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Abstract 

Purpose Changes in microcirculation of axillary lymph nodes (ALNs) may indicate metastasis. Reliable noninvasive 
imaging technique to quantify such variations is lacking. We aim to develop and investigate a contrast‑free ultrasound 
quantitative microvasculature imaging technique for detection of metastatic ALN in vivo.

Experimental design The proposed ultrasound‑based technique, high‑definition microvasculature imaging (HDMI) 
provides superb images of tumor microvasculature at sub‑millimeter size scales and enables quantitative analysis 
of microvessels structures. We evaluated the new HDMI technique on 68 breast cancer patients with ultrasound‑
identified suspicious ipsilateral axillary lymph nodes recommended for fine needle aspiration biopsy (FNAB). HDMI 
was conducted before the FNAB and vessel morphological features were extracted, analyzed, and the results were 
correlated with the histopathology.

Results Out of 15 evaluated quantitative HDMI biomarkers, 11 were significantly different in metastatic and reactive 
ALNs (10 with P << 0.01 and one with 0.01 < P < 0.05). We further showed that through analysis of these biomark‑
ers, a predictive model trained on HDMI biomarkers combined with clinical information (i.e., age, node size, cortical 
thickness, and BI‑RADS score) could identify metastatic lymph nodes with an area under the curve of 0.9 (95% CI 
[0.82,0.98]), sensitivity of 90%, and specificity of 88%.

Conclusions The promising results of our morphometric analysis of HDMI on ALNs offer a new means of detecting 
lymph node metastasis when used as a complementary imaging tool to conventional ultrasound. The fact that it does 
not require injection of contrast agents simplifies its use in routine clinical practice.
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Introduction
Axillary lymph nodes (ALNs) status is a key predictive 
factor for distant metastasis and recurrence risk in breast 
cancer patients [1]. A correct assessment of the status of 
ALNs is crucial for staging breast cancer and selection 
of appropriate treatment option. Physical examination, 
such as palpation of the axilla, is notoriously inaccurate 
and axillary metastasis estimated by clinical palpation is 
associated with a large proportion of false-negative rates 
(%70) and a false-positive rate of 20% [2]. Visualization of 
ALN is limited in digital mammography or digital breast 
tomosynthesis, particularly for deeper seated level I and 
level II nodes [3]. Among the current imaging modali-
ties, ultrasound (US) is the primary method to evaluate 
ALNs in women with newly diagnosed breast cancer, and 
the number of ALN metastases determined by preopera-
tive ultrasound can be useful in predicting prognosis [4]. 
However, wide ranges of sensitivity (49–87%) and speci-
ficity (55–97%) have been reported [5, 6]. The addition of 
shear wave elastography to conventional US has relatively 
increased the sensitivity and specificity of ultrasound 
for breast cancer detection [7, 8], as well as improved 
prediction of cancer invasiveness and identification of 
metastatic ALNs [9–11]. Traditionally, preoperative iden-
tification of axillary metastases is through US-guided 
biopsy as well as sentinel lymph node biopsy and surgi-
cal excision, which is associated with complications such 
as infection as well as long term problems including 
lymphedema, localized swelling, sensory loss, and weak-
ness [12–15]. Therefore, a preoperative and noninvasive 
alternative approach is essential to accurately identify 
and quantify metastatic ALNs.

Angiogenesis, or the formation of new blood vessels, is 
a critical component of progression of the tumor growth 
and metastasis [16, 17] and has a crucial role in predic-
tion of cancer aggressiveness and poor prognosis [18]. 
Studies have suggested that angiogenic activity in meta-
static tumors, rather than primary tumors, may better 
predict prognosis in individuals with breast cancer [18, 
19]. Tumor angiogenesis is generally measured by quan-
tifying microvessel density (MVD). MVD is positively 
correlated with prognosis, histological grade, and lymph 
node status [20]. Moreover, morphological features of 
tumor microvessels are expected to be important bio-
markers in differentiating cancerous from non-cancer-
ous masses [21, 22]. Evaluating the vascularity of ALNs 
by noninvasive techniques could be useful in predicting 
lymph node metastasis, especially in the absence of typi-
cal sonographic findings.

Only few imaging techniques are capable of visual-
izing vascularity with tumor size scale and penetration 
depth. Dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) may provide noninvasive kinetic 

information suggesting axillary nodal status, but it has 
lower specificity; also, it is not affordable or widely avail-
able [23]. Conventional Doppler US is also useful for 
identifying nonhilar peripheral blood flow seen in meta-
static ALNs [24], but it only detects rapid flow, producing 
highly fragmented, patchy images of vasculature, making 
the structural analysis of microvessels impossible. Other 
imaging modalities, such as Photoacoustic imaging, have 
been employed to visualize microvasculature structure 
[25]; though, it is only applicable for superficial tumors 
[26]. Recently, superb microvascular imaging (SMI) [27] 
and microflow imaging [28] modalities have been inves-
tigated for detecting metastatic ALN, without using a 
contrast agent; however, the diagnosis is mostly based on 
pixel counting and visual inspection.

Recently, a novel contrast-free ultrasound-based 
modality has been developed to visualize sub-millim-
eter vessels as small as 300 μm in diameter [29], named 
high-definition microvessel imaging (HDMI) [30]. The 
HDMI approach is equipped with a series of morphologi-
cal filtering and vessel enhancement in order to quantify 
tumor vessel morphological parameters as quantitative 
vessel biomarkers [31, 32]. The performance of quantita-
tive HDMI biomarkers has been reported for differentia-
tion of benign and malignant breast masses [30], thyroid 
nodules [33], and  hepatic masses [34]. We hypothesize 
that morphometric analysis of node microvessels can 
objectively distinguish metastatic axillary lymph nodes 
from reactive, thus rendering this method less operator-
dependent and eliminating the observer/reader variabil-
ity for reliable clinical use. To test this hypothesis, gross 
images of ALN microvasculature and vessel quantitative 
biomarkers are first derived using the HDMI technique 
and quantification algorithms [29, 31, 32], to depict the 
microvascular architecture of ALNs. Furthermore, all the 
vessel biomarkers are combined to create a model capa-
ble of classifying the ALN as metastatic or reactive.

Materials and methods
Ethics approval
This prospective single-center study, from June 2018 to 
October 2022, was approved by the institutional review 
board (IRB#13-006035 and IRB # 19-003028) and was 
in accordance with the Health Insurance Portability and 
Accountability Act. Prior to the study, each enrolled par-
ticipant signed an IRB approved written informed con-
sent with permission for publication.

Study population
The imaging study was completed on 71 female volun-
teers with recently diagnosed breast cancer and with 
suspicious ALNs in clinical ultrasound imaging. The 
enrolled patients were previously assigned the Breast 
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Imaging Reporting and Data System (BI-RADS) assess-
ments for breast lesions by their radiologists and referred 
for breast core needle biopsy as their clinical plan; there-
fore, BI-RADS scores of 4, 5 or 6 were included. Inclu-
sion criteria include patients ages 18 and up who had a 
suspicious axillary lymph node identified by axillary 
ultrasound and were scheduled for ultrasound guided 
fine needle aspiration biopsy (FNAB) of ALN, as part of 
their clinical care. A total of three patients were excluded 
from the data analysis. Among excluded patients, one 
scheduled FNAB was cancelled due to benign appear-
ance of the lymph node at the second look in ultrasound 
imaging performed just before the procedure, the report 
of surgery indicated that 0 of 1 sentinel lymph nodes 
were positive for metastatic disease. Other excluded 
patients (N = 2) preferred to have FNAB and follow-ups 
in their hometown. The final cohort included 68 female 
patients, age 28–88  years (mean ± standard deviation: 
55.7 ± 12.9  y). Patients did not receive any treatment 
before the study, and the pathology results of the FNAB, 
obtained from the clinical record, were used as the refer-
ence gold standard. All quantitative HDMI studies were 
conducted prior to FNAB.

Clinical ultrasound features
All enrolled patients had clinical breast imaging exami-
nations and were assigned BI-RADS scores for breast 
lesions before the breast cancer diagnosis. The axilla 
was imaged with ultrasound if a breast mass fell into 
BIRADS 4/5 or if a breast mass was biopsied and posi-
tive for malignancy. Subsequently, our study patients 
underwent axillary ultrasound examination as their clini-
cal care and the morphological features of lymph nodes 
were assessed. Among the ultrasound features of ALNs, 
the cortical thickness and the presence or absence of a 
fatty hilum were considered in analysis as clinical imag-
ing findings.

High‑definition microvasculature imaging and extraction 
of vessel biomarkers
The imaging studies were performed using an Alpin-
ion Ecube12-R ultrasound machine (ALPINION Medi-
cal Systems, Seoul, Korea) with capability of plane wave 
imaging providing a sequence of high-frame-rate images. 
A linear array transducer, L3-12H operating at 8.5 MHz 
(ALPINION Medical Systems, Seoul, South Korea) was 
used for studying subjects with ALNs. Two sonographers 
with more than 30 and 18 years of ultrasound scanning 
experience, conducted the US examination. The axil-
lary lymph nodes were identified on B-mode plane wave 
imaging mode and a sequence of high-frame-rate data 
(at ~ 600 frames per second) was acquired on the ALN 
site, as detailed in [30]. To reduce undesired compression 

effect on altering tissue microvessel, our sonographers 
were instructed to lower the preload during ultrasound 
examination. To minimize motion artifacts, patients were 
asked to remain still and hold their breath for around 3 s 
while the data was being collected. Two acquisitions were 
made for each orientation of the HDMI scan to improve 
repeatability. Only one of the two sonographers partici-
pated in the HDMI scanning for each patient participant. 
HDMI image processing and denoising have been done 
as reported in [8, 35–39]. The ALNs were manually seg-
mented using B-mode images obtained from the IQ data 
reconstruction, binary and skeleton images were pro-
duced to quantify morphological parameters of tumor 
microvessels [32].

Microvessel morphometric analysis
For each targeted lymph node, a region of interest (ROI) 
was defined based on the cortex and hilum boundaries 
acquired from the B-mode ultrasound images. To include 
peripheral vascularity, the defined ROI was dilated 2 mm. 
After the image formation process, a set of processing 
steps consisting of converting to binary image and con-
structing the full skeleton of the vessel network, were 
performed to prepare the microvessel images for quanti-
fication of morphological parameters [32]. After all these 
steps, analysis of desired quantitative parameters of the 
vessels has been done on the vessel segments of output 
images. A series of microvessel morphological parame-
ters of lymph node including, number of vessel segments 
(NV), number of branch points (NB), vessel density (VD), 
vessel diameter (D), distance metric as a measure of tor-
tuosity (τ), microvessel fractal dimension (mvFD), Mur-
ray’s deviation (MD), bifurcation angle (BA), and spatial 
vascularity pattern (SVP) calculated by vessel density 
ratio (VDR), were extracted from output HDMI images, 
and measured. The methods for obtaining HDMI images, 
vessel extraction and steps for vessel segmentation have 
been detailed in [8, 30–32]. A diagram presenting HDMI 
image acquisition, image formation and segmentation to 
extract the vessel biomarkers is shown in Fig. 1.

Microvessel morphological parameters
The tumor microvessel morphological parameters 
extracted from the HDMI images were used in this 
study as imaging biomarkers. One of the most known 
parameters obtained through HDMI is the vessel den-
sity, defined as the ratio of the geometric area of vessel 
segments to the geometric area of the associated lesion 
region of interest [40]. Moreover, we have also calculated 
the number of vessel segments (NV), and the number of 
branch points (NB) (branch point defined as a common 
point connected to three or more vessel segments) [32, 
41]. Vessel diameter, defined as two times the minimum 
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distance between the vessel centerline and the vessel bor-
der has also been measured [32]. Furthermore, Murray’s 
deviation (MD) was an important biomarker used in the 
analysis. Murray’s deviation presents a diameter mis-
match, defined as the deviations from Murray’s Law, defi-
nition, and calculation of which has been detailed in [31]. 
Additionally, vessel tortuosity, determined by the dis-
tance metric (DM), which is defined as the ratio between 
the actual path length of a meandering curve (vessel) and 
the linear distance between the two endpoints [32], was 
evaluated in this study.

Another biomarker that has been included in the analy-
sis is microvessel fractal dimension (mvFD), a unit-less, 
geometrical feature to quantify the structural complex-
ity of a vascular network to provide additional diagnostic 
and prognostic information [31, 42]. Moreover, bifurca-
tion angle, that refers to the angle between two daugh-
ter vessels, has also been used as a distinctive biomarker, 
detailed definition and calculation of which can be found 
in [31]. Vessel density ratio (VDR), defined as the ratio of 
vessel density of the tumor center to periphery [31], and 
spatial vascularity pattern (SVP), calculated by VDR, can 
present the tumor vascular distribution pattern as being 
either intratumoral or being peritumoral [31, 43].

The proposed morphological operations and quan-
tification steps have been well detailed in our previous 
papers [31, 32].

Fine needle aspiration biopsy
All study patients underwent FNAB within one hour 
after the HDMI test. In our institution the false-nega-
tive rate of FNAB is very low. Infrequently, core needle 

biopsy is conducted for any discordant or non-diagnostic 
FNA results. FNAB was done by one of our six board-
certified radiologists with 10 to 30  years of experience 
in breast imaging. The procedure was done under ultra-
sound guidance and standard sterile technique, using 
a 25-gauge needle to obtain six fine needle aspirates for 
each ALN. Slides were immediately prepared and sent 
for cytology. Specimens underwent routine pathologic 
examination and results were obtained from the clinical 
record. The pathological results of FNAB for all ALNs, 
positive or negative were included for data analysis as ref-
erence gold standard.

Statistical analysis and classification modeling
All images and data were analyzed by the members of 
our investigative team who were blinded to the results of 
ALN biopsy. All statistical analyses were performed using 
MATLAB® environment (MATLAB version R2022b). 
For each image, vascular morphological features were 
examined for statistical significance in distinguishing 
metastatic from reactive lymph nodes, using pathol-
ogy outcomes as the reference gold standard. Box plots 
were created for each quantitative biomarker and the 
Wilcoxon rank-sum test was performed to evaluate dis-
tributional differences by malignancy status. Statistical 
significance was considered with p < 0.05.

To evaluate the collective discrimination information 
of the HDMI biomarkers for ALN malignancy status, 
we trained multivariable machine learning classification 
models. The training of the classifier was implemented in 
Classification Learner app on MATLAB. This app allows 
performing supervised machine learning by supplying a 

Fig. 1 HDMI image acquisition and a set of processing for image segmentation to extract vessel biomarkers: A HDMI image acquisition of ALN, 
B Microvasculature image of a metastatic ALN, C Defined ROI with 2 mm dilation of the ALN, D Conversion of the microvasculature image into a 
binary image, E skeleton image of vessel network, F HDMI biomarkers extracted for the skeleton to be used for distinguishing the metastatic ALN 
from reactive. HDMI: High definition microvessel imaging; ALN: Axillary lymph node; mvFD: Microvessel fractal dimension; NB: Number of branch 
points; VD: Vessel density; SVP: Spatial vascularity pattern; D: Diameter; τ: Tortuosity; NV: Number of vessel segments; MD: Murray’s deviation; VDR: 
Vessel density ratio; BA: Bifurcation angle.
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known set of input data and corresponding known labels. 
Three models were developed in this framework. First, all 
of the HDMI biomarkers were used to train a classifica-
tion model, called HDMI model, to classify the metastatic 
and reactive ALNs. Next, clinical factors, namely age, 
cortical thickness, lymph node size, and BI-RADS were 
added to the HDMI model. The new model was denoted 
as the HDMI-C model. Finally, a model trained only on 
the aforementioned clinical factors was developed and 
was named the C model. In order to avoid the problem 
of overfitting, the training was performed using fivefold 
cross-validation. The modeling was performed using a 
random 70/30 train/test split (48 training samples, and 
20 test (10 metastatic, and 10 reactive) samples) using a 
support vector machine (SVM) algorithm with a coarse 
Gaussian kernel, which was then applied to the leave-out 
test data for performance evaluation. SVM is a common 
and efficient supervised machine learning algorithm uti-
lized for classification purposes. The performances of 
trained models on the test set were summarized using 
receiver operating characteristic (ROC) curve analysis, 
reporting the area under the ROC curve (AUC) and the 
corresponding 95% confidence interval (CI). From the 
resulting ROCs, cut-off thresholds corresponding to the 
points closest to maximum sensitivity and specificity 
(top-left corner) were selected to generate estimates of 
sensitivity, specificity, and accuracy.

Sample size and statistical power
This study was not designed to be powered to detect a 
specific effect size a priori. The analytical cohort sample 
size after consideration for inclusion/exclusion criteria 
was N = 68 (34 reactive, 34 metastatic). Under these con-
ditions, a two-sample Wilcoxon rank-sum test for mean 
differences in biomarker values by malignancy status 
under a two-sided alpha level of 0.05 would have approxi-
mately > 90% power to identify a difference equivalent to 
0.82 standard deviations, per simulation under assump-
tions of equal variance and normality.

Results
Of the total of 68 patients, the pathology data of FNAB 
indicated that 34 ALNs were negative for metastasis and 
34 were positive for metastatic carcinoma. Of the meta-
static lymph nodes, the primary tumors were mostly clas-
sified as BI-RADS 5 and 6, 38%, and 47%, respectively. 
The most common histological type of these primary 
tumors was invasive ductal carcinoma (79%) and most 
were reported as grade 2 (56%) and grade 3 (38%). Details 
of the primary tumors for metastatic lymph nodes are 
shown in Table 1.

The cortical thickness ranged from 2 to 25 mm, with a 
mean ± standard deviation of 6 ± 4 mm. The lymph node 

Table 1 Details of the primary tumors for metastatic lymph 
nodes

a Numbers are presented in mean ± standard deviation

Metastatic n = 34 (50%)

Malignant grade

 1 2 (6%)

 2 19 (56%)

 3 13 (38%)

ER (positive) 31 (91%)

PR (positive) 28 (82%)

HER2 (positive) 10 (29%)

Ki‑67a 0.25 ± 0.17

BIRADS

 4 5 (15%)

 5 13 (38%)

 6 16 (47%)

Histological Type

 Invasive ductal carcinoma 27 (79%)

 Invasive lobular carcinoma 5 (15%)

 Invasive mammary carcinoma with mixed ductal and 
lobular features

2 (6%)

Table 2 Participant demographics, lymph node characteristics, 
and the summary of the performance of quantitative HDMI 
biomarkers

Unless otherwise specified, Data are presented as mean ± standard deviation

ª Data are numbers of participants
b  Wilcoxon rank-sum test

Numbers in bold indicate statistical significance, i.e., p-value < 0.05

Reactive
(n = 34)

Metastatic
(n = 34)

p-valueb

Age (y) 55.06 ± 12.93 56.6 ± 13.04 0.73

ALN size (mm) 22 ± 6 24 ± 6 0.0135
Cortical thickness (mm) 4.8 ± 2.0 7.7 ± 4.4  < 0.001
HDMI Biomarkers

  (DMmean)τmean 1.03 ± 0.03 1.04 ± 0.02 0.005
  (DMmax)τmax 1.14 ± 0.16 1.27 ± 0.22 0.00017
 NV 9.56 ± 7.96 24.65 ± 23.13  < 0.00001
 NB 4.00 ± 1.19 13.59 ± 16.44 0.00001
 VD 0.03 ± 0.02 0.06 ± 0.04 0.00018
 VDR 4.94 ± 4.84 2.35 ± 1.73 0.02
 mvFD 1.17 ± 0.11 1.29 ± 0.10  < 0.00001
 μm  Dmax 548.73 ± 106.89 566.03 ± 0.38 0.13

 μm  Dmean 450.41 ± 86.49 449.39 ± 0.31 0.49

  MDmax 0.46 ± 0.27 0.64 ± 0.23 0.007
  MDmean 0.31 ± 0.16 0.32 ± 0.07 0.40

  MDmin 0.18 ± 0.17 0.08 ± 0.09 0.003
  BAmax 114.63 ± 23.60 135.40 ± 11.24 0.006
  BAmean 101.28 ± 18.36 101.03 ± 11.24 0.92

  BAmin 85.37 ± 27.73 62.80 ± 28.39 0.004
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size ranged from 13 to 41 mm, with a mean ±  standard 
deviation of 23 ± 6 mm. Table 2 summarizes the relevant 
results of patient and lymph node characteristics as well 
as the results of quantitative HDMI biomarkers and 
respective p-values for reactive and metastatic ALN. The 
values of the number of vessel segments (NV), number 
of branch points (NB), vessel density (VD), maximum 
tortuosity (τmax), microvessel fractal dimension (mvFD), 
maximum Murray’s deviation  (MDmax), and maximum 
diameter  (Dmax) were much higher in the metastatic 
nodes compared to the reactive ones. Mean bifurcation 
angle  (BAmean) was lower in the metastatic ALN.

High‑definition microvasculature imaging 
of representative metastatic and reactive ALN cases
We demonstrated the visual presentation of the conven-
tional B-mode and the HDMI images of two reactive and 
two metastatic ALNs along with the values of respective 
HDMI biomarkers in Figs. 2 and 3. Figure 2 depicts the 
B-mode and HDMI images of small size lymph nodes, 
16  mm in reactive and 14  mm in metastatic, in largest 
dimension. The visual inspection of the metastatic ALN 
displays more vascularity with dilated vessels than in 
reactive. The quantitative HDMI biomarkers shown on 

the sides of each HDMI image represent the differences 
in the values of each biomarker for reactive and meta-
static lymph nodes. Figure  3 illustrates the B-mode and 
HDMI images of larger lymph nodes, with a mass size 
along the largest dimension of 25  mm in reactive and 
30 mm in metastatic. Visual inspection shows consider-
able hypervascularity and morphological irregularity of 
microvessels in metastatic ALN compared to reactive 
that has fewer microvessels.

Statistical results of HDMI biomarkers for differentiation 
of metastatic and reactive ALNs
Most of quantitative HDMI biomarkers (11/15) show 
statistically significant differences at p < 0.05 between 
metastatic and reactive ALNs, as reported in Table  2. 
The values of NV, NB, VD, mvFD, τmax were significantly 
higher for metastatic ALNs with p-values of < 0.001. The 
values of BAmax and BAmin showed significant differences 
between reactive and metastatic with p-values of 0.006 
and 0.004, respectively. Figure 4A–K shows the boxplots 
for VD, NB, NV, τmax, τmean, VDR, mvFD,  MDmax, MDmin, 
BAmax, and  BAmin.

The ROC curves for the HDMI, HDMI-C, and C mod-
els are shown in Fig.  5. All 15 HDMI biomarkers were 

Fig. 2 B‑mode and HDMI images of small metastatic and reactive ALNs. The relative quantitative biomarkers are shown on the left side of each 
HDMI image. A and B are B‑mode and HDMI images of a small reactive ALN in a 39‑year‑old woman, respectively. C and D are B‑mode and HDMI 
images of a small metastatic ALN in a 60‑year‑old woman, respectively. The dashed white and green curves indicate the boundaries of ALNs with 
and without the 2 mm dilation, respectively
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included in the HDMI model. The AUC for this model 
in the leave-out test set (containing 10 samples from the 
reactive set and 10 samples from the metastatic set) was 
0.89 (95% CI [0.81,0.97]) with a sensitivity, specificity, and 
accuracy of 90%, 75%, and 83%, respectively. The AUC 
was further increased for the HDMI-C model. The cor-
responding AUC estimate was 0.90 (95% CI [0.82,0.98]) 
with the sensitivity, specificity, and accuracy of 90%, 
88%, and 89%, respectively. The C model trained only 
on the clinical biomarkers had an AUC of 0.86 (95% CI 
[0.77,0.95]) with the sensitivity, specificity, and accuracy 
of 80%, 80%, and 80%, respectively.

Discussion
The current study explored the performance of the 
quantitative biomarkers of contrast-free high-definition 
microvessel imaging (HDMI) in differentiating meta-
static and reactive ALNs. Our findings reveal that most 
of the HDMI biomarkers (Tortuosity, Diameter, NV, NBP, 
VD, mvFD, MD, BA and VDR) demonstrated significant 
differences between metastatic and reactive ALNs. In 
the current study, the SVM-based classification models 
demonstrated the discriminating performance of using 
HDMI biomarkers as training features. SVM is known 

to be effective for classification of high-dimensional 
data, and in conditions with limited number of samples 
compared to the number of features. The addition of the 
clinical features age, cortical thickness, lymph nodes size 
and BI-RADS scores, to the multivariable analysis can 
increase the sensitivity, accuracy, and AUC (as was the 
case for our test set in this study).

Preclinical studies using contrast enhanced ultra-
sound approach [44] and 3-dimensional super resolu-
tion imaging of microvessels of rabbit’s lymph node [45] 
have examined the importance of microvessel density for 
diagnosis of lymph node metastasis, however, both tech-
niques need the injection of exogenous contrast agents, 
and have limited quantification evaluation. Without the 
help of contrast agents, a clinical study was conducted 
using superb microvessel imaging (SMI) [27] for dif-
ferentiation of metastatic from reactive lymph nodes, 
however, the quantification was limited to vessel index 
estimation and pixel counting with a sensitivity and spec-
ificity of and 69% and 63%, respectively. Instead, the cur-
rent work combines a wide range of quantitative HDMI 
biomarkers that can separate metastatic from reactive 
ALN with higher sensitivity and specificity than what 
was reported in the SMI study. The further advantage of 

Fig. 3 B‑mode and HDMI images of large metastatic and reactive ALNs. The relative quantitative biomarkers are shown on the left side for each 
HDMI image. A and B are B‑mode and HDMI images of a large reactive ALN in a 41‑year‑old woman, respectively. C and D are B‑mode and HDMI 
images of a metastatic ALN in a 63‑year‑old woman, respectively. The dashed white and green curves indicate the boundaries of ALNs with and 
without the 2 mm dilation, respectively
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Fig. 4 Box plots of significant biomarkers for differentiation of reactive and metastatic lymph nodes. A. Vessel density (VD), B. Number of 
vessel segments (NV), C. Number of branch points (NB), D. Maximum tortuosity (τmax), E. Mean tortuosity (τmean), F. Vessel density ratio (VDR), G. 
Microvessel fractal dimension (mvFD), H. Maximum Murray’s deviation  (MDmax), I. Minimum Murray’s deviation  (MDmin), J. Maximum bifurcation 
angle  (BAmax), K. Minimum bifurcation angle  (BAmin). *p < 0.05, **p < 0.01, ***p < 0.001, **** < 0.0001, ***** < 0.00001, Benign (n = 34) Malignant 
(n = 34)
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the proposed method is that the enhancement and visu-
alization of microvessels at the submillimeter level is pos-
sible without the help of contrast agents. Additionally, 
HDMI method can accurately quantify vessel diameter, 
which may be challenging in contrast-enhanced tracking 
approaches [46].

The current study shows increased numbers in vessel 
segments and branch points in metastatic lymph nodes, 
indicating the presence of a greater level of vessel sprout-
ing, an important marker in metastatic lymph nodes [47]. 
This result is supported by previous studies [30, 31, 48]. 
Vessel tortuosity metric was also statistically significantly 
higher in metastatic compared to reactive ALNs, which 
is in agreement with the fact that vessel tortuosity anal-
ysis can offer additional information that help with dis-
criminating malignant lesions from hypervascular benign 
lesions [49]. Our study also shows maximum vessel tor-
tuosity has higher statistically significant differences 
compared to averaging. This is in agreement with prior 
studies that have shown that as tumor expands in size, 
more tortuous vessels with increased diameter are seen 
in the periphery rather than the center of the tumor [22, 
50], suggesting that averaging these biomarkers has less 
diagnostic value than their maxima. The current study 
also investigated the performance of other vessel mor-
phological parameters such as Murray’s deviation, show-
ing a significantly higher value in metastatic ALNs. This 
is supported by observation of deviation from Murray’s 
Law, observed in diseased tissue and for differentiation 
of malignant from benign breast masses, reported in [30, 
31, 48]. Furthermore, current study shows statistically 
significant differences of bifurcation angle in metastatic 
and reactive ALNs that is also observed in breast masses 

differentiation [30, 31, 48]. In current study, microvascu-
lar complexity, measured by mvFD, shows higher values 
in metastatic compared to reactive ALNs. This finding 
indicates that malignant lesions tend to have dense vas-
cularity, with irregularly branched and twisted microves-
sels, therefore the findings indicate promise, but that 
would need to be followed with additional studies[30, 31, 
51].

One limitation of our study is that the imaging method 
used in this study is two-dimensional (2D). Estimat-
ing HDMI biomarkers in 2D plane may ignore some of 
the morphological features and the connectivity of ves-
sels in three-dimensional (3D) space, resulting in either 
underestimation or overestimation of many morpho-
metric parameters [52]. Additionally, the sample size was 
relatively small. To address these limitations, we plan to 
advance our 3D-HDMI technique and study on a large 
patient population to further investigate the efficiency of 
these morphometric parameters in differentiating meta-
static ALNs from reactive.

Conclusion
The use of a noninvasive and affordable quantitative 
imaging tool that provides objective information is of 
importance for prediction of metastatic ALNs in breast 
cancer patients. In current study, we showed the per-
formance of quantitative vessel biomarkers extracted 
by a contrast-free ultrasound microvessel imaging 
technique, HDMI. Using the morphological features 
of tumor microvessels, we were able to separate meta-
static from reactive ALNs with high accuracy. Addition 
of clinical factors to the set of features showed a poten-
tial for further increase of the classification accuracy 

Fig. 5 ROC curves generated with HDMI biomarkers extracted from HDMI images, and clinical biomarkers. Green line represents the HDMI model, 
red line depicts HDMI‑C model, and the blue line corresponds to the C model. The table on the right side of the figure contains a summary of 
the test‑set performance of the biomarkers in discriminating metastatic and reactive ALNs. HDMI = high‑definition microvasculature imaging, 
HDMI‑C = high‑definition microvasculature imaging + clinical data, AUC = area under the curve, ROC = receiver operating characteristic.
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in this study. Furthermore, as a complementary tool 
to conventional ultrasound, quantitative HDMI could 
offer a way to accurately assess the status of ALNs, stag-
ing breast cancer, and minimize the number of unnec-
essary ALN biopsies.
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