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Abstract 

Background  We investigated the association of several air pollution measures with postmenopausal breast cancer 
(BCa) risk.

Methods  This study included 155,235 postmenopausal women (of which 6146 with BCa) from UK Biobank. Cancer 
diagnoses were ascertained through the linkage to the UK National Health Service Central Registers. Annual expo-
sure averages were available from 2005, 2006, 2007, and 2010 for NO2, from 2007 and 2010 for PM10, and from 2010 
for PM2.5, NOX, PM2.5–10 and PM2.5 absorbance. Information on BCa risk factors was collected at baseline. Cox propor-
tional hazards regression was used to evaluate the associations of year-specific and cumulative average exposures 
with BCa risk, overall and with 2-year exposure lag, while adjusting for BCa risk factors.

Results  PM10 in 2007 and cumulative average PM10 were positively associated with BCa risk (2007 PM10: Hazard ratio 
[HR] per 10 µg/m3 = 1.18, 95% CI 1.08, 1.29; cumulative average PM10: HR per 10 µg/m3 = 1.99, 95% CI 1.75, 2.27). Com-
pared to women with low exposure, women with higher 2007 PM10 and cumulative average PM10 had greater BCa 
risk (4th vs. 1st quartile HR = 1.15, 95% CI 1.07, 1.24, p-trend = 0.001 and HR = 1.35, 95% CI 1.25, 1.44, p-trend < 0.0001, 
respectively). No significant associations were found for any other exposure measures. In the analysis with 2-year 
exposure lag, both 2007 PM 10 and cumulative average PM10 were positively associated with BCa risk (4th vs. 1st 
quartile HR = 1.19, 95% CI 1.10, 1.28 and HR = 1.29, 95% CI 1.19, 1.39, respectively).

Conclusion  Our findings suggest a positive association of 2007 PM10 and cumulative average PM10 with postmeno-
pausal BCa risk.
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Introduction
Established breast cancer risk factors explain only 
30–50% of breast cancer cases [1–5], and previous stud-
ies in immigrants have demonstrated the importance of 
environmental factors in the etiology of breast cancer 
[6]. Air pollution is classified as a human carcinogen by 
the International Agency for Research on Cancer (IARC) 

with strongest evidence for lung and bladder cancers, and 
some studies linking it also to the risk of liver, gastric, 
cervical, and brain cancers [7–13]. However, the rela-
tionship between air pollution and breast cancer remains 
unclear. Notably, more than half of the worlds’ popula-
tion continue to be exposed to increased levels of air pol-
lution [14].

Of the common air pollutants used for air quality moni-
toring, particulate matter (PM), and nitrogen oxides 
(NOx), including nitrogen dioxide (NO2) are of interest 
with respect to breast carcinogenesis. PM, including fine 
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inhalable particles of ≤ 2.5  µm in diameter (PM2.5) and 
inhalable particles ≤ 10 µm in diameter (PM10), have bio-
logical properties relevant to breast carcinogenesis and 
other chronic diseases [15–22], while NOx and NO2 rep-
resent biomarkers of exposure to PM, polycyclic aromatic 
hydrocarbons (PAHs) or benzene from traffic related air 
pollution [23]. Despite known carcinogenic properties of 
PM constituents, experimental evidence and strong bio-
logical plausibility, the epidemiologic evidence on the 
association of PM with breast cancer remains very limited 
and inconsistent. Some previous studies reported positive 
associations of PM10 and PM2.5, while others found none 
[24–34]. However, most of the previous observational 
studies were relatively small (< 3450 breast cancer cases) 
and/or limited to specific sub-populations of women 
(nurses or breast cancer-free women with a family history 
of breast cancer) [9, 24–28, 35–38]. Similarly, for NO2, 
some studies found significant associations, while others 
found no associations with breast cancer, often with trends 
suggesting a positive association [26, 27, 31–33, 35–38].

Epidemiologic evidence for biological role of the indi-
vidual chemicals found in PMs suggests an increase in 
breast cancer risk in different populations, some even at 
the lowest detectable levels [39–48]. PAHs have endo-
crine disrupting properties and interfere with normal 
DNA damage repair [15–18, 49, 50]. Among other com-
pounds found in PMs, polychlorinated dibenzodioxins 
(dioxin), dibenzofurans (PCDF), polychlorinated biphe-
nyls (PCB) and heavy metals (cadmium, arsenic, and 
mercury) have also been shown to have endocrine dis-
rupting properties and associations with breast cancer in 
some studies [16, 51–59].

Although their intrinsic carcinogenicity is not clearly 
established, NOx and NO2 represents biomarkers of 
exposure to diesel exhaust, which contains many carcino-
genic components such as PM, PAHs, and benzene [60, 
61]. An important source of NOx and NO2 is fossil fuel 
combustion, mainly from engine vehicles and energy pro-
duction; therefore, NOx and NO2 are considered as the 
best road traffic tracers and markers of exposure to com-
ponents with plausible biological mechanisms, without 
being directly involved in cancer pathophysiology. Fur-
ther, it has been previously shown that air concentrations 
of nickel or vanadium in PM2.5 were more highly corre-
lated with NO2 or NOx concentration levels than with 
total PM2.5 concentration levels [62]. Thus, NO2 might 
be a better marker of exposure to specific PM species or 
heavy metals with carcinogenic properties found in vehi-
cles exhaust than ambient total PM concentration levels.

The goal of this study was to explore the association 
between air pollution (PM2.5, PM10, PMcoarse 2.5–10, PM2.5 

absorbance, NO2, and NOx) and breast cancer risk in a large 
population-based sample of postmenopausal women 

from an established prospective cohort. These associa-
tions were examined overall as well as with 2-year and 
5-year exposure lag.

Methods
Study population
Women in this study were selected from UK Biobank, 
an established population-based prospective cohort. UK 
Biobank contains more than 500,000 (44% women) vol-
unteers who were aged 40–69 years when recruited dur-
ing 2006–2010 from England, Scotland and Wales via 
National Health Service (NHS) patient registers [63]. A 
detailed description of the enrollment process has been 
previously described [64]. Briefly, at enrollment all partic-
ipants provided health, lifestyle, and socio-demographic 
data through questionnaires and interviews, underwent 
physical examination, provided blood, urine and saliva 
samples and agreed to be followed for health outcomes. 
Between 2012 and 2013, 20,346 (20%) participants com-
pleted their first repeat assessment. Participants’ out-
comes were ascertained via record linkage to the NHS 
Central Registers. The latest cancer registry record link-
age to UK Biobank data was completed on February 29, 
2020 for participants from England and Wales, and on 
August 31, 2021 for Scotland.

As premenopausal and postmenopausal breast cancers 
are different and as the follow-up data did not capture 
updates on woman’s menopausal status or reproduc-
tive history, only postmenopausal women were included 
in this study. Women were considered to be postmeno-
pausal at baseline if they reported (1) having menopause 
(periods stopped), (2) bilateral oophorectomy, or (3) hys-
terectomy with one or both ovaries retained and being 
54  years or older for ever smokers or 56  years or older 
for never smokers [65]. We included postmenopausal 
women without a history of breast cancer or any other 
type of cancer (except non-melanoma skin) at recruit-
ment. A breast cancer diagnosis (invasive and in-situ) 
was identified based on diagnostic codes according to 
the 9th revision of the International Classification of Dis-
eases (ICD-9: 174, 2330) or the 10th revision (ICD-10: 
C50, D05).

Out of 158,979 eligible women, we further excluded 
participants with missing information on all air pollu-
tion assessments and selected breast cancer risk factors. 
The final sample included 155,235 women (98% of all eli-
gible women in UK Biobank) of which 6,146 developed 
breast cancer during the follow-up through the last link-
age to the cancer registries (Fig. 1). UK Biobank protocol 
was approved by the NorthWest Multi-centre Research 
Ethics Committee (MREC), which covers the UK. All 
participants of UK Biobank provided written consent at 
recruitment.
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Air pollution data
In the UK Biobank, the annual averages of PM10 and 
NO2 were available for the baseline assessment period 
(2005, 2006, 2007, and 2010 for NO2; 2007 and 2010 
for PM10), while PM2.5, NOX, PM coarse (PM with an 

aerodynamic diameter > 2.5  µm but ≤ 10  µm, PM2.5–10) 
and PM2.5 absorbance (measurement of the blackness of 
PM2.5 filters, a proxy for elemental carbon [the dominant 
light absorbing substance]) were available only for 2010 
(Fig. 2).

Air pollution estimates for 2005–2007 were 
derived from EU-wide air pollution maps (resolution 
100  m × 100  m) [66]. The X and Y coordinates of UK 
Biobank participants were overlaid with these maps (pro-
jected to British National Grid) and the corresponding 
air pollution concentration of the 100  m × 100  m grid 
cell was assigned to the coordinate. EU-wide air pollu-
tion maps were modelled based on a land use regression 
(LUR) models for Western Europe [66]. The dependent 
variables in LUR models were ambient concentrations of 
NO2 and PM10, obtained from EuroAirnet, the regulatory 
air pollution monitoring network in Europe [67]. Air pol-
lution estimates for 2010 were modeled for each address 
using a LUR models developed as part of the European 
Study of Cohorts for Air Pollution Effects (ESCAPE) 
[68, 69]. Within the ESCAPE project, PM2.5, PM10, PM2.5 
absorbance, and nitrogen oxides (NO2 and NOx) were 
measured between October 2008 and April 2011 dur-
ing standardized specific PM monitoring campaigns [70, 
71]. The estimates from the LUR models were used to 
calculate the annual averages of air pollutants. The LUR 
estimates for PM were not valid beyond 400  km from 
Greater London, the initial ESCAPE study area; there-
fore, participants living beyond 400  km (mainly from 
northern England or Scotland), were not assigned PM10, 
PM2.5, PM2.5 absorbance, and PMcoarse concentrations for 
2010 to prevent exposure misclassification.

Covariates information
Information on breast cancer risk factors was extracted 
for all the participants from baseline questionnaires, 
interviews, and physical examinations (2006–2010). The Fig. 1  Study sample selection diagram

Fig. 2  Exposure data collection
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following covariates were included: race/ethnicity, Body 
Mass Index (BMI), age at menarche, age at menopause, 
parity/age at first child’s birth, postmenopausal hormone 
therapy, alcohol use, smoking status, and family history of 
breast cancer. Since there was a small proportion (< 0.5%) 
of women with missing values on race, BMI, parity, alco-
hol, and smoking, those women were excluded from the 
sample, while for variables with relatively larger propor-
tion of missing values (> 3%), we created an “Unknown” 
category to retain these observations in the models.

For variables that could potentially change with time in 
postmenopausal women (BMI, alcohol use, smoking, and 
family history of breast cancer), we found a high corre-
lation in the values for these covariates at baseline with 
those collected at the repeat assessments on the subset 
of participants thus justifying the use of baseline data in 
the analysis. The correlations between baseline values 
and values collected at first, second, or third subsequent 
assessments were 0.92, 0.89, and 0.86 for BMI, 0.91, 0.88, 
and 0.89 for smoking status, 0.76, 0.70, and 0.69 for alco-
hol use status, respectively; for family history (yes/no), 
the agreement between first and second assessment was 
0.94.

Statistical analyses
Cox proportional hazards regression models were used 
to analyze the association between air pollution and 
breast cancer risk while adjusting for known breast 
cancer risk factors: age at recruitment (years, continu-
ous), age at menarche (years, continuous), BMI (kg/m2, 
continuous), race (Caucasian [reference], other), parity/
age at first child’s birth (nulliparous [reference], parous 
with age at first birth ≤ 25 years, parous with age at first 
birth > 25 years, parous with unknown age at first birth), 
family history of breast cancer in first degree relatives 
(none [reference], any, unknown), age at menopause (< 46 
[reference], 46 to < 50, 50 to < 55, ≥ 55 years, unknown), 
postmenopausal hormone use (never [reference], past, 
current, unknown), smoking (never [reference], past, 
current), and alcohol consumption (never [reference], 
past, current). The risk estimates were presented as haz-
ard ratios (HRs) and their corresponding 95% confidence 
intervals (CIs). The regression models were developed 
for all available measures of air pollution preceding the 
breast cancer diagnosis in two ways. First, air pollution 
from specific years was examined in relation to breast 
cancer risk. Second, the cumulative average exposure 
for pollutants with multiple assessment years (PM10 and 
NO2) was used in the analyses, calculated as the aver-
age across all available measures. Each analysis included 
only incident breast cancer cases diagnosed in the same 
year or after the measurements of the air pollutant mod-
eled were taken. The follow-up start time and the subset 

of women included in each analysis listed in Additional 
file 1: Table 1 are based upon the measure of air pollut-
ant modeled. For example, when analyzing the associa-
tions of NO2 2006 with breast cancer risk, the follow-up 
started in 2006 and included all women who were cancer-
free as of 2006, while analysis of NO2 2010 had a start of 
follow-up in 2010 and included only women who were 
cancer-free as of 2010. For analyses with the cumulative 
average exposure to PM10 or NO2, the follow-up time 
started at the last available exposure assessment year. In 
all the analyses, the follow-up time ended at the time of 
breast cancer diagnosis for women with breast cancer, at 
the time of death for women who died during the follow-
up, at the time of cancer diagnosis for women who devel-
oped other cancer type during the follow-up, or at time 
of the last linkage to the cancer registries for everyone 
else.

Air pollution was modeled as a continuous variable and 
the estimates were reported per 5  µg/m3 and 10  µg/m3 
increase of air pollutant, consistent with previous stud-
ies [24–29, 32, 33, 37]. Air pollution was also modeled as 
quartiles based on the distribution in the study sample, 
specific to assessment year or cumulative average expo-
sure for PM10 and NO2. Tests for trends were performed 
using the median level of the exposure within each of 
the quartiles. Additional analyses were performed to 
allow 2-year and 5-year lag in air pollution exposures by 
including only breast cancer cases diagnosed two years 
and five years after the exposure measures, respectively, 
in order to exclude the most recent exposure measures. 
As no previous studies on air pollution and breast cancer 
used lagging, our decision was based on minimum lag-
ging period used in other studies of environmental expo-
sures with breast cancer [72] as well as minimum lagging 
in studies of air pollution and lung cancer [73]. Thus, in 
the analysis for NO2 exposure from 2006, only breast 
cancer cases diagnosed in 2008 or later were included. 
Additionally, as our sample included 17,122 women with 
bilateral oophorectomy (645 of which with breast cancer 
diagnosis during the follow-up), we conducted a sensi-
tivity analysis that excluded these women. Finally, in the 
secondary analysis, we excluded 947 women who were 
diagnosed with ductal carcinoma in  situ (DCIS, ICD-9 
codes 2330 or ICD-10 code D05).

Prior to regression analysis, we tested the proportional 
hazards assumption; only age at recruitment violated 
this assumption. To account for non-proportionality, the 
interaction term between age at recruitment and time 
was included in the models [74]. All the tests were two-
sided and significance of the effects was assessed at 5% 
level of significance. All analyses were performed using 
SAS (SAS Institute Inc. version 9.4).
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Results
In this prospective study of 155,235 postmenopau-
sal women, 6146 developed breast cancer and 149,089 
women remained breast cancer-free during the follow-
up. The mean age of the study population at enrollment 
was 60.1 years (range 40–71 years). The average follow-up 
time calculated for analyses of earliest exposures meas-
ured before or at baseline (2005–2006), was 5.4  years 
(standard deviation [SD] = 3.1  years) for breast can-
cer cases and 10.7  years (SD = 2.0  years) for cancer-free 
women. The average follow-up time calculated for analy-
ses of exposures measured in 2010, was 4.9 years (stand-
ard deviation [SD] = 2.9  years) for breast cancer cases 
and 9.8  years (SD = 1.6  years) for cancer-free women. 
The distribution of air pollution measures (in µg/m3) are 
presented in Table 1 and their correlations are shown in 
Additional file 1: Table 2. Characteristics of the study pop-
ulation at baseline by breast cancer status are presented 
in Table 2. As compared to women without breast cancer, 
women with a breast cancer diagnosis were, on average, 
older (60.5 vs. 60.1  years, p for difference < 0.0001), had 
higher BMI (27.6 vs. 27.2 kg/m3, p for difference < 0.0001), 
were more likely to be current postmenopausal hormone 
therapy users at the time of enrollment (12.2% vs. 9.3%, 
p for difference < 0.0001), and more likely to have a fam-
ily history of breast cancer (11.1% vs. 7.2%, p for differ-
ence < 0.0001, Table  2). We also present participants’ 
baseline characteristics by quartiles of the earliest expo-
sure measure (2005 NO2) (Additional file 1: Table 3).

Overall associations of air pollution measures with breast 
cancer risk
In the main analyses, the risk of breast cancer increased 
by 18% per 10 µg/m3 increase in PM10 exposure in 2007 
(HR = 1.18, 95%CI 1.08, 1.29, Table  3). Compared to 
women exposed to the lowest 2007 PM10 concentrations, 

women with higher exposure levels had a greater risk of 
breast cancer (HR for 4th vs. 1st quartile = 1.15, 95% CI 
1.07, 1.24, p-trend = 0.001, Table  3). No association was 
found for 2010 PM10 exposure. The cumulative average 
exposure to PM10 was significantly positively associated 
with breast cancer risk, when modeled both as continu-
ous (HR per 10 µg/m3 = 1.99, 95% CI 1.75, 2.27), and as 
quartiles (HR for 4th vs. 1st quartile = 1.35, 95% CI 1.25, 
1.44, p-trend < 0.001, Table 3). We found no associations 
of PM2.5, PMcoarse 2.5–10, PM2.5 absorbance, NO2, or NOx with 
breast cancer risk (Tables 3 and 4). The results of associa-
tions were similar in sensitivity analysis excluding women 
with bilateral oophorectomy (data not shown).

Lagged exposure analyses
In the analysis with 2-year exposure lag (Tables  3 and 
4), we observed a positive association between expo-
sure to 2007 PM10 and breast cancer risk (HR per 10 µg/
m3 = 1.23, 95% CI 1.12, 1.35, Table  3). Compared to 
women with lowest 2007 PM10 exposure, women with 
higher exposure levels had a greater risk of breast can-
cer (HR for 4th vs. 1st quartile = 1.19, 95% CI 1.10, 1.28, 
p-trend < 0.001, Table  3). The cumulative average expo-
sure to PM10 was significantly positively associated with 
breast cancer risk when modeled both as continuous 
(HR per 10 µg/m3 = 1.86, 95% CI 1.61, 2.15), and as quar-
tiles (HR for 4th vs. 1st quartile = 1.29, 95% CI 1.19, 1.39, 
p-trend < 0.001, Table 3). No significant associations were 
found for PM10 exposure in 2010 or any other air pollut-
ant measures. The associations were similar with 5-year 
exposure lag (Additional file 1: Table 4).

Secondary analyses of associations with invasive breast 
cancer only
In the secondary analyses including 5,175 invasive breast 
cancer and 148,289 breast cancer-free women, the risk 
of invasive breast cancer increased by 19% per 10 µg/m3 

Table 1  Distribution of air pollution measures in the study sample

NO2, Nitrogen dioxide; NOx, Nitrogen oxide; PM10, particulate matter ≤ 10 µm in diameter; PM2.5, particulate matter ≤ 2.5 µm in diameter; PM2.5 absorbance, particulate 
matter ≤ 2.5 µm in diameter absorbance; PM coarse 2.5–10, particulate matter between 2.5 and 10 µm in diameter; SD, Standard deviation

Air pollutant (μg/m3) N Mean SD Minimum 25th Percentile Median 75th Percentile Maximum

NO2 2005 154,777 29.56 9.93 6.66 22.87 28.04 34.33 126.67

NO2 2006 154,777 28.63 9.03 6.77 22.60 27.60 32.97 129.44

NO2 2007 154,777 30.36 10.54 6.99 23.40 28.58 34.59 138.39

NO2 2010 154,777 26.41 7.45 12.93 21.24 25.95 30.91 107.47

PM10 2007 154,411 22.00 2.86 11.81 20.14 21.72 23.54 36.56

PM10 2010 143,655 16.20 1.89 11.78 15.22 16.01 16.98 30.65

PM2.5 2010 143,655 9.95 1.04 8.17 9.26 9.90 10.52 21.31

PM2.5 absorbance 2010 143,655 1.18 0.27 0.83 0.99 1.12 1.29 4.57

PM coarse 2.5–10 2010 143,655 6.42 0.90 5.57 5.84 6.10 6.63 12.25

NOx 2010 154,777 43.52 15.15 19.74 33.98 41.95 50.17 265.94
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increase in 2007 PM10 exposure (HR per 10 µg/m3 = 1.19, 
95% CI 1.08, 1.31) (Additional file 1: Table 5). Compared 
to women exposed to lowest concentrations of 2007 

PM10, women with higher exposure levels had a greater 
risk of invasive breast cancer (HR for 4th vs. 1st quar-
tile = 1.16, 95% CI 1.07, 1.25, p-trend = 0.002) (Additional 

Table 2  Characteristics of the study participants at baseline, by breast cancer status

BMI, Body Mass Index; NO2, nitrogen dioxide; NOx, Nitrogen oxide; PM10, particulate matter ≤ 10 µm in diameter; PM2.5, particulate matter ≤ 2.5 µm in diameter;  
PM2.5, absorbance, particulate matter ≤ 2.5 µm in diameter absorbance; PMcoarse 2.5–10, particulate matter between 2.5 and 10 µm in diameter; SD, standard deviation;
a Difference statistically significant at 0.0001 level
b Difference statistically significant at 0.05 level

Characteristic Women who developed breast cancer 
(N = 6146)

Women without breast 
cancer (N = 149,089)

Mean (SD)

Age at enrollment, yearsa 60.59 (5.10) 60.06 (5.54)

Follow-up time, yearsa 5.35 (3.14) 10.73 (2.00)

Age at menarche, yearsb 12.93 (1.61) 12.96 (1.59)

Age at menopause, yearsa 50.34 (4.92) 49.72 (5.09)

BMI, kg/m2a 27.61 (5.01) 27.15 (5.07)

NO2 2005 29.53 (9.97) 29.57 (9.93)

NO2 2006 28.58 (9.09) 28.64 (9.03)

NO2 2007 30.36 (10.56) 30.37 (10.53)

NO2 2010 26.30 (7.51) 26.41 (7.45)

PM10 2007b 22.09 (2.78) 22.00 (2.86)

PM10 2010 16.21 (1.90) 16.20 (1.89)

PM2.5 2010 9.94 (1.04) 9.95 (1.04)

PM2.5 absorbance 2010 1.18 (0.26) 1.18 (0.27)

PM coarse 2.5–10 2010 6.43 (0.91) 6.42 (0.89)

NOx 2010 43.32 (15.22) 43.52 (15.15)

N (%)

 Raceb

  White 5928 (96.45) 142,539 (95.61)

  Other 218 (3.55) 6550 (4.39)

 Parity/AFB, yearsb

  Nulliparous 1049 (17.07) 24,209 (16.24)

  Any children with age at first birth ≤ 25 years 2341 (38.09) 59,787 (40.10)

  Any children with age at first birth > 25 years 1904 (30.98) 46,280 (31.04)

  Any children with unknown age at first birth 852 (13.86) 18,813 (12.62)

 Postmenopausal hormone-replacement therapya

  Never used hormones 2928 (50.12) 74,616 (52.63)

  Past 2200 (37.66) 53,915 (38.03)

  Current 714 (12.22) 13,239 (9.34)

 Family historya

  Breast cancer 682 (11.40) 10,776 (7.43)

  No breast cancer 5301 (88.60) 134,249 (92.57)

 Smoking statusb

  Never 3490 (56.78) 87,433 (58.65)

  Past 2131 (34.67) 49,732 (33.36)

  Current 525 (8.54) 11,924 (8.00)

 Alcohol intake

  Non-drinker 350 (5.69) 9145 (6.13)

  Past drinker 213 (3.47) 5622 (3.77)

  Current drinker 5583 (90.84) 134,322 (90.10)
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Table 3  Associations of particulate matter measures with breast cancer risk (Hazard Ratios [HR] and 95% Confidence Intervals [95% 
CI])

Year Air pollution measure Analyses without exposure lag Analyses with 2-year exposure lag

N with/without breast 
cancer

HR (95% CI)a N with/without breast 
cancer

HR (95% CI)a

2007 PM10

per 5 µg/m3 6117/148,289 1.09 (1.04, 1.14) 5932/148,055 1.11 (1.06, 1.16)

per 10 µg/m3 6117/148,289 1.18 (1.08, 1.29) 5932/148,055 1.23 (1.12, 1.35)

Q1: ≤ 20.14 (18.95) 1398/37,298 1.00 1342/37,221 1.00

Q2: > 20.14 to ≤ 21.72 (20.99) 1605/36,933 1.17 (1.09, 1.26) 1545/36,872 1.18 (1.10, 1.27)

Q3: > 21.72 to ≤ 23.54 (22.50) 1562/36,972 1.14 (1.06, 1.23) 1512/36,906 1.15 (1.07, 1.24)

Q4: > 23.54 (25.28) 1552/37,086 1.15 (1.07, 1.24) 1533/37,056 1.19 (1.10, 1.28)

p for trend 6117/148,289 0.001 5932/148,055  < 0.0001

2010 PM10

per 5 µg/m3 5321/137,115 1.00 (0.93, 1.07) 4281/135,538 0.98 (0.90, 1.06)

per 10 µg/m3 5321/137,115 0.99 (0.86, 1.15) 4281/135,538 0.96 (0.82, 1.12)

Q1: ≤ 15.22 (14.37) 1363/34,342 1.00 1100/33,942 1.00

Q2: > 15.22 to ≤ 16.01 (15.68) 1276/34,011 0.95 (0.88, 1.02) 1013/33,597 0.93(0.86, 1.02)

Q3: > 16.01 to ≤ 16.98 (16.40) 1374/34,512 1.00 (0.93, 1.08) 1118/34,136 1.01 (0.93, 1.10)

Q4: > 16.98 (18.07) 1308/34,250 0.97 (0.89, 1.04) 1050/33,863 0.96 (0.88, 1.04)

p for trend 5321/137,115 0.536 4281/135,538 0.524

PM2.5

per 5 µg/m3 5321/137,115 0.93 (0.81, 1.06) 4281/135,538 0.91 (0.79, 1.06)

per 10 µg/m3 5321/137,115 0.86 (0.66, 1.12) 4281/135,538 0.84 (0.62, 1.12)

Q1: ≤ 9.26 (8.76) 1389/34,212 1.00 1122/33,807 1.00

Q2: > 9.26 to ≤ 9.90 (9.60) 1283/34,191 0.93 (0.86, 1.00) 1031/33,784 0.92 (0.85, 1.01)

Q3: > 9.90 to ≤ 10.52 (10.18) 1340/34,282 0.97 (0.90, 1.04) 1071/33,898 0.96 (0.88, 1.04)

Q4: > 10.52 (11.06) 1309/34,430 0.94 (0.87, 1.02) 1057/34,049 0.94 (0.86, 1.02)

p for trend 5321/137,115 0.217 4281/135,538 0.204

PM2.5 absorbance

per 5 µg/m3 5321/137,115 0.90 (0.54, 1.51) 4281/135,538 0.91 (0.51, 1.61)

per 10 µg/m3 5321/137,115 0.82 (0.29, 2.29) 4281/135,538 0.82 (0.26, 2.58)

Q1: ≤ 0.99 (0.92) 1390/35,218 1.00 1111/34,767 1.00

Q2: > 0.99 to ≤ 1.12 (1.06) 1306/34,467 0.96 (0.89, 1.04) 1049/34,079 0.97 (0.89, 1.05)

Q3: > 1.12 to ≤ 1.29 (1.20) 1305/33,233 1.00 (0.93, 1.08) 1051/32,871 1.01 (0.92, 1.09)

Q4: > 1.29 (1.45) 1320/34,197 0.99 (0.92, 1.07) 1070/33,821 1.00 (0.92, 1.09)

p for trend 5321/137,115 0.999 4281/135,538 0.835

PM coarse 2.5–10

per 5 µg/m3 5321/137,115 1.06 (0.91, 1.23) 4281/135,538 1.02 (0.87, 1.21)

per 10 µg/m3 5321/137,115 1.12 (0.83, 1.51) 4281/135,538 1.05 (0.75, 1.46)

Q1: ≤ 5.84 (5.71) 1316/33,712 1.00 1041/33,334 1.00

Q2: > 5.84 to ≤ 6.10 (5.96) 1326/35,038 0.97 (0.90, 1.05) 1091/34,642 1.01 (0.92, 1.10)

Q3: > 6.10 to ≤ 6.63 (6.30) 1351/33,923 1.02 (0.94, 1.10) 1090/33,512 1.04 (0.95, 1.13)

Q4: > 6.63 (7.26) 1328/34,442 0.99 (0.92, 1.07) 1059/64,050 1.00 (0.91, 1.08)

p for trend 5321/137,115 0.984 4281/135,538 0.832

Cumulative average PM10

per 5 µg/m3 6128/148,640 1.41 (1.32, 1.51) 4903/146,829 1.36 (1.27, 1.47)

per 10 µg/m3 6128/148,640 1.99 (1.75, 2.27) 4903/146,829 1.86 (1.61, 2.15)

Q1: ≤ 17.92 (17.06) 1398/37,382 1.00 1136/36,993 1.00
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file 1: Table 5). The cumulative average exposure to PM10 
was significantly associated with invasive breast cancer 
risk when modeled both as continuous (HR per 10  µg/
m3 = 2.06, 95% CI 1.79, 2.37), and as quartiles (HR for 4th 
vs. 1st quartile = 1.35, 95% CI 1.25, 1.46, p-trend < 0.001) 
(Additional file  1: Table  5). We also found a suggestive 
inverse association between NOx and breast cancer risk 
(HR for 4th vs. 1st quartile = 0.92, 95% CI 0.84, 0.99, 
p-trend = 0.035). None of the other air pollution meas-
ures were associated with the risk of invasive breast can-
cer (Additional file 1: Table 5).

In the analysis with 2-year exposure lag, we observed 
a positive association between 2007 PM10 and invasive 
breast cancer risk (HR per 10 µg/m3 = 1.24, 95% CI 1.13, 
1.37) (Additional file  1: Table  5). Compared to women 
with the lowest 2007 PM10, women with higher exposure 
levels had a greater risk of breast cancer (HR for 4th vs. 
1st quartile = 1.19, 95% CI 1.10, 1.29, p-trend < 0.001) 
(Additional file 1: Table 5). The cumulative average expo-
sure to PM10 was significantly associated with breast 
cancer risk, when modeled both as continuous (HR per 
10  µg/m3 = 1.93, 95% CI 1.65, 2.26), and as quartiles 
(HR for 4th vs. 1st quartile = 1.30, 95% CI 1.19, 1.42, 
p-trend < 0.001) (Additional file 1: Table 5). No significant 
associations were found for PM10 exposure in 2010 or 
any other air pollutant and breast cancer risk (Additional 
file 1: Table 5).

Discussion
In this large prospective cohort of postmenopausal 
women enrolled in the UK Biobank, we investigated the 
association of air pollution with postmenopausal breast 
cancer risk. We found positive associations of 2007 PM10 
and PM10 cumulative average with postmenopausal 
breast cancer risk. In the analysis with a 2-year exposure 
lag, the associations were stronger for 2007 PM10 as com-
pared to overall analysis. No associations were found for 
other examined air pollution measures.

Our findings for the association of PM10 with breast 
cancer risk are consistent with some, but not all stud-
ies [24–28, 30–32, 35]. A recent cohort study from Ger-
many found 19% breast cancer risk increase per 10 μg/m3 
increase in PM10 (Relative Risk [RR] = 1.19, 95% CI 1.09, 
1.31) [32]. However, the study population was not limited 
to postmenopausal women. In an ecological study that 
utilized region-based national census data that encom-
passed the entire female population of South Korea for 
10  years, Hwang et  al. found a 13% breast cancer risk 
increase per 10 μg/m3 increase in PM10 level (Odds Ratio 
[OR] = 1.13, 95% CI 1.09, 1.17) [31]. However, the find-
ings from this ecological study cannot be applied to indi-
viduals (ecological fallacy); further, the risk estimates 
could not be adjusted for breast cancer risk factors. Stud-
ies that evaluated the relationship between PM10 and 
breast cancer risk among postmenopausal women have 
not found any associations. Andersen et  al. pooled data 
from seven European prospective cohorts (overall 3,612 
breast cancer cases) and found elevated non-significant 
associations of PM10 with postmenopausal breast can-
cer (HR per 10  μg/m3 = 1.07, 95% CI 0.89, 1.30) [25]. 
There was considerable heterogeneity between individual 
cohort estimates, with hazard ratios per 10 μg/m3 expo-
sure increase ranging between 0.81 and 1.73. A null asso-
ciation between PM10 and postmenopausal breast cancer 
risk was also observed in the Nurses’ Health Study II (HR 
per 10  μg/m3 = 0.97, 95% CI 0.86, 1.09) [28]. However, 
this cohort is limited to specific female nurses and thus 
the findings may not be generalizable to other popula-
tions. Finally, it is worth to note that there appeared to be 
a threshold effect rather than a dose–response relation-
ship for associations of PM10 with breast cancer risk as 
the risk estimates for quartiles 2, 3, and 4 were similar.

While we found significant associations of 2007 PM10 
and cumulative average with postmenopausal breast can-
cer risk, we did not find an association with 2010 PM10, 
most likely due to PM10 concentrations declining over 

Table 3  (continued)

NO2, nitrogen dioxide; NOx, Nitrogen oxide; PM10, particulate matter ≤ 10 µm in diameter; PM2.5, particulate matter ≤ 2.5 µm in diameter; PM2.5 absorbance, particulate 
matter ≤ 2.5 µm in diameter absorbance; PM coarse 2.5–10, particulate matter between 2.5 and 10 µm in diameterQ1 = 1st quartile; Q2, 2nd quartile; Q3, 3rd quartile; Q4, 
4th quartile
a Adjusted for age, body mass index, race, age at menopause, age at menarche, parity/age at first birth, postmenopausal hormone use, family history of breast cancer, 
alcohol consumption, and smoking

Year Air pollution measure Analyses without exposure lag Analyses with 2-year exposure lag

N with/without breast 
cancer

HR (95% CI)a N with/without breast 
cancer

HR (95% CI)a

Q2: > 17.92 to ≤ 19.04 (18.52) 1461/37,229 1.05 (0.98, 1.13) 1169/36,808 1.03 (0.95, 1.12)

Q3: > 19.04 to ≤ 20.25 (19.38) 1461/37,182 1.05 (0.98, 1.13) 1187/36,730 1.05 (0.97, 1.14)

Q4: > 20.25 (21.39) 1808/36,847 1.35 (1.25, 1.44) 1411/36,298 1.29 (1.19, 1.39)

p for trend 6128/148,640  < 0.0001 4903/146,829  < 0.0001



Page 9 of 14Smotherman et al. Breast Cancer Research           (2023) 25:83 	

Table 4  Associations of NO2 and NOx with breast cancer risk (Hazard Ratios [HR] and 95% Confidence Intervals [95% CI])

Year Air pollution measure Analyses without exposure lag Analyses with 2-year exposure lag

N with/without breast 
cancer

HR (95% CI)a N with/without breast 
cancer

HR (95% CI)a

2005 NO2

per 5 µg/m3 6130/148,647 1.00 (0.99, 1.02) 6129/148,643 1.00 (0.99, 1.02)

per 10 µg/m3 6130/148,647 1.01 (0.98, 1.03) 6129/148,643 1.01 (0.98, 1.03)

Q1: ≤ 22.87 (19.46) 1546/37,177 1.00 1546/37,177 1.00

Q2: > 22.87 to ≤ 28.04 (25.57) 1547/37,145 1.00 (0.93, 1.07) 1547/37,145 1.00 (0.93, 1.07)

Q3: > 28.04 to ≤ 34.33 (30.79) 1481/37,184 0.96 (0.89, 1.03) 1481/37,184 0.96 (0.89, 1.03)

Q4: > 34.33 (38.89) 1556/37,141 1.04 (0.97, 1.12) 1556/37,141 1.04 (0.97, 1.12)

p for trend 6130/148,647 0.390 6129/148,643 0.402

2006 NO2

per 5 µg/m3 6130/148,647 1.00 (0.99, 1.02) 6106/148,624 1.00 (0.99, 1.02)

per 10 µg/m3 6130/148,647 1.00 (0.97, 1.03) 6106/148,624 1.00 (0.97, 1.03)

Q1: ≤ 22.60 (19.23) 1555/37,173 1.00 1547/37,167 1.00

Q2: > 22.60 to ≤ 27.60 (25.21) 1567/37,058 1.01 (0.94, 1.08) 1563/37,053 1.01 (0.94, 1.09)

Q3: > 27.60 to ≤ 32.97 (29.95) 1458/37,251 0.94 (0.87, 1.01) 1452/37,247 0.94 (0.88, 1.01)

Q4: > 32.97 (38.17) 1550/37,165 1.02 (0.95, 1.09) 1544/37,157 1.02 (0.95, 1.10)

p for trend 6130/148,647 0.930 6106/148,624 0.905

2007 NO2

per 5 µg/m3 6129/148,643 1.00 (0.99, 1.017) 5944/148,409 1.01 (0.99, 1.02)

per 10 µg/m3 6129/148,643 1.01 (0.98, 1.03) 5944/148,409 1.01 (0.99, 1.04)

Q1: ≤ 23.40 (19.93) 1548/37,124 1.00 1510/37,062 1.00

Q2: > 23.40 to ≤ 28.58 (26.16) 1520/37,177 0.98 (0.91, 1.05) 1469/37,110 0.97 (0.90, 1.04)

Q3: > 28.58 to ≤ 34.59 (31.26) 1496/37,217 0.97 (0.90, 1.04) 1440/37,157 0.95 (0.89, 1.02)

Q4: > 34.33 (41.77) 1565/37,125 1.04 (0.97, 1.12) 1525/37,080 1.04 (0.97, 1.12)

p for trend 6129/148,643 0.256 5944/148,409 0.256

2010 NO2

per 5 µg/m3 5552/147,767 0.99 (0.97, 1.01) 4430/146,072 0.99 (0.97, 1.01)

per 10 µg/m3 5552/147,767 0.98 (0.95, 1.02) 4430/146,072 0.98 (0.94, 1.02)

Q1: ≤ 21.24 (17.90) 1457/36,885 1.00 1165/36,430 1.00

Q2: > 21.24 to ≤ 25.95 (23.71) 1374/36,995 0.94 (0.88, 1.02) 1090/36,550 0.94 (0.86, 1.02)

Q3: > 25.95 to ≤ 30.91 (28.35) 1326/36,951 0.91 (0.85, 0.99) 1047/36,650 0.90 (0.83, 0.98)

Q4: > 30.91 (34.40) 1395/36,936 0.96 (0.89, 1.04) 1128/36,542 0.97 (0.89, 1.05)

p for trend 5552/147,767 0.190 4430/146,072 0.308

NOx

per 5 µg/m3 5552/147,767 1.00 (0.99, 1.00) 4430/146,072 0.99 (0.98, 1.00)

per 10 µg/m3 5552/147,767 0.99 (0.97, 1.01) 4430/146,072 0.99 (0.97, 1.01)

Q1: ≤ 33.98 (27.90) 1430/36,917 1.00 1582/37,127 1.00

Q2: > 33.98 to ≤ 41.95 (38.23) 1397/36,942 0.98 (0.91, 1.05) 1541/37,148 0.97 (0.89, 1.05)

Q3: > 41.95 to ≤ 50.17 (45.69) 1394/36,921 0.98 (0.91, 1.05) 1535/37,147 0.97 (0.89, 1.06)

Q4: > 50.17 (57.73) 1331/36,987 0.93 (0.86, 1.01) 1472/37,225 0.94 (0.86, 1.02)

p for trend 5552/147,767 0.075 4430/146,072 0.167

Cumulative average NO2

per 5 µg/m3 6130/148,647 1.00 (0.99, 1.02) 4823/146,718 1.00 (0.99, 1.02)

per 10 µg/m3 6130/148,647 1.00 (0.97, 1.03) 4823/146,718 1.01 (0.97, 1.04)
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time from a median of 21.72 μg/m3 in 2007 to a median 
of 16.01 μg/m3 in 2010 as well as fewer number of breast 
cancer cases in this analysis. Notably, only 0.07% (n = 95) 
of all 139,147 women (and 0.17% [n = 6] of breast can-
cer cases) had a 2010 PM10 concentration greater than 
the 2007 PM10 cutoff concentration for the 4th quartile 
(23.5 μg/m3).

We found no associations of PM2.5, PM2.5 absorbance, or 
PMcoarse 2.5–10 with breast cancer risk in any of the analy-
ses performed, consistent with the previous studies in 
postmenopausal women, though some studies that were 
not limited to postmenopausal women reported some 
associations [24, 25, 28, 29]. In the largest cohort study to 
date including long-term residents of Ontario and regis-
tered with Ontario’s provincial health insurance plan on 
April 1, 1996, the hazard ratio was 1.01 per inter-quartile 
range (5.3  µg/m3) increase of PM2.5 (95% CI 1.00, 1.03) 
[33]. However, the average PM2.5 levels in this study 
were slightly higher than in our sample (10.8 [SD = 3.5] 
vs. 9.95 [SD = 1.04]) and the analyses were not stratified 
by menopausal status. Finally, PM2.5, PM2.5 absorbance 
and PM coarse 2.5–10 were only measured in 2010 and not 
2007. Therefore, the same reasons for why PM10 in 2010 
was not associated with breast cancer risk could poten-
tially also explain the null associations for these other PM 
measures.

To our best knowledge, no other study looked at asso-
ciations of PM10 lagged exposure with postmenopausal 
breast cancer. We found stronger associations when we 
included only breast cancer cases diagnosed two years 
as well as only those diagnosed 5 years after exposure to 
PM10 in 2007; thus, our findings provide further evidence 
that earlier exposures to higher concentrations of PM10 
may be more relevant with respect to breast cancer eti-
ology. Even though the confidence intervals for the esti-
mates in overall analysis have some overlap with those in 
2-year analysis, this overlap becomes less apparent with 

5-year exposure lag further demonstrating that earlier 
exposures might be more relevant and that the observed 
differences in the strengths of association is unlikely 
to be the result of just random variation. However, we 
found a weaker effect of 2-year or 5-year lagged exposure 
for PM10 cumulative average compared to the effect of 
exposure for PM10 cumulative average without exposure 
lag, which could be potentially explained by declining 
PM10 concentrations over time combined with a reduc-
tion in the number of breast cancer cases included in 
these lagged analyses. Finally, we could not examine the 
associations with 7- and 10-year lag in the exposure as 
this would result in significant reduction of the number 
of breast cancer cases (by 50–70% of the original Ns, 
depending on the exposure) for 7-year lagged analysis 
and down to as few as 70 cases for 10-year lagged analy-
sis), which would not be informative.

Our findings of significant association of PM10 with 
breast cancer risk are consistent with previous stud-
ies indicating relevant biological pathways as a possible 
explanation for potential effects of PM on breast cancer 
risk which could lead to tumor development. The biologi-
cal effects of exposure to PMs could result from systemic 
inflammation, oxidative stress, and epigenetic changes 
that lead to formation of DNA adducts, disruption of 
DNA repair, induction of carcinogen-activating enzymes, 
and DNA methylation of tumor suppressor genes in 
breast tissue [15–21, 49, 50, 57–59, 75–85]. Importantly, 
some of these changes are stable and thus low dose long-
term exposure would result in accumulation of these 
alterations over time. Further, some of these compounds 
have a very long half-life and accumulate in adipose tis-
sue (including the breast) due to their lipophilic proper-
ties thus increasing target organ-specific dose [86–88].

Contrary to our hypothesis, we found a marginal asso-
ciation of NOx with breast cancer risk when only invasive 
cancers were included in analyses. Studies that assessed 

Table 4  (continued)

NO2, nitrogen dioxide; NOx, Nitrogen oxide; PM10, particulate matter ≤ 10 µm in diameter; PM2.5, particulate matter ≤ 2.5 µm in diameter; PM2.5 absorbance, particulate 
matter ≤ 2.5 µm in diameter absorbance; PM coarse 2.5–10, particulate matter between 2.5 and 10 µm in diameter Q1, 1st quartile; Q2, 2nd quartile; Q3, 3rd quartile; Q4, 
4th quartile
a Adjusted for age, body mass index, race, age at menopause, age at menarche, parity/age at first birth, postmenopausal hormone use, family history of breast cancer, 
alcohol consumption, and smoking

Year Air pollution measure Analyses without exposure lag Analyses with 2-year exposure lag

N with/without breast 
cancer

HR (95% CI)a N with/without breast 
cancer

HR (95% CI)a

Q1: ≤ 22.67 (19.32) 1543/37,164 1.00 1213/36,645 1.00

Q2: > 22.67 to ≤ 27.64 (25.31) 1557/37,128 1.00 (0.93, 1.08) 1225/36,644 1.01 (0.93, 1.10)

Q3: > 27.64 to ≤ 33.26 (30.14) 1470/37,230 0.93 (0.86, 1.00) 1135/36,747 0.94 (0.87, 1.02)

Q4: > 33.26 (38.33) 1560/37,125 1.03 (0.96, 1.11) 1250/36,682 1.03 (0.95, 1.12)

p for trend 6130/148,647 0.659 4823/146,718 0.683
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NO2 and NOx exposures reported mixed findings. Six of 
the 12 studies that investigated the association of NO2 
with breast cancer risk reported significant positive asso-
ciations [36, 37]. Of these six studies, two studies inves-
tigated the association of NO2 stratified by menopausal 
status, with positive associations found in postmenopau-
sal women [24, 27, 32, 36, 37, 89]. Two of the four stud-
ies that investigated the association of NOx with breast 
cancer risk [9, 25, 26, 30] also found significant positive 
associations [25, 30]. However, in contrast to our study, 
all the studies except one [25] included premenopausal 
women and did not stratify by menopausal status. Some 
of the studies were ecological with no adjustment for 
known risk factors for breast cancer, or hospital-based 
case–control studies that included patients diagnosed 
with bladder cancer among controls, a type of cancer that 
has been found to be associated with air pollution [30, 32, 
33, 36, 90]. As fossil fuel combustion is a major source 
of NO2 and NOx in the air, these two air pollutants may 
represent a marker of exposure to a mixture of compo-
nents with carcinogenetic properties, such as PAHs, 
benzene, metals and other chemicals, possibly acting on 
breast tissues [23, 61]. Some previous studies had showed 
that breast cancer risk increases with proximity to road-
ways and traffic volume [26, 28].

While our findings of suggestive inverse associations 
of NOx with breast cancer risk are puzzling, they could 
potentially be the result of residual confounding, for 
example, by mammographic breast density, a well-estab-
lished breast cancer risk factor, as some studies reported 
inverse associations of NOx with high breast density [60]. 
Information on breast density, however, was not available 
in UKBiobank. On the other hand, some previous reports 
have linked long-term exposure to NOx to lower levels 
of interleukin (IL)-2, IL-8, 40 IL-10 and tumor necrosis 
factor-α [91], all of which have been implicated in breast 
carcinogenesis [92]. Importantly, because we observed 
only association of NOx with invasive breast cancer risk 
without a clear pattern, future studies are needed to con-
firm our findings.

Our study is the largest study to date to investigate the 
association of air pollution with breast cancer among 
postmenopausal women. The study utilized a population-
based prospective cohort with a rigorously defined pro-
tocol, rigorous ascertainment of the endpoints through 
continuous linkages to the national registries, and well-
validated methods for assessing air pollution. This study 
has a few limitations. Information on covariates was used 
from baseline assessment only; however, the correlations 
with the values available from follow-up assessments 
were high (as described in Covariate information sec-
tion) and thus, use of baseline risk factor data is unlikely 
to introduce misclassification. We were also unable to 

investigate associations by breast cancer subtypes, such 
as estrogen receptor (ER)-positive versus ER-negative, 
because the information was not recorded within the 
UK Biobank. Further, exposures to air pollutants were 
estimated based on a single residential address at base-
line; therefore, we cannot rule out potential exposure 
misclassification caused by outside activities performed 
away from home or change of residence. However, recent 
studies suggest very small contribution of commuting 
to total weekly exposure and demonstrate that omitting 
commute does not significantly underestimate health 
effects as compared with the model combining home and 
work [93, 94]. Any exposure misclassification due to the 
change in residence is expected to be non-differential 
and could lead to dilution of the effect. Additionally, the 
variability in air pollution over time (as demonstrated by 
the differences in PM10 and NO2 levels, Table 1) implies 
that repeated measurements of air pollution recorded 
over time could provide a better estimate of cumulative 
exposure. Finally, a large number of potential associa-
tions were examined, and some of the significant findings 
could be false positives as a result of multiple testing.

Conclusion
We found a significant association of exposure to PM10 
with postmenopausal breast cancer risk. Our findings 
contribute to the limited evidence on the association of 
air pollution with the risk of breast cancer in postmen-
opausal women. More studies in diverse populations, 
including Black women and other racial/ethnic minori-
ties, are needed to confirm our results and to elucidate 
the potential biological mechanisms underlying the 
observed associations.
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