:  Table S1. 
All of the MRIs were normalized to obtain a standard 
normal distribution of image intensities using the N4ITK 
Bias Correction code. The 3D regions of interest (ROIs) 
in the breast intratumoral area and the peritumoral area 
(10-mm extension outward of the tumor parenchyma) 
were semi-automatically segmented using the 3D Slicer 
software (https:// www. slicer. org/, version 4.10.2) [14]. 
The 3D regions of intra- and peritumoral (DICOM for-
mat) were transferred to the SlicerRadiomics code, a tex-
ture extraction platform based on the python package 
“PyRadiomics” [15]. For each patient, 3,452 quantitative 
radiomic features (863 features from each ROI in each 
sequence, including 12 diagnostic features, 107 origi-
nal features, and 744 wavelet features) were extracted to 
analyze shape, size, intensity, morphology, and texture. 
Besides diagnostic features, the remaining radiomic fea-
tures were categorized into seven groups: shape descrip-
tors, first-order statistics, gray-level co-occurrence 
matrix (GLCM), gray-level size zone matrix (GLSZM), 
gray-level run-length matrix (GLRLM), gray-level 
dependence matrix (GLDM), and neighboring gray tone 
difference matrix (NGTDM). More details regarding the 
radiomic feature extraction are described in Additional 
file 1:  eAppendix 2.

RDeepNet model building and validation
The Cox proportional hazards deep neural network, 
DeepSurv [8], was applied to construct the RDeepNet 
model for predicting individual recurrence risk. The 
network took 3,452 radiomic features as input for each 
patient. For the recurrence risk, the RDeepNet score was 
calculated with a single output node based on the nega-
tive log-partial likelihood function. The RFS predicted 
from the RDeepNet model was then assessed in the vali-
dation cohort and the testing cohort, respectively. More 
details about the network were described previously [8].

Radiomic features varied among patients with different 
responses and after neoadjuvant chemotherapy
In total, 127 (52%) of the 244 patients from the test-
ing cohort had radiomic features from before and after 
neoadjuvant chemotherapy, of which 72 (57%) patients 
were evaluated as responsive (complete response + par-
tial response) to the therapeutic, with the standard of 
Response Evaluation Criteria in Solis Tumors (RECIST). 
The other 55 (43%) patients were defined as unrespon-
sive (stable disease + progressive disease). The differential 
therapy-related radiomic features between responsive 
and unresponsive patients or before and after neoadju-
vant chemotherapy were identified using the limma pack-
age, t test and paired samples t test, respectively. The 

heatmaps of the differentially expressed radiomic features 
were obtained with the R package pheatmap. The correla-
tion matrix maps of the radiomic features extracted from 
intratumoral region were performed with the R package 
ggplots and RColorBrewer.

Exploration of the molecular mechanisms of radiomics
To explore the related biological mechanisms of radi-
omics, we performed RNA-seq for 92 patients from the 
training cohort. Additional file  1:  Table  S2 shows the 
clinicopathological characteristics of these patients. The 
compared files were downloaded from https:// www. 
ensem bl. org/ index. html and annotated with Perl soft-
ware according to the ensemble ID of sequencing results. 
Next, the gene length was compared through the Gen-
code27 database on the basis of the counts data. Then, 
the counts data were converted into TPM data, and the 
lncRNAs were distinguished in accordance with the 
Ensembl database.

The t test and limma package were used to identify dif-
ferentially expressed genes between high- and low-risk 
patients according to the RDeepNet score. Then, the pro-
portion of the tumor immune microenvironment were 
quantified in the 92 patients with the ssGSEA algorithm, 
which were used for highly sensitive and specific discrim-
ination of 28 human immune cell phenotypes, including 
B cells, T cells, natural killer cells, macrophages, den-
dritic cells, and myeloid subsets. Spearman’s rank cor-
relation analysis and limma package were used between 
high- and low-risk patients to further explore the asso-
ciation between radiomics and the tumor immune 
microenvironment.

To explore the potential epigenetic biological under-
pinning of radiomics, 15 lncRNAs were selected using 
the Spearman’s rank correlation analysis and univari-
able Cox proportional hazards regression model in 92 
patients with RNA-seq data. The limma package was 
utilized to identify the differential radiomic features 
between patients with high and low expression of the 
key lncRNA. The Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses were 
performed using the clusterProfiler R package [16]. The 
pathways were also identified by running a gene set vari-
ation analysis (GSVA) with the R package gsva. The path-
way enrichment analyses were considered statistically 
significant, with P values and false discovery rates of less 
than 0.05. Next, the deep learning prediction model of 
lncRNA expression was built with the intratumoral radi-
omic features based on the multilayer neural network 
(MLP) [17, 18]. A total of 92 patients with RNA-seq data 
were included for training the model, and 72 patients 
with both T1 + C and T2WI sequences from TCGA and 

https://www.slicer.org/
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TCIA were assigned to the TCGA cohort for assessing 
the efficacy of the model.

Statistical analysis
Fisher’s exact tests were performed to examine differ-
ences in the occurrence of categorical variables, while 
independent t tests were used to compare differences in 
continuous variables between the two groups. Survival 
was calculated using the Kaplan–Meier method and the 
log-rank test. Hazard ratios (HRs) and 95% confidence 
intervals (Cls) were calculated using a Cox regression 
analysis. Patients were categorized into high and low-
risk groups with the optimal cutoff values defined by 
the R package ggsurvimier. The prognostic or predictive 
accuracy of the RDeepNet model and prediction model 
of lncRNA expression was assessed by using receiver 
operating characteristic curve (ROC) analysis. The per-
formance of the RDeepNet model for RFS prediction 
and prediction model of lncRNA expression was evalu-
ated by assessing sensitivity and specificity calculated by 
using the area under the ROC curve (AUC) method. For 
all analyses, two-sided P-values less than 0.05 were con-
sidered statistically significant. Statistical analyses were 
performed using R software (version 4.0.0).

Results
Patient characteristics
This study included three phases to train and validate 
the RDeepNet model for prediction of RFS and explore 
the association between radiomics and the treatment 
or epigenetic biological underpinning, and we eventu-
ally achieved the prediction for expression of lncRNA 
with radiomic features based on deep learning. A total of 
1113 patients from four academic institutions in China 
were eligible for this study (Additional file 1:  Table S3). 
Additional file 1:  Table S4 shows the clinicopathological 
characteristics of patients in the training cohort (n = 698), 
the validation cohort (n = 171), and the testing cohort 
(n = 244). Endocrine therapy was administered to 446 
(64%) of 698 patients in the training cohort, 103 (60%) 
of 171 patients in the validation cohort, and 135 (55%) of 
244 patients in the testing cohort. HER2-targeted ther-
apy was administered to 210 (30%) of 698 patients in the 
training cohort, 50 (29%) of 171 patients in the valida-
tion cohort, and 93 (38%) of 244 patients in the testing 
cohort. From the testing cohort, 244 patients underwent 
neoadjuvant chemotherapy. The median follow-up time 
was 44.7 months (IQR 34.0–57.3) for the training cohort, 
40.4  months (IQR 29.3–62.3) for the validation cohort, 
and 39.9 months (IQR 36.1–50.9) for the testing cohort. 
The 3-year RFS rate was 93.6% (95% CI 91.7–95.5%) for 
the training cohort, 96.7% (95% CI 93.8–99.6%) for the 
validation cohort, and 93.3% (95% CI 90.0–96.6%) for 

the testing cohort. Detailed information regarding the 
patient recruitment and study design is described in 
Fig. 1.

RDeepNet model for recurrence risk prediction 
and supporting treatment decisions
The RDeepNet model, combining both intratumoral 
and peritumoral radiomic features, was developed. The 
RDeepNet model categorized patients into high- and 
low-risk groups with an optimal cutoff value (1.10). The 
RDeepNet model assigned 70 (10%) of 698 patients to the 
high-risk group, and there were significant differences 
in RFS between the high- and low-risk groups (HR 0.03, 
95% CI 0.02–0.06, P < 0.001). In the validation cohort, 26 
(15%) of the 171 patients were assigned to the high-risk 
group, which had shorter RFS (HR 0.05, 95% CI 0.01–
0.23, P < 0.001). In the testing cohort, 59 (24%) of the 244 
patients with high risk had shorter RFS (HR 0.05, 95% CI 
0.02–0.19, P < 0.001) (Fig.  2a–c). Moreover, the RDeep-
Net model showed AUCs for the 1-, 2-, and 3-year RFS of 
0.98, 0.94, and 0.92, respectively, in the training cohort; 
0.91, 0.90, and 0.91, respectively, in the validation cohort; 
and 0.92, 0.93, and 0.94, respectively, in the testing cohort 
(Fig. 2d–f).

In addition, the RDeepNet model was employed to clas-
sify a high and low risk of recurrence in patients by con-
sidering the molecular subtypes of cancer. Encouragingly, 
the RDeepNet model could discriminate high- from low-
risk patients in the subgroups of luminal A (P < 0.001), 
luminal B (HR 0.06, 95% CI 0.03–0.10, P < 0.001), HER2-
positive (HR 0.05, 95% CI 0.01–0.22, P < 0.001), and 
TNBC (P < 0.001) patients (Additional file  1:  Fig. S1). 
Moreover, the RDeepNet model could recognize high- 
and low-risk patients among patients treated with endo-
crine therapy (HR 0.03, 95% CI 0.02–0.07, P < 0.001) and 
patients treated with HER2-targeted therapy (HR 0.07, 
95% CI 0.03–0.14, P < 0.001) (Fig.  3a, b). In parallel, the 
efficacy of the RDeepNet model showed AUCs of 0.95, 
0.93, and 0.90 for 1-, 2-, 3-year RFS prediction among 
patients treated with endocrine therapy. These AUCs 
were 0.96, 0.90, and 0.90, respectively, among patients 
treated with HER2-targeted therapy (Fig. 3c, d).

According to the RDeepNet model, the radiomic 
features were expressed differentially between the 
high- and low-risk groups among patients in the train-
ing cohort (Additional file  1:  Fig. S2). To determine 
the potential mechanisms of radiomics, RNA-seq for 
92 patients from the training cohort was performed. 
We identified 148 differentially expressed genes 
between the high- and low-risk groups (Additional 
file  1:  Fig. S3a). The pathway enrichment analyses 
showed that these genes were highly enriched in PI3K-
Akt signaling pathway, MAPK signaling pathway, and 
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cell-migration-related genomic biological processes 
(Additional file  1:  Fig. S3b, c). These genes were also 
involved in various pathways as well as physiological 
and pathological processes, which were associated with 
tumor, immunity and metabolism, such as JAK STAT 
signaling pathway, cytokine interaction, and the energy 
metabolism (Additional file  1:  Fig. S3d). We further 
evaluated the association between the RDeepNet score 
and immune cells (Additional file  1:  Fig. S4a). Cor-
relation analysis indicated that the RDeepNet score 

was significantly related to activated dendritic cells, 
CD56bright natural killer cells, central memory CD4 
T cells, effector memory CD4 T cells, effector memory 
CD8 T cells, myeloid-derived suppressor cell, T follicu-
lar helper cells, Type 1 T helper cells, Type 17 T helper 
cells, and Type 2 T helper cells (Additional file 1:  Fig. 
S4b). Furthermore, variation analysis of immune cells 
showed that patients from the high-risk group had 
lower expression of CD56dim natural killer cells and 
central memory CD8 T cells but higher expression of 

Fig. 1 Patient recruitment and study design. The deep-learning-based Radiomic DeepSurv Net was constructed with MRI radiomic features, 
and was found to be employed for RFS prediction and associated with therapy response and tumor microenvironment (a). This study included 
three phases to train and validate the RDeepNet model for prediction of RFS and explore the association between radiomics and the treatment 
or epigenetic biological underpinning. In phase 1, a total of 1113 patients with preoperative MRI from four institutions were enrolled in this 
study to construct and validate the RDeepNet model for the prediction of recurrence risk. In phase 2, correlation and variance analyses were 
conducted to examine the change in radiomics in patients before and after neoadjuvant chemotherapy with the response status. In phase 
3, 92 of 698 patients from the training cohort underwent RNA-seq with the FFPE samples to obtain lncRNAs data and analyze the association 
between radiomics with lncRNAs and RFS (b). LncRNAs, long non-coding RNAs; MRI, Magnetic resonance imaging; RFS, recurrence-free survival; 
T1 + C, contrast-enhanced T1-weighted imaging; T2WI, T2-weighted imaging
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effector memory CD8 T cells compared with low-risk 
patients (Additional file 1:  Fig. S4c).

Radiomic features varied from different therapy responses 
and post‑neoadjuvant chemotherapy
After the RDeepNet model construction and valida-
tion phase, in phase 2, we aimed to determine whether 
radiomic features can predict changes after neoadju-
vant chemotherapy. Radiomic variation and correlation 
analyses were performed on 127 patients (including 72 
responsive patients and 55 unresponsive patients) who 
had intratumoral radiomic features, both before and after 
neoadjuvant chemotherapy. A total of 1726 intratumoral 
radiomic features were analyzed with consideration of 
patients’ response to the therapy. Before neoadjuvant 
chemotherapy, 456 radiomic features were found to be 
differentially expressed between responsive and unre-
sponsive patients (Fig.  4a). It was observed that there 
were 352 variant radiomic features between the above 
two groups of patients after neoadjuvant chemotherapy 
(Fig.  4b). In addition, 306 and 793 radiomic features 
were found to be statistically different after the neoad-
juvant chemotherapy in the responsive and unrespon-
sive patients, respectively (Fig.  4c, d). The correlation 

between these features changed obviously after neoad-
juvant chemotherapy. Patients after neoadjuvant chemo-
therapy had higher correlations among some radiomic 
features than patients before neoadjuvant chemotherapy 
(Fig.  4e–h). We further took the overlaps of the above 
differential radiomic features, and 35 radiomic features 
(therapy-related features) were considered to be the 
key features that were primarily correlated with therapy 
(Additional file 1:  Fig. S5). It is worth noting that 27 of 
the 35 radiomic features were found to be significantly 
different between the high- and low-risk groups. Most 
of the key differential radiomic features were found to 
belong to the classification of the GLCM or GLRLM. 
More details about the classification of these features are 
shown in Additional file 1:  Table S5.

The association and quantitative relation 
between radiomics and LncRNAs
Based on the above findings, the association of radiom-
ics and epigenetic molecular characteristics was explored 
in phase 3 based on the results of RNA-seq. A total of 
12,312 lncRNAs were produced from the transcriptome 
sequencing data for each patient. To look for the crucial 
lncRNAs, correlation analysis between lncRNAs and 

Fig. 2 Performance of the RDeepNet model for predicting the recurrence risk in the training, validation, and testing cohorts. Kaplan–Meier curves 
of RFS according to the RDeepNet model in the a training cohort, b validation cohort, and c testing cohort. ROC curves and 1-, 2-, 3-year AUCs were 
used to assess the prognostic accuracy of the RDeepNet model in the d training cohort, e validation cohort, and f testing cohort. P values were 
calculated using the unadjusted log-rank test, and hazard ratios were calculated by a univariate Cox regression analysis. AUC, area under the receiver 
operating characteristics curve; CI, confidence interval; HR, hazard ratio; RFS, recurrence-free survival; ROC, receiver operating characteristic
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the RDeepNet score was performed, which allowed the 
identification of 47 lncRNAs at a significance thresh-
old of P < 0.05. Of these, 15 were associated significantly 
with RFS (All P < 0.05) (Additional file  1:  Figs. S6–8). 
The full list of the 15 lncRNAs is detailed in Additional 
file  1:  Table  S6. The association among the risk strati-
fication by the RDeepNet model, pathological tumor-
node-metastasis (pTNM) stage, molecular subtypes, and 
the 15 lncRNAs is visualized in Fig. 5a. Five (KRT7-AS, 
DLGAP1-AS2, AP000253.1, AC073130.2, LINC00910) of 
15 lncRNAs were identified to be highly correlated with 
some of the above 35 therapy-related radiomic features 
(Fig. 5b).

The lncRNA KRT7-AS in particular was observed to 
be associated with RFS (HR 0.12, 95% CI 0.030–0.52, 
P < 0.001) (Fig. 6a), and was correlated linearly with most 
of the therapy-related radiomic features. Similarly, 22 
of 35 therapy-related radiomic features were found to 
be differentially expressed in patients with differential 
expression of lncRNA KRT7-AS (Fig.  6b, c). To explore 
the potential biological underpinning, pathway enrich-
ment analysis was conducted to evaluate the enrichment 
of the lncRNA KRT7-AS-related and survival-based 
genes. Figure  6d shows the lncRNA KRT7-AS mainly 
associated with various tumor- or metastasis-associated 
pathways and processes, such as the Akt phosphorylates, 

Fig. 3 Performance of the RDeepNet model for recurrence risk prediction in patients with different therapy regimens. Kaplan–Meier curves 
of RFS according to the RDeepNet model in the subgroups of patients with a endocrine therapy and b HER2-targeted therapy. ROC curves and 1-, 
2-, 3-year AUCs were used to assess the prognostic accuracy of the RDeepNet model in the subgroups of patients with c endocrine therapy 
and d HER2-targeted therapy. P values were calculated using the unadjusted log-rank test, and hazard ratios were calculated by a univariate Cox 
regression analysis. AUC, area under the receiver operating characteristics curve; CI, confidence interval; HR, hazard ratio; HER2, human epidermal 
growth factor receptor 2; RFS, recurrence-free survival; ROC, receiver operating characteristic
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nucleotide excision repair, and ERBB2 regulates cell 
motility. The lncRNA KRT7-AS was also found to be 
correlated with effector memory CD8 T cells, immature 
dendritic cells, myeloid-derived suppressor cells, mono-
cytes, neutrophils, type 1  T helper cells, and type 17  T 
helper cells. The results show that genes based on dif-
ferent expression of KRT7-AS were involved in the pro-
cess of lncRNA-mediated mechanisms of therapeutic 
resistance, the Hippo-YAP signaling pathway, and TP53 
network, which was also associated with tumors and sur-
vival (Fig. 6e). These results are consistent with previous 
research findings that the lncRNA KRT7-AS could pro-
mote tumor progression [19–21].

The above findings show that the lncRNA KRT7-AS 
was obviously associated with radiomics and mediated in 
the progression of breast cancer. They remind us that it 
was feasible to predict the expression of KRT7-AS using 
radiomics. A deep learning prediction model was con-
structed based on the MLP among the 92 patients from 
the training cohort and tested in 72 patients from TCGA 
and TCIA. Encouragingly, the prediction model achieved 
AUC values of 0.79 in the training cohort and 0.77 in the 
TCGA testing cohort (Fig.  6f ). This result reveals the 
possibility of noninvasive quantification for lncRNAs by 
deep learning radiomics.

Discussion
In this multicenter study, deep learning algorithms based 
on the T1 + C and T2WI sequences combining the intra-
tumoral and peritumoral radiomic features were found 
to be significantly associated with RFS and presented a 
higher predictive value for RFS. The RDeepNet model 
successfully classified patients with different breast can-
cer molecular subtypes or different therapy regimens in 
high- and low-recurrence risk categories. Furthermore, 
it was observed that some radiomic features varied from 
patients with different response statuses and after neoad-
juvant chemotherapy. More importantly, the radiomics 
showed significant association with lncRNAs according 
to the results of RNA-seq, and the expression of lncRNA 
could be quantified by radiomics. Overall, this study 
developed and validated a prognostic network for indi-
vidualized prediction of high and low recurrence risk, 
which serves as an effective tool for survival prediction 
and clinical decision-making in patients with nonmeta-
static invasive breast cancer. Moreover, the potential 
epigenetic biological underpinning of radiomics was 
preliminarily revealed, and a non-invasive method was 
established to predict expression of epigenetic molecule.

While previous studies [22, 23] showed the potential 
of MRI-based radiomics for predicting breast cancer 

Fig. 4 Radiomic feature maps between patients with different therapeutic responses before and after neoadjuvant chemotherapy. Heatmaps 
of the differential radiomic features between responsive patients and unresponsive patients a before neoadjuvant chemotherapy and b 
after neoadjuvant chemotherapy. Heatmaps of the differential radiomic features between before neoadjuvant chemotherapy and after neoadjuvant 
chemotherapy in c responsive patients and d unresponsive patients. Correlation matrix maps of the radiomic features generated from patients 
with response to the treatment e before neoadjuvant chemotherapy and f after neoadjuvant chemotherapy, and patients with no response 
to the treatment g before neoadjuvant chemotherapy and h after neoadjuvant chemotherapy. P values were calculated using the unadjusted 
log-rank test and paired samples t test
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Fig. 5 Correlation of radiomics with lncRNAs. a Individual molecular subtype, pTNM stage and lncRNAs were associated with high and low 
recurrence risk according to the RDeepNet model. b Correlation matrix of the therapy-related radiomic features with lncRNAs. P values were 
calculated using the unadjusted log-rank test; rho values were calculated by Spearman rank correlation analysis. HER2, human epidermal growth 
factor receptor 2; LncRNAs, long non-coding RNAs; pTNM = pathological tumor–node–metastasis stage; T1 + C, contrast-enhanced T1-weighted 
imaging; T2WI, T2-weighted imaging
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recurrence, their clinical value was limited because they 
used a small sample size and single-center cohorts, 
extracted the radiomic features only from the tumor 
region, and were based on machine learning algorithms. 
A previous study [24] constructed a radiomics nomo-
gram based on intratumoral features in 294 invasive 
breast cancer patients from a single center, and estimated 
DFS with C-index of 0.76. As far as we know, our study 
was the first to build a network based on deep learning 
with both intratumoral and peritumoral radiomic fea-
tures in multicenter cohorts of more than 1,000 breast 
cancer patients. Furthermore, we analyzed the efficacy 
of the RDeepNet model in patients treated with different 
therapy regimens and the change in radiomics with dif-
ferent therapeutic response or before and after therapy. 
We also performed RNA-seq to explore the potential 
epigenetic biological underpinning of radiomics, and 
achieved noninvasive prediction expression of lncRNA 
by utilizing radiomic features.

In current clinical practice, patients with positive HR 
status are considered for endocrine therapy, and HER2-
targeted therapy is selected for HER2-positive patients. 
However, some patients still experience progress owing 
to therapy resistance [25, 26]. The Oncotype DX21-gene 
[27] and the PAM50 risk score [28] have been used to 

predict the response of endocrine therapy, but these 
methods are invasive and only suitable for a subset of the 
population. As for HER2-targeted therapy, only HER2 
amplification or overexpression predicts an enhanced 
survival benefit from the HER2-targeted therapy at 
present. Although a previous study presented an MRI-
based signature, which could noninvasively character-
ize HER2-positive tumor biological factors and estimate 
the response to HER2-targeted neoadjuvant therapy, the 
small size sample and highly heterogeneous data limited 
the application [29]. Therefore, it is urgent to explore 
other methods for predicting the therapy response in 
addition to the status of HR or HER2. In this study, the 
RDeepNet model could recognize recurrence risk among 
patients treated with endocrine therapy or HER2-tar-
geted therapy, and the efficacy showed all of the AUCs of 
more than 0.90. These results indicate that the RDeepNet 
model had the potential to assist in treatment decisions.

In the present study, the differentially expressed genes 
between the high- and low-risk groups were identified 
with the RNA-seq data. Results of pathway enrichment 
analyses show that these genes might be involved in the 
regulation of host immune responses. The further evalu-
ation demonstrated that the RDeepNet score was sig-
nificantly related to most immune cells, and high-risk 

Fig. 6 Association of lncRNA KRT7-AS with RFS and radiomics. a Kaplan–Meier curves of RFS according to the expression of lncRNA KRT7-AS. b 
Overall distribution and c differential expression of the radiomic features from T1 + C and T2WI sequences in patients with high and low expression 
of lncRNA KRT7-AS, *P < 0.05, **P < 0.01. d The lncRNA KRT7-AS-related pathways and immune cells. e The GSVA pathway enrichment analysis 
of lncRNA KRT7-AS-based genes. f ROC curves and AUCs were used to assess the accuracy of the deep learning model for predicting lncRNA 
KRT7-AS expression. P values were calculated using the unadjusted log-rank test, and hazard ratios were calculated by a univariate Cox regression 
analysis. AUC, area under the receiver operating characteristics curve; CI, confidence interval; GSVA, gene set variation analysis; HR, hazard ratio; 
LncRNA, long non-coding RNA; ROC, receiver operating characteristic; T1 + C, contrast-enhanced T1-weighted imaging; T2WI, T2-weighted imaging
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patients showed lower expression of CD56dim natural 
killer cells. As we know, CD56dim natural killer cells 
account for more than 90% of natural killer cells and 
mainly play a cytotoxic role, with stronger killing activ-
ity [30]. In addition, the RDeepNet model could identify 
a high and low risk of recurrence in the testing cohort, 
in which all of the patients underwent neoadjuvant 
chemotherapy. It is worth noting that there some radi-
omic features were differentially expressed before and 
after neoadjuvant chemotherapy and varied in responsive 
and unresponsive patients. These radiomic features were 
defined as therapy-related features. The above findings 
remind us that radiomics can reflect the change in the 
tumor microenvironment or molecular characteristics.

In recent years, emerging evidence has suggested that 
abnormal expression of lncRNAs is a frequent biological 
phenomenon in tumors and is closely associated with the 
prognosis of cancer patients. Several studies have indi-
cated that the MRI radiomic profile of cancer patients 
can predict the prognosis, but the potential biological 
underpinning of MRI radiomics remains indistinct. We 
hypothesized that MRI radiomics can reflect the expres-
sion of lncRNAs, and therefore provided prognosis infor-
mation. In this study, based on patients who had both 
RNA-seq and preoperative MRI data, we screened 15 
lncRNAs related to both radiomic features and RFS to 
confirm our hypothesis. Among these lncRNAs, KRT7-
AS was significantly correlated with the therapy-related 
radiomic features, and the KRT7-AS-based differentially 
expressed genes were enriched in process of lncRNA-
mediated mechanisms of therapeutic resistance and 
various metastasis- or metabolism-associated pathways. 
Previous research has found that the increasing stability 
of lncRNA KRT7-AS could promote breast cancer lung 
metastasis by regulation of N6-methyladenosine [19]. 
KRT7-AS also supports gastric cancer and colorectal 
cancer progression by modulating KRT7 expression [20, 
21]. Therefore, the lncRNA KRT7-AS indeed plays an 
important role in tumor progression, and it is necessary 
to examine KRT7-AS expression to predict survival.

However, the clinical application of lncRNAs as bio-
markers is severely limited owing to the lack of detection 
methods. Our results suggest that MRI radiomic profiles 
can help identify potential targets for molecular-based 
therapy of breast cancer, and MRI examination may be 
used to monitor the expression level of molecular fea-
tures during the therapy. Based on the above findings, a 
deep learning prediction model of KRT7-AS expression 
was further constructed with MLP and showed high pre-
dictive efficacy in both training and testing cohorts. This 
result can afford non-invasive detection of molecular 
expression by just acquiring radiomic features, which can 
assist in conveniently monitoring dynamic changes in 

tumors. Furthermore, the exploration of the association 
between lncRNAs and MRI radiomics is just the funda-
mental starting point, and the potential biological rela-
tionship of MRI radiomic profiles with other molecular 
species, such as DNA methylation, DNA copy number 
and sequence variation, should be evaluated in the future.

Several limitations existed in the present study. Het-
erogeneity among the MRI scans from multiple clinical 
centers was inevitable. The median follow-up was about 
40  months. Therefore, the outcomes were limited, and 
the RDeepNet model could not be applied to predict 
overall survival. It is necessary to evaluate the radiomic 
changes with the extension of follow-up time. Due to 
the relatively low incidence of TNBC among breast can-
cer patients and the retrospective approach taken in this 
study, TNBC patients may be under-representation. Pre-
vious studies have shown the association between radi-
omic features and tumor environment [31, 32]. In this 
study, we performed RNA-seq for a few patients. How-
ever, owing to the lack of available data on gene expres-
sion or MRI sequences, we were unable to further analyze 
and validate the association between radiomic features 
with lncRNAs. In particular, the mechanisms underly-
ing the use of radiomic features to predict recurrence 
and lncRNA expression need to be further explored. It 
may be beneficial to combine the RDeepNet model with 
genetic signatures such as genomics and transcriptomics, 
which have better prediction for recurrence and clinical 
application values.

Conclusions
In conclusion, this study developed and validated a prog-
nostic network that incorporates MRI intratumoral and 
peritumoral radiomic features for individualized predic-
tion of recurrence risk, which provides an effective tool 
for survival prediction and clinical decision-making in 
perioperative patients with nonmetastatic invasive breast 
cancer. The RDeepNet model was generalized by valida-
tion in different breast cancer molecular subtypes and 
patients treated with endocrine therapy or HER2-tar-
geted therapy. The radiomic features were found to vary 
among patients with different therapeutic responses and 
after neoadjuvant chemotherapy. Moreover, the results 
indicate that radiomics is associated with lncRNAs, and 
lncRNAs can be quantified by radiomics noninvasively.
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