
Chuangchot et al. Breast Cancer Research           (2023) 25:86  
https://doi.org/10.1186/s13058-023-01684-7

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Breast Cancer Research

Enhancement of PD-L1-attenuated CAR-T 
cell function through breast cancer-associated 
fibroblasts-derived IL-6 signaling via STAT3/AKT 
pathways
Nisa Chuangchot1,2, Pranisa Jamjuntra1, Supaporn Yangngam1, Piriya Luangwattananun2,3, 
Suyanee Thongchot1,2, Mutita Junking2,3, Peti Thuwajit1, Pa‑Thai Yenchitsomanus2,3 and Chanitra Thuwajit1* 

Abstract 

Background Carcinoma‑associated fibroblasts (CAFs) play a critical role in cancer progression and immune cell 
modulation. In this study, it was aimed to evaluate the roles of CAFs‑derived IL‑6 in doxorubicin (Dox) resistance 
and PD‑L1‑mediated chimeric antigenic receptor (CAR)‑T cell resistance in breast cancer (BCA).

Methods CAF conditioned‑media (CM) were collected, and the IL‑6 level was measured by ELISA. CAF‑CM were 
treated in MDA‑MB‑231 and HCC70 TNBC cell lines and siIL-6 receptor (IL‑6R) knocked down (KD) cells to determine 
the effect of CAF‑derived IL‑6 on Dox resistance by flow cytometry and on increased PD‑L1 through STAT3, AKT 
and ERK1/2 pathways by Western blot analysis. After pre‑treating with CM, the folate receptor alpha (FRα)‑CAR T cell 
cytotoxicity was evaluated in 2D and 3D spheroid culture assays.

Results The results showed a significant level of IL‑6 in CAF‑CM compared to that of normal fibroblasts (NFs). The 
CM with high IL‑6 level significantly induced Dox resistance; and PD‑L1 expression through STAT3 and AKT pathways 
in MDA‑MB‑231 and HCC70 cells. These induction effects were attenuated in siIL-6R KD cells. Moreover, the TNBC cell 
lines that were CM‑treated with STAT3 and an AKT inhibitor had a reduced effect of IL‑6 on PD‑L1 expression. BCA cells 
with high IL‑6 containing‑CM treatment had resistance to cancer cell killing by FRα CAR‑T cells compared to untreated 
cells.

Conclusion These results highlight CAF‑derived IL‑6 in the resistance of chemotherapy and T cell therapy. Using 
inhibitors of IL6‑STAT3/AKT‑PD‑L1 axis may provide a potential benefit of Dox and CAR‑T cell therapies in BCA patients.
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Introduction
Breast cancer (BCA) is the most common cancer of 
women worldwide [1]. The 2020 global cancer statistics 
estimate 2.3 million new cases in women [2]. BCA is clus-
tered into four subtypes, including Luminal A, Luminal 
B, HER2-positive, and triple-negative BCA (TNBC) [3]. 
Although increased early screening and understanding of 
molecular mechanisms of metastasis leads to more effec-
tive prognosis and treatment, some patients have relapses 
and chemoresistance, especially in the TNBC [4].

The tumor microenvironment (TME) consists of tumor 
cells, cancer-associated fibroblasts (CAFs), endothelial 
cells, extracellular matrix, and immune cells [5]. CAFs, 
the most abundant cells in TME, secrete substances 
such as transforming growth factor-β (TGF-β), vascu-
lar endothelial growth factor (VEGF), and interleukin-6 
(IL-6) which can promote cancer progression [6–9]. 
CAF-derived substances regulate epithelial-mesenchy-
mal transition and promote drug resistance by secreting 
IL-6 [10, 11]. In addition, fibroblast activation protein 
(FAP) α1-positive CAFs drive immunosuppression [12–
14]. These facts declare the importance to investigate 
CAF-mediated immunosuppression and the involved 
mechanisms.

IL-6 is released by various cells including cancer cells, 
CAFs, and immune cells [15]. IL-6/IL-6 receptor (IL-6R) 
interaction activates Janus kinase (JAK) tyrosine kinases 
leading to phosphorylating the signal transducer and 
activator of transcription 3 (STAT3) [15]. This inter-
action can phosphorylate mitogen-activated protein 
kinases (MAPK)/ERK leading to enhance cell growth 
[16]. The phosphoinositol-3 kinase (PI3K)/AKT pathway 
is induced by IL-6 following JAK phosphorylation. The 
PI3K/AKT phosphorylation induces gene expression by 
activating NF-κB to promote anti-apoptosis [17, 18].

Programmed death ligand 1 (PD-L1), the ligand for 
programmed death 1 (PD-1), is overexpressed in can-
cer cells after being induced by cytokines [19]. PD-L1 
expression in cancer cells leads to immune escape, drug 
resistance, and cancer metastasis [20]. The PD-L1/PD-1 
interaction attenuates T cell function via T cell apoptosis 
[21]. Patient-derived hepatocellular carcinoma (HCC)-
CAFs secrete IL-6 which induces PD-L1 expression on 
neutrophils via the STAT3 pathway [22]. The PD-1/
PD-L1 immune checkpoint inhibitor was approved by 
the US Food and Drug Administration (FDA) to treat 
advanced TNBC tumor-expressed PD-L1 [23]. Immu-
noregulatory roles of CAF-derived IL-6 in promoting 
drug resistance and inducing T cell dysfunction through 
IL-6-mediated PD-L1 expression have not been well-
addressed in BCA.

In this study, the IL-6 ELISA assay of BCA-derived 
CAFs was performed to identify IL-6 levels as a major 

component in CAFs. The roles of IL-6 signaling to exert 
doxorubicin (Dox) resistance and response to folate 
receptor (FR)α-chimeric antigen receptor (CAR)-T cell 
killing actions were evaluated in parental and IL-6R 
-transient knocked down TNBC cell lines, with or with-
out specific inhibitors against signaling molecules. 
The findings highlight the role of CAFs-derived IL-6 in 
mediating Dox resistance in MDA-MB-231 and HCC70 
TNBC cell lines. It can also reduce FRα-CAR T cell func-
tion via the upregulation of PD-L1 through the STAT3/
AKT pathway. Interestingly, using either blocking IL-6/
IL-6R signaling or PD-1/PDL1 inhibitors may serve as a 
therapeutic target for sensitizing cancer cells to CAR-T 
cell treatment and restoring BCA cells to Dox treatment.

Materials and methods
Cell culture
MDA-MB-231 and HCC70 cells from ATCC (Manassas, 
VA) were genetically engineered to express mWasabi-
luciferase protein [24]. The Lenti-X™-293T cells were 
from Takara Bio (Takara Bio, San Jose, CA). Lenti-X™-
293T and MDA-MB-231 were maintained in DMEM 
(Gibco; Thermo Fisher Scientific, MA), while HCC70 
was cultured in RPMI1640 (Gibco). CAFs were isolated 
from BCA patients following the protocol approved by 
Siriraj Institutional Review Board (COA no. Si 329/2017). 
CAFs and normal fibroblasts (NFs) [normal breast fibro-
blast (BNF) and human dermal fibroblast (HDF)] were 
cultured in DMEM/F12 (Gibco). All complete media was 
supplemented with 10% fetal bovine serum (FBS; Gibco) 
and 1% penicillin–streptomycin (Sigma-Aldrich, MA) 
and incubated with cells at 37˚C with 5%  CO2.

Immunocytochemistry staining for fibroblast markers
Cells were incubated with anti-panCK (1:200, sc-8018; 
Santa Cruz, CA), anti-VIM (1:500, sc-6260; Santa Cruz), 
anti-ASMA (1:200, A5228; Sigma, MA), and anti-FAP 
(1:100, ab53066; Abcam, Cambridge, UK) at RT for 3 h. 
The anti-mouse IgG-Cy3 (1:2,000, 115-166-071; Jackson 
ImmunoResearch Laboratories, PA) or anti-rabbit IgG-
FITC (1:2,000, ab6717; Abcam) was applied at RT for 1 h. 
The anti-CD10-FITC (1:5, 21270103; Invitrogen, Thermo 
Fisher Scientific, MA) and anti-GPR77 (1:30, 342402; 
Biolegend, CA) were incubated with cells at 4°C over-
night. The nuclei were stained with Hoechst dye (1:1,000; 
Invitrogen). The fluorescence signals were captured with 
a confocal microscope (LSM800, Carl Zeiss Microscopy, 
Jena, Germany).

CAFs conditioned‑media collection
Conditioned-media (CM) was collected from nine CAFs, 
namely PC-B-004, PC-B-044, PC-B-053, PC-B-099, 
PC-B-120, PC-B-130, PC-B-132, PC-B-140, PC-B-142 
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and 2 NFs cultured in 10% FBS containing DMEM/F12 
until 85–90% confluency before replacing it with 1% FBS 
containing DMEM/F12. CM was then centrifuged at 
2000  g at 4°C for 5  min. The supernatant was stored at 
-80˚C.

IL‑6 measurement by enzyme‑linked immunosorbent 
assay
The CM-derived IL-6 was detected by ELISA accord-
ing to the instructions (R&D, MN). Absorbance values 
at 450 nm were determined with a plate reader (Epoch-
Microplate-BioTek, CA). IL-6 concentration was deter-
mined by the line-curve fitting of standard results.

IL‑6R knockdown by small interfering RNA
The 2 ×  105 cancer cells were cultured in a complete 
medium overnight. The transfection solution was pre-
pared by mixing OptiMEM-I (Gibco) with either 
160  pmol siIL-6R or Lipofectamine  3000 (Invitrogen), 
while a mock control was performed in the same manner 
without siIL-6R. The siIL-6R knockdown (KD) cells were 
stained with anti-IL-6R antibody (1:50, sc-373708; Santa 
Cruz, CA), followed by anti-mouse PE antibody (1:100, 
22549814; ImmunoTools, Friesoythe, Germany) at 4°C 
for 1 h. The IL-6R level was checked by flow cytometry 
(Beckman Coulter Life Sciences, CA). Data were ana-
lyzed using FlowJo 10 software (Flowjo, LLC, OR).

Drug cytotoxicity using annexin V‑APC/ PI staining
Cancer cells were treated with CM with or without 5 μM 
Dox  (IC50) (Sigma-Aldrich). After 48 h, cancer cells were 
stained by Annexin V-APC/propidium iodide (1:100, 
ImmunoTools) at 4°C for 1 h and then analyzed by flow 
cytometry (Beckman Coulter). The cell apoptosis was 
analyzed using FlowJo 10 software (Flowjo, LLC).

Western blot analysis
Cells were treated with various CM or 50 ng/ml recom-
binant human IL-6 (rhIL-6, 206-IL-050, R&D) for 48  h 
to detect PD-L1 and for 30 min to detect signaling path-
way proteins. After lysing with RIPA buffer (Invitrogen, 
Thermo Fisher Scientific, MA) and quantitating protein 
by Bradford kits (Bio-Rad, CA), 40 μg protein was loaded 
onto 10% SDS-PAGE and transferred to PVDF mem-
brane (Bio-Rad). After blocking with 5% skim milk for 
1  h, the membrane was incubated with the anti-human 
PD-L1 (1:500, ab205921; Abcam, Cambridge, UK) at 
4°C overnight. The HRP-conjugated anti-rabbit (1:5000, 
ab6721; Abcam) or anti-mouse secondary antibodies 
(1:5000, ab6789; Abcam) were then incubated at RT for 
1 h.

Cells were pre-treated with 2  μM AKT inhibitor 
(21597; Chaman Chemical, MI) or 10 μM Stattic (14590; 

Chaman Chemical) for 2 h before treating with CM for 
48 h. The anti-STAT3 (1:1000, 9139; Cell Signaling Tech-
nology, MA), anti-pSTAT3 (1:2000, ab76315; Cell Sign-
aling), rabbit anti-AKT (1:1000, 9272, Cell Signaling), 
rabbit anti-pSTAT3 (1:1000, 9275; Cell Signaling), anti-
ERK1/2 (1:1000, 9102; Cell Signaling), and anti-phos-
phoERK1/2 (1:1000, 9101; Cell Signaling) followed by 
HRP-conjugated anti-rabbit (1:5000, ab6721; Abcam) or 
anti-mouse (1:5000, ab6789; Abcam) were used. The ECL 
(Invitrogen) was visualized under Gel Document (Syn-
gene, Cambridge, UK). The protein intensity was meas-
ured by ImageJ software version 1.48v. The β-actin was 
used to normalize the total loading protein using anti-β-
actin (1:20,000, sc-47778; Santa Cruz).

Production and characterization of FRα‑CAR T cells
The production of FRα-CAR-T cells from healthy donor 
blood was previously described [25]. The lentiviral par-
ticles were quantified via titration in SupT1 cells [26]. 
Blood donors provided written consent under SIRB 
ethical approval (COA no. Si 225/2022). T cells were 
transduced by FRα-CAR lentiviruses at a multiplicity of 
infection (MOI) of 50 using 100 μg/ml protamine sulfate 
(Sigma-Aldrich) and maintained in AIM-V (Gibco) with 
5% human AB serum (Sigma-Aldrich), 20 ng/ml of IL-2 
(ImmunoTools), 10  ng/ml of IL-7 (ImmunoTools) and 
20 ng/ml of IL-15 (ImmunoTools) for 3 d.

T cells were phenotyped using eFluor™450-anti-human 
CD3 (1:100, 48–0038-42; Invitrogen), APC-conjugated 
anti-human CD4 (1:100, 21270046; ImmunoTools), and 
PerCP-anti-human CD8 (1:100, 21810085; Immuno-
Tools). The FRα-CAR expression was determined by 
Pierce™ biotinylated protein-L (1:100, 29997; Invitro-
gen) and AlexaFlour®488-conjugated streptavidin (1:500, 
S32354; Invitrogen), then analyzed using flow cytometry 
(Beckman Coulter). Data were analyzed using FlowJo 10 
software (Flowjo, LLC).

2D and 3D culture cancer cell killing assays
For 2D culture, the mWasabi-luciferase-expressing tar-
get cancer cells (T) were treated with CM for 48  h. 
After removing the CM, the effector FRα-CAR effec-
tor T cells (E) were added at E:T ratios of 0.5:1, 1:1, and 
2.5:1 for 24  h. Fluorescence images were taken under 
fluorescence microscopy (Olympus, Tokyo, Japan). The 
fluorescence  intensity  (FI)  of  target cells was detected 
(485/515  nm) using SynergyH1-Hybrid Reader (BioTek-
Agilent, CA). The non-fluorescence-expressing cell lines 
were used as a blank control, while the target alone (con-
trol group) was used to normalize with all conditions 
regarded as no cytolysis (FI = 1). The formula of relative 
FI = (FI of test-blank)/ (FI of control-blank).
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For 3D culture, the mWasabi-luciferase-expressing cells 
were seeded into an ultra-low attachment 96-well plate 
(CLS7007; Corning, MA) in 2.5% Matrigel®  (354234, 
Corning). The spheroids were treated with CM on day 2 
and cultured for 2 more days. Effector cells were labeled 
with CellTracker™ Orange CMRA (C34551; Invitrogen) 
before adding to target cells at E:T ratios of 2.5, 5:1, and 
10:1, and then co-cultured for 4 d. Fluorescence images 
were detected by fluorescence microscopy (Olympus) 
and analyzed by CellSense Standard program version 
1.15 (Olympus). The FI was analyzed by the ImageJ soft-
ware 1.48v (http:// rsbweb. nih. gov/ ij/).

Statistical analysis
Data were analyzed using one-way analysis of variance 
(ANOVA) or Student’s t test. All statistical calculations 
were performed with GraphPad Prism software version 
5 (GraphPad Software Inc., CA). The data are shown as 
mean ± SD and considered statistically significant when 
P < 0.05.

Results
Expression of fibroblast markers
CAFs showed the absence of CK epithelial markers, but 
the presence of VIM and ASMA mesenchymal markers 
[13]. FAP is used to classify aggressive CAF subtypes, 
while CD10/GPR77 markers are associated with drug 
resistance [27]. The results exhibited that all nine CAFs 
were negative for panCK and positive for both VIM and 
ASMA (Fig. 1). Among these nine CAFs, eight were FAP-
positive CAFs (8/9 = 89%), PC-B-044, PC-B-053, PC-B-
099, PC-B-120, PC-B-130, PC-B-132, PC-B-140, and 
PC-B-142, and one FAP-negative CAF (PC-B-004). All 
CAFs expressed GPR77 and eight CAFs except PC-B-
004 expressed CD10. Notably, BNF showed negative FAP, 
CD10, and GPR77, while HDF was negative for FAP/
CD10 and positive for GPR77.

CAFs secreted high IL‑6 levels and CAF‑derived IL‑6 
induced PD‑L1 expression in TNBC cells
Only IL-6 showed a significant increase in CAF-CM com-
pared to CM from normal fibroblasts isolated from ovar-
ian tissues (Additional file 1: Supplementary Method and 
Fig.  S1). ELISA results confirmed that six of nine CAF-
CM (67%) had significantly higher levels than BNF-CM 

(P < 0.05), which was defined as the high IL-6 CM (PC-
B-044, PC-B-053, PC-B-099, PC-B-120, PC-B-132, and 
PC-B-142) (Fig. 2A). In contrast, three CMs (PC-B-004, 
PC-B-130, and PC-B-140) were defined as the low IL-6 
CM.

The IL-6R in siIL-6R KD MDA-MB-231 was 13% and 
16% in siIL-6R KD HCC70 cells compared to those of 
scramble cells (69% in MDA-MB-231, 62% in HCC70 
cells) (Fig.  2B). The levels of IL-6R in the scramble and 
parental cells were not different. No morphological and 
viable cell changes of siIL-6R KD cells were observed in 
both cells compared to those of parental and scramble 
cells.

The role of CAF-derived IL-6 in inducing PD-L1 
expression was observed in MDA-MB-231 (Fig. 2C) and 
HCC70 cells (Fig.  2D). NF-CM treated scramble cells 
showed no significant differences in PD-L1 compared to 
that of untreated cells in both cells. The rhIL-6-treated 
scramble cells significantly induced PD-L1 compared to 
that of BNF-CM (P < 0.05). Treating-scramble cells with 
high IL-6 CM (PC-B-044, PC-B-120, PC-B-132, and 
PC-B-142) significantly induced PD-L1 in both BCA cells 
compared to those of BNF-CM (P < 0.05). Interestingly, 
siIL-6R KD cells showed no response to high IL-6-CM-
induced PD-L1 expression in both cell lines.

The CAF‑derived IL‑6 induced Dox resistance
Dox significantly induced apoptosis of scramble MDA-
MB-231 cells compared to untreated cells (P < 0.01) 
(Fig.  3A). Low IL-6 PC-B-004-CM and BNF-CM pre-
treated cells showed the same level of apoptotic cells to 
no CM-pretreated cells. Interestingly, high IL-6 CMs 
stimulated Dox-induced apoptosis (28.0 ± 5.7% for 
PC-B-044 CM, 33.0 ± 2.0% for PC-B-120 CM, 33.3 ± 3.1% 
for PC-B-132 CM, and 21.5 ± 9.2% for PC-B-142 CM, 
P < 0.05), but this was significantly lower cell apoptosis 
than that of low IL-6 CM treatment. This implies that 
high IL-6 CM reduced cell sensitivity to Dox-induced 
apoptosis. In IL-6R KD cells, the sensitivity to Dox could 
significantly restore to the same level of Dox-treated 
scramble cells (P < 0.01) and significantly increased com-
pared to the apoptotic cells of high IL-6-CM-treated 
intact IL-6R cells (P < 0.05). Similar results of high IL-
6-CM reduced Dox-induced apoptosis of HCC70 cells 
and the restoration of drug sensitivity in the impaired 

(See figure on next page.)
Fig. 1 Characterization of primary culture fibroblasts. Immunofluorescence using antibodies directed to specific markers for epithelial cells (panCK, 
red fluorescence), fibroblast intermediate filament (VIM, red fluorescence), myofibroblasts (ASMA, red fluorescence), fibroblast‑associated protein 
(FAP, green fluorescence), and chemotactic receptor (CD10, green fluorescence; GPR77, red fluorescence) of different primary culture fibroblasts 
and normal fibroblasts (HDF and BNF). The nuclei were counterstained with Hoechst. All images were captured at 200 × magnification, scale 
bars = 50 μm. NFs, normal fibroblasts; HDF, human dermal fibroblast; BNF, breast normal fibroblast; CAFs, cancer‑associated fibroblasts; panCK, 
pan‑cytokeratin; VIM, vimentin; ASMA, alpha‑smooth muscle actin; FAP, fibroblast activation protein; CD10, a cluster of differentiation 10; GPR77, G 
protein‑coupled receptor 77

http://rsbweb.nih.gov/ij/
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Fig. 1 (See legend on previous page.)
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Fig. 2 (See legend on next page.)
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IL-6R HCC70 cells were observed (Fig. 3B). These find-
ings indicate that CAF-derived IL-6 increases Dox resist-
ance partly through IL-6/IL-6R interaction.

CAF‑derived IL‑6 induced PD‑L1 expression via STAT3 
and AKT signaling pathways
For MDA-MB-231, pSTAT3 was significantly induced 
by all high IL-6 CM (PC-B-044, PC-B-120, PC-B-132, 
and PC-B-142), while pAKT was activated by only PC-B-
132 and PC-B-142 (P < 0.05) (Fig. 4A). In the CM-treated 
IL-6R KD cells, pSTAT3, pAKT, and pERK had no signifi-
cant upregulation compared to those of scramble MDA-
MB-231 and HCC70 cells. This induction was attenuated 
when cells had impaired IL-6R expression. The same pat-
tern of results was observed in HCC70 cells (Fig. 4B). In 
addition to pSTAT3 and pAKT, rhIL-6-treated cells could 
induce pERK in both cells (Fig. 4A, B). The results sug-
gest that high IL-6-CM activated pSTAT3 and pAKT 
signaling pathways, but no changes of pERK, probably via 
IL-6R.

Without Stattic or AT inhibitors, PD-L1 in cells treated 
with low IL-6 CM (PC-B-004) showed no significant 
differences compared to that of BNF-CM treatment, 
whereas high IL-6 CM (PC-B-132 and PC-B-142) sig-
nificantly induced PD-L1 (P < 0.05) in MDA-MB-231 
(Fig.  4C) and HCC70 (Fig.  4D). Blocking with Static or 
AT inhibitors significantly decreased the PD-L1 levels of 
high IL-6-CM treatment compared to without inhibitors 
in both cells.

CAF‑derived IL‑6 compromised FRα‑CAR T cell killing 
ability
The cancer cell killing ability of FRα-CAR T cells in 2D 
(Fig. 5) and 3D cancer cell culture (Fig. 6) was observed. 

In the 2D killing assay, coculturing of FRα-CAR-T cells 
(E) with FRα expressing-target cancer cells (T), MDA-
MB-231 and HCC70 cells (Additional file  2: Fig. S2) at 
E:T of 0.5:1, 1:1, and 2.5:1 reduced fluorescence inten-
sity of viable target cells, with a significant reduction 
level at only 2.5:1 (P < 0.01) (Fig. 5A, B). A similar capa-
bility of FRα-CAR-T cells was observed in low IL-6 CM 
(BNF, PC-B-004)-treated cells in both MDA-MB-231 
and HCC70 cells (P < 0.05) (Fig. 5A, B). In contrast, both 
MDA-MB-231 and HCC70 cells exposed to high IL-6 
CM (PC-B-132 and -142) showed resistance to FRα-
CAR-T cell killing activity. Similar results were exhibited 
in the 3D killing assay in the same manner (Fig. 6A, B). 
Interestingly, in 3D culture system, FRα-CAR T cells and 
cancer cells coculture reduced the viability of cancer cells 
in a dose-dependent manner with statistical significance.

Discussion
CAFs produce many substances such as IL-6, IL-8, and 
TGF-β impacting cancer progression and immunosup-
pression [6–9, 14]. TGF-β activated CAFs to secrete IL-6 
resulting in the enhancement of CRC metastasis [28]. 
IL-6 is a major factor of BCA-CAF secretion that can 
induce resistance to anti-estrogens [29]. In HCC, CAFs 
were the major source of IL-6 [30]. High IL-6 expression 
CAFs greatly decreased  CD8+ T cell infiltration in tumors 
[30]. CAFs-derived IL-6 induced pancreatic cancer cell 
migration and invasion [31]. CAF-secreted IL-6 reduced 
NK cells’ function in CRC cells by promoting mono-
cyte differentiation into M2 macrophages and recruit-
ing to the tumor [32, 33]. No investigation, however, has 
assessed the role of CAF-derived IL-6 in T cell function 
regulation via induction of PD-L1 in BCA. In this current 
study, CAF-derived IL-6 exhibited a significantly higher 

Fig. 2 CAF‑derived IL‑6 and its effect on PD‑L1 expression. A The level of IL‑6 in CMs of different NFs and CAFs. Bar graphs represent the mean ± SD 
of three independent experiments. *P < 0.05, **P < 0.01 compared to BNF using one‑way ANOVA. NS, no significance. B The representative 
morphology of parental MDA‑MB‑231 and HCC70 cells, scramble, and siIL-6R KD cells and the representative histogram of IL‑6R detection 
by flow cytometry. C, D Effect of CAF‑derived IL‑6 on PD‑L1 in MDA‑MD‑231 and HCC70 scramble and siIL-6R KD cells determined by Western 
blot analysis. β‑actin was used as a housekeeping reference protein for semiquantitative analysis. Bar graphs represent the mean ± SD of three 
independent experiments. #P < 0.05 compared to UT condition using one‑way ANOVA. *P < 0.05 compared within group using Student’s t test. CMs, 
conditioned‑media; NFs, normal fibroblasts; HDF, human dermal fibroblasts; BNF, breast normal fibroblast; CAFs, cancer‑associated fibroblasts; NS, 
no significance; IL‑6R KD, IL‑6R knocked down; UT, untreated cells; rhIL‑6, recombinant human IL‑6

(See figure on previous page.)

(See figure on next page.)
Fig. 3 Effect of CAF‑derived IL‑6 on Dox‑induced apoptosis. BCA cell lines after incubation in the presence of CM with or without Dox (5 
uM) for 48 h. A The apoptosis of MDA‑MB‑231 and B HCC70 after staining with the Annexin V‑APC/PI and analyzing by flow cytometry. The 
representative dot plots of cell apoptosis and the percentage of cell apoptosis in the bar graph (means ± SD of three independent experiments) 
are shown, #P < 0.05, ##P < 0.01 compared to CM‑free and Dox‑free condition using one‑way ANOVA, $$P < 0.01, $$$P < 0.001 compared to CM‑free 
with Dox condition using one‑way ANOVA, *P < 0.05 compared within the group using Student’s t test. FSC‑A, forward scatter area; SSC‑A, side 
scatter area; UT, untreated cells; Dox, doxorubicin; BNF, breast normal fibroblast; CM, conditioned medium; IL‑6R KD, IL‑6R knocked down; rhIL‑6, 
recombinant human IL‑6
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Fig. 3 (See legend on previous page.)



Page 9 of 16Chuangchot et al. Breast Cancer Research           (2023) 25:86  

level among other cytokines. IL-6 releases into TME and 
may be involved in cancer progression, immunosuppres-
sion, and the responses of cancer cells to chemotherapy 
and immunotherapy.

CAFs were positive for vimentin (VIM) and alpha-
smooth muscle actin (ASMA), but negative for cytoker-
atin (CK) expression ensuring that CAFs culture is not 
contaminated by cancer cells [13]. The immunosup-
pressive role of  FAP+ CAFs has been extremely studied 
in various types of cancers such as head and neck, pan-
creatic, breast, lung, and liver cancers [13]. In head and 
neck cancer,  FAP+ CAFs inhibited  CD8+ T cell prolif-
eration and promoted regulatory T cell (Treg) recruit-
ment by secreting TGF-β and IL-6 [34]. In the BCA 
mouse model, the elimination of  FAP+ CAFs showed 
an increasing  CD8+ T cell population [35]. IL-6 from 
 CD10+  GPR77+ CAFs promoted tumor formation in 
lung cancer [27, 36].  CD10+ GPR77 + CAFs enriched a 
survival niche for cancer stem cells (CSCs), enhanced 
tumor formation, and induced cancer chemoresist-
ance by secreting IL-6 leading to driving the activa-
tion of NF-κB via p65 phosphorylation and acetylation, 
which maintained by complement signaling via GPR77 
[27]. Targeting the  CD10+GPR77+CAFs subset retards 
tumor formation and reverses chemoresistance by 
destroying the CSC niches [27, 36].  CD10+  GPR77+ 
 FAP+ CAFs were associated with chemoresistance and 
overall survival of advanced gastric cancer patients 
who underwent neoadjuvant chemotherapy (NCT) 
[37]. FAP increasing drug resistance are various, such 
as promoting immunosuppression and producing 
chemokine [37]. CD10 and GPR77 have been proven to 
promote cancer formation and chemoresistance by pro-
viding a survival niche for CSCs and promoting an epi-
thelial-mesenchymal transition [37]. In addition, CAFs 
affect the chemotherapy through an increased intersti-
tial fluid pressure forming a  barrier  to the transcapil-
lary transport of drugs from blood vessels to cancer 
cells [38]. All mentioned evidence supports the pre-
sent results that high IL-6-secreting CAFs were posi-
tive for  CD10+  GPR77+  FAP+ which may correlate with 
drug resistance and may regulate anti-tumor immune 
responses.

In addition to the IL-6 derived from CAFs, IL-6 can 
be secreted from BCA cells which then promotes cancer 
cell metastasis in an autocrine effect [39, 40]. Cancer cell-
derived IL-6 acted to promote tumorigenesis in BCA, 
HCC, and lung cancer [41, 42]. Secreted IL-6 binding 
to membrane IL-6R induces STAT3 expression which is 
aberrantly active in BCA to promote cancer proliferation 
and anti-apoptosis [43, 44]. Moreover, STAT3 cooperates 
with NF-κB in IL-6 induction and the IL-6/STAT3 path-
ways synergize in the induction of c-MYC leading to pro-
moting cancer cell survival [45].

In contrast to the tumor-promoting effect of IL-6 
through the classical IL-6 signaling via membrane IL-6R 
and glycoprotein 130 (gp130) subunit, in some cancers, 
IL-6 trans-signaling which is a complex of IL-6 and the 
soluble IL-6R and membrane gp130 [46], but not IL-6 
classic signaling, is mandatory for the development of 
liver carcinogenesis [46]. Therefore, specific inhibition 
of IL-6 trans-signaling, rather than total inhibition of 
IL-6 signaling, is sufficient to blunt tumor initiation and 
impair tumor progression without compromising IL-6 
classic signaling-driven protective immune responses.

CAFs contribute to chemoresistance and immunother-
apeutic resistance by upregulating immune checkpoint 
molecules [22, 23]. The CAF-derived IL-6 promoted 
PD-L1 expression via STAT3 and AKT pathways and 
specific inhibitors against pSTAT3 and pAKT attenu-
ated PD-L1 expression induction by IL-6-derived CAF-
CM. HCC-CAFs-induced PD-L1+ neutrophils through 
the IL6-STAT3 pathway involved in immunosuppression 
were previously reported [22]. Moreover, the activation 
of the STAT3-PI3K/AKT pathway leads to high expres-
sion of PD-L1 in various types of cancers [47]. PD-L1 
expression is transcriptionally regulated by STAT3 and 
MYC [48]. The pSTAT3 dimers directly bind on the 
PD-L1 gene promoter inducing its expression [49] which 
has been detected in non-small cell lung cancer [50] 
and head and neck squamous cell carcinoma [51]. The 
immunosuppressive PD-1/PD-L1 pathway participates 
in cancer immune escape via the abnormal activation of 
the tumor-intrinsic STAT3-PI3K/AKT pathway leading 
to high expression of PD-L1 resulting in attenuation of 
anti-tumor T cell responses. Interestingly, IL-6 pathway 

Fig. 4 Effect of CAF‑derived IL‑6 on PD‑L1 expression through STAT3 and AKT pathways and the blockage with specific inhibitors. A Scramble 
and siIL-6R KD cells after pre‑treating with CM for 30 h to observe the phospho‑ and total protein levels of STAT3, AKT, and ERK using Western blot 
analysis in MDA‑MD231 and B HCC70 cell lines. The levels of phosphoproteins were normalized against relative total protein and β‑actin. C The level 
of PD‑L1 of MDA‑MD231 and D HCC70 following blocking with STAT3 (Stattic) or AKT (AT) inhibitors for 2 h. β‑actin was used for semiquantitative 
analysis. Bar graphs represented as mean ± SD of 3 independent experiments. #P < 0.05, ##P < 0.01 compared to BNF using one‑way ANOVA, *P < 0.05 
compared within group using Student’s t test. UT, untreated cells; BNF, breast normal fibroblast; CAFs, cancer‑associated fibroblasts; CM, 
conditioned‑medium; IL‑6R KD, IL‑6R knocked down; rhIL‑6, recombinant human IL‑6

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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inhibitors are currently tested in combination with chem-
otherapy in patients with BCA (NCT03135171), pan-
creatic cancer (NCT04258150, NCT02767557), or liver 
cancer (NCT04338685), who displayed potent anti-can-
cer activity with a low incidence of IL-6 drug toxicity [6]. 

The PD-L1 expression decreased by hesperidin through 
inhibition of AKT and NF-κB signaling pathways in the 
MDA-MB-231 cell line [19]. These reports confirm pre-
sent findings that IL-6 can inhibit antitumor immunity 

Fig. 5 CAF‑derived IL‑6 compromised FRα‑CAR‑T cell killing ability in 2D cancer cell culture. A The representative of fluorescence images shows 
mWasabi‑luciferase expressing target cells (T) after pre‑treating with CM and coculturing with effector FRα‑CAR‑T cells (E) at E:T ratios of 0.5:1, 1:1, 
and 2.5:1 for 24 h (scale bars = 100 μm). The target‑only condition (T‑only) indicates target cancer cells without coculturing with effector T cells. 
B Bar graphs showing the killing ability of FRα‑CAR‑T cells from 2 donors (mean ± SD of three independent experiments of each donor). #P < 0.05, 
##P < 0.01 compared to the T‑only condition using one‑way ANOVA. UT, untreated cells; BNF, breast normal fibroblast; CAFs, cancer‑associated 
fibroblasts; CM, conditioned‑medium; IL‑6R KD, IL‑6R knocked down; rhIL‑6, recombinant human IL‑6; NS, no significance
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by promoting PD-L1 expression via STAT3 and AKT 
pathways.

It is suggested that targeting the IL-6/IL-6R/STAT3 
axis is expected to become an important strategy for 
BCA treatment [52]. IL-6 acts directly on cancer cells 
to induce the expression of STAT3-encoding proteins 
driving cancer proliferation, i.e., cyclin D1 and survival, 
i.e., BCL2-like protein 1 (BCL-xL). Early-phase tri-
als exploring the safety and effectiveness of tocilizumab 
(anti-IL-6RmmAb) in BCA patients are currently ongo-
ing (NCT03135171) [52]. Some high IL-6-containing-
CMs, however, did not alter PD-L1 expression. These 
may be explained by the possibility that CAF secreted 
various substances which may affect IL-6 secretion by 
CAFs such as CXCL10 [6, 31]. Current evidence points 
to chemotherapy-induced DNA damage with nanoparti-
cle albumin bound-paclitaxel (Nab-PTX) influencing the 
repertoire of CAF-secreted factors after treatment [31]. 
Nab-PTX treatment increases CXCL-10 expression in 
pancreatic cancer cells leading to reduced secretion of 
CAF-derived IL-6 subsequently impairing cancer migra-
tion and invasion [31].

DNA damage during chemotherapy is sensed by cyclic 
GMP-AMP synthase, a stimulator of interferon genes 
(STING). Dox-mediated DNA damage induced STING-
mediated NF-κB activation in TNBC cell lines resulting 
in the induction of IL-6 secretion which could activate 
pSTAT3 leading to cancer cell survival enhancement and 
an immune-suppressive mechanism by PD-L1 expression 
induction [53]. The cancer cells containing DNA double-
strand breaks increased IL-6 secretion by DNA damage 
response proteins such as ataxia-telangiectasia-mutated 
during oncogene-induced senescence [54]. Moreover, 
IL-6 could induce ATM kinase leading to DNA damage 
repair [55].

Moreover, CAFs reprogramming by vitamin A and 
vitamin D were shown to inhibit tumor-supportive 
secretomes [6, 56]. Vitamin A and vitamin D reprogram-
ming strategies are both associated with TGF-β sign-
aling pathway inhibition. Indeed, vitamin D decreases 
fibroblast activation [57], whereas vitamin A inhibits 

the fibroblasts’ capacity to release active TGF-β, thus 
impeding CAF-secreted factors that are associated with 
the chemo- and immunotherapeutic resistance [58]. 
Additional research with a better understanding of the 
mechanisms of CAF secreted-substances that affect IL-6 
secretion is needed to confirm.

Importantly, the previous studies of IL-6 in animal 
models support our findings that IL-6 mediated drug 
resistance and induced PD-L1 expression. Activation 
of IL-6 inflammatory loop-induced trastuzumab resist-
ance in breast cancer mouse xenografts [59]. Using a 
Bcl-2 antagonist (sabutoclax) could inhibit the IL-6/
STAT3 signaling to resensitize Dox-resistant breast can-
cer in vitro and in vivo models [60]. Blocking of STAT3 
can prolong the survival time of tumor-bearing mice by 
suppressing tumor growth and increasing Dox sensitivity 
in osteosarcoma [61]. Moreover, the combination of IL-6 
blockades and anti-PD-L1 antibodies reduced cancer 
progression in mouse pancreatic cancer [62].

CAR-T cell immunotherapy has emerged as a can-
cer therapeutic strategy [63]. FRα expression is associ-
ated with poor prognosis in BCA patients [64]. Several 
FRα-targeting immunotherapies, such as monoclonal 
antibody [65] and adoptive T cell therapy [66], have 
been developed. In the present study, FRα expres-
sion was found in TNBC cell lines which is consistent 
with a prior study that reported the high prevalence 
of FRα in TNBC [67]. It was proven that FRα-CAR-T 
cells specifically lysed FRα-expressing cells in  vitro 
[25]. These current findings indicate that CAF-derived 
IL-6 increases PD-L1-attenuated CAR-T cell cytotox-
icity (Fig.  6C). Targeting CAF-derived cytokines and 
chemokines in combination with immunotherapies 
can improve anticancer efficiency such as when tar-
geting the CXCL12-CXCR4 axis reverses FAP + CAF-
mediated immunosuppression and synergizes with 
anti-PD-L1 immunotherapy in pancreatic cancer [68]. 
In conclusion, therapeutics aim at interfering with the 
IL6/IL-6R and PD-1/PD-L1 pathways may be combined 
to improve the response to chemotherapy and cell ther-
apy in TNBC patients.

Fig. 6 CAF‑derived IL‑6 attenuated FRα‑CAR T cell cytotoxicity in 3D cancer cell culture. A The representative of spheroids of mWasabi‑luciferase 
expressing target cells (T) after pre‑treating with CM and coculturing with effector FRα‑CAR T cells (E) at E:T ratios of 2.5:1, 5:1, and 10:1 
for 4 days (scale bars = 100 μm). The target‑only condition (T‑only) indicates target cells without effector cells. B Bar graphs show the killing 
ability of FRα‑CAR‑T cells from two donors (means ± SD of three independent experiments of each donor). #P < 0.05, ##P < 0.01, ###P < 0.001 
compared to the T‑only condition using one‑way ANOVA. C The proposed mechanism of CAF‑derived IL‑6 in promoting resistance 
to chemo‑ and immunotherapy. CAFs secrete high IL‑6 which can bind to IL‑6R on BCA cells. CAF‑derived IL‑6 induces Dox resistance by promoting 
cancer cell survival and promoting PD‑L1 production through STAT3 and AKT signaling pathways. This PD‑L1 induction by CAF‑derived IL‑6 can 
be attenuated by STAT3 and AKT inhibitors. The high PD‑L1 expressing cancer cells suppress FRα‑CAR‑T cell killing ability. UT, untreated cells; BNF, 
breast normal fibroblast; CAFs, cancer‑associated fibroblasts; CM, conditioned medium; IL‑6R KD, IL‑6R knocked down; rhIL‑6, recombinant human 
IL‑6; NS, no significance. BCA; breast cancer, FRα; folate receptor alpha, PD‑L1; programmed death ligand 1, PD‑1; programmed death 1, CAR T cell; 
chimeric antigen receptor T cell

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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