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Abstract 

Background Researchers have suggested that longitudinal trajectories of mammographic breast density (MD) can 
be used to understand changes in breast cancer (BC) risk over a woman’s lifetime. Some have suggested, based on 
biological arguments, that the cumulative trajectory of MD encapsulates the risk of BC across time. Others have tried 
to connect changes in MD to the risk of BC.

Methods To summarize the MD–BC association, we jointly model longitudinal trajectories of MD and time to diag-
nosis using data from a large ( N = 40,087 ) mammography cohort of Swedish women aged 40–80 years. Five hundred 
eighteen women were diagnosed with BC during follow-up. We fitted three joint models (JMs) with different associa-
tion structures; Cumulative, current value and slope, and current value association structures.

Results All models showed evidence of an association between MD trajectory and BC risk ( P < 0.001 for current 
value of MD, P < 0.001 and P = 0.005 for current value and slope of MD respectively, and P < 0.001 for cumulative 
value of MD). Models with cumulative association structure and with current value and slope association structure 
had better goodness of fit than a model based only on current value. The JM with current value and slope structure 
suggested that a decrease in MD may be associated with an increased (instantaneous) BC risk. It is possible that this is 
because of increased screening sensitivity rather than being related to biology.

Conclusion We argue that a JM with a cumulative association structure may be the most appropriate/biologically 
relevant model in this context.
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Introduction
A woman’s breast is a complex soft-tissue organ and its 
composition changes over time. Mammographic density 
(MD) reflects breast tissue composition; epithelial and 
stromal cells, collagen, and fat and varies extensively 
between individuals. MD is the most established image-
based risk factor for BC [1–4]. MD also plays a major 
role in decreasing mammographic sensitivity [5–7], 
since both dense tissue and tumors appear white on 
mammograms.
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Researchers have suggested that longitudinal trajecto-
ries of breast density can be used to understand changes 
in BC risk over a woman’s lifetime [8]. Several stud-
ies have tried to understand the changes of density with 
age using tumor free mammograms [9–12]. It has been 
shown that decline in MD with increasing age is most 
pronounced over the menopausal transition [13], and 
reaches a plateau around the age of 65 [9]. These trends 
are consistent across diverse groups of women around 
the globe, suggesting that they result from an intrinsic 
biological, most likely hormonal, mechanism [9, 10]. This 
pattern in density decline led researchers to draw paral-
lels to Pike’s model for the rate of breast tissue ageing [14, 
15]. This model suggests that the slowing rate of increase 
of age-specific BC incidence which is seen after meno-
pause occurs because of a reduction in the rate of breast 
tissue ageing in postmenopausal women [16]. Boyd et al. 
[17] showed that age-specific cumulative MD is strongly 
associated with age-specific incidence of BC using cross-
sectional data. They suggested that the cumulative MD 
profile is consistent with the accumulation of mutations 
with increasing time of exposure to MD, and that it may 
be considered as a tissue-specific marker of the biological 
processes underlying the rate of breast tissue ageing [9, 
13]. No study in the literature has yet showed that cumu-
lative value of MD at an individual level, i.e. using longitu-
dinal data, is associated with BC risk.

Others studies have tried to connect changes in MD 
to the risk of BC via (association) analyses of longitudi-
nal data. These have provided contrasting conclusions 
[8, 18–23]. These studies have used different methods 
for measuring MD, and have defined density change in 
different ways. They have used fairly standard statisti-
cal methods in their analyses, treating density measure-
ments as fixed covariates. Recent studies [21, 22] have 
included density change as a time-varying covariate in a 
time-to-event analysis (Cox model). This approach is not 
ideal. Firstly, it assumes that the time-dependent covari-
ate is exogenous, and secondly, it compensates for the 
fact that the covariate is not observed continuously by 
replacing unobserved values by the most recent observed 
value. This approach can provide biased parameter esti-
mates, especially when there are irregular and infrequent 
measures of the marker. Moreover, it assumes that MD 
is measured without error. MD measurements are known 
to be noisy. Ignoring measurement error in a marker can 
lead to a severe underestimation of an association with a 
time-to-event/diagnosis process [24].

For observational studies with longitudinal data on 
MD and follow-up of cancer diagnoses it is appropriate 
to jointly model both processes, i.e. to fit a joint model 
(JM) [25]. In addition to accounting for the measurement 
error in the longitudinal outcome (MD), JM offers several 

options for modeling the association between the marker 
(MD) and the time-to-event (diagnosis) process [26]. 
JMs have been previously used to study the association 
between density/density change and death due to BC in 
BC patients [27]. As far as we are aware, there is only 
one publication [28] in which a JM has been used to 
study the association between MD and BC diagnosis/
incidence. This work did not specifically model error 
in the measurements of density, and assumed a linear 
trajectory for the longitudinal marker and a simple model 
for the time-to-event process (current value association 
structure; see “Methods” section).

The objective of this paper is to explore the use of 
joint modelling of observational data, for investigating 
hypotheses that have been put forward to explain the 
association between the trajectory of MD and the risk of 
BC. We fit three JMs with different association structures 
to a large Swedish mammography screening cohort 
which has been previously used to study MD change and 
BC risk [22].

Materials and methods
Materials
KARMA is a population-based prospective screening 
cohort [29]. All women that participated in the national 
screening program at four mammography units in Swe-
den from January 2011 to March 2013, were invited to 
participate in the study. Women attending screening were 
enrolled, irrespective of how many previous screens they 
had attended. A total of 70,874 women were included. 
Informed consent was given for a continuous collection of 
mammograms. Using the Swedish personal identification 
number, KARMA has been linked to a number of regis-
ters, including the national quality register for BC. For the 
present study we excluded all women without informed 
consent and with missing information on MD, body mass 
index (BMI), hormone replacement therapy (MHT)  and 
menopausal status at baseline (MP). We also excluded 
prevalent breast cancer cases, women with previous can-
cers, except non-melanoma skin cancer, women with any 
breast surgery, including those with breast enlargement 
and/or breast reduction. Moreover, we included only 
women aged between 40 and 74 at baseline, and ended 
follow-up at age 80. Because we investigate longitudinal 
MD, we started follow-up from the second screen after 
entrance to the cohort (most women - those older than 
the minimum screening age that had previously accepted 
screening invitations - had had several screens before 
entering the KARMA study). This selection (delayed 
entry) is handled appropriately in the statistical analy-
sis (see “Methods” section). The final analysis included 
40,087 women. Five hundred eighteen of these women 
were diagnosed with BC during follow-up. This number 
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includes both in-situ and invasive cancers and cancers 
diagnosed both via screening and symptomatically. All 
participants signed an informed consent and the ethi-
cal review board at Karolinska Institutet approved the 
study.

Processed mammograms from the mediolateral 
oblique (MLO) view of both breasts were collected from 
full-field digital mammography systems. For women with 
BC, mammograms from the contralateral breast (i.e the 
breast which does not have a tumor) were used, whereas 
for women that were not diagnosed with BC before the 
end of follow-up, one side was selected randomly at 
baseline and follow-up measurements were based on 
mammograms from the same side. Dense area (cm2 ) 
was measured using the STRATUS method which aligns 
mammograms from the same woman before taking den-
sity measurements [30]. We used area-based absolute 
density in our analysis, which is believed to be a more 
etiologically relevant phenotype of MD for BC risk than 
percent density, since it reflects the amount of tissue at 
risk of carcinogenesis [31].

Methods
Joint modeling is an increasingly productive area of 
statistical research that has developed rapidly since the 
1990s [25, 32–34]. JMs construct a mixed-effects model 
to describe the evolution of the longitudinal outcome 
(MD) over time, and simultaneously connect that process 
(as a time dependent covariate) to an outcome (BC) using 
a time-to-event model. JM accounts for loss of follow-up 
(correctly handles the potential association between the 
longitudinal measurements and drop-out) while taking 
random variation into account.

Longitudinal submodel
For modeling MD over time we use a mixed-effects 
model [35]

where yi(tij) is the jth observed longitudinal response of 
the continuous biomarker (MD) for the ith individual 
taken at time tij . Measurement error is incorporated 
through ǫij , and mi(tij) is modeled as:

where fixed effects β , with design matrix Xi are shared 
across individuals (they represent the mean trajectory of 
the biomarker over time), and patient-specific random 
effects bi with design matrix Zi define the individual 
deviation relative to the mean trajectory. The random 

(1)yi(tij) = mi(tij)+ ǫij , ǫij ∼ N (0, σ 2)

(2)
mi(tij) = XT

i (tij)β + ZT
i (tij)bi + uTi δ, bi ∼ N (0,D)

effects are assumed to have a multivariate normal 
distribution with mean zero and variance-covariance 
matrix D. It is possible to model nonlinear trajectories by 
including polynomials or splines of time in both Xi and 
Zi , and the effect of covariates on the trajectory can be 
modeled by including interactions with time in Xi and Zi . 
Baseline covariates are included using ui with regression 
coefficients δ . The model naturally handles uneven 
spacing of repeated measurements.

Time‑to‑event submodel
We use a proportional hazards model to model time to 
diagnosis. We assume that the hazard of experiencing 
the event of interest (cancer diagnosis) is dependent 
on a subject-specific characteristic of the longitudinal 
trajectory and that it can be formulated as

where h0(t) describes the (baseline) hazard. The effect 
parameters γ describe how the hazard varies as a function 
of explanatory covariates wi . The parameter α quantifies 
the association between a priori selected features of the 
longitudinal process and the hazard for the event at time 
t. Several options for the function f() are possible and 
lead to different forms of the time-to-event submodel 
[26]. The first considered function is:

This formulation assumes that the current ‘true’ level 
of MD is directly associated with the instantaneous 
risk of BC. The second considered function includes 
an additional term which is the current slope (rate of 
change) of MD:

The coefficients α1 and α2 express the strength of the 
association between the current value and rate of change 
of the (true) subject trajectory (of MD) at time t and the 
instantaneous risk of BC diagnosis. The last considered 
function is based on the cumulative value of MD:

This formulation accounts for the projected history of 
the longitudinal outcome (i.e. true/latent MD) from a 
user-specified initial time (age), t0 , up to the current time 
(age), t, in the predictor of the relative risk submodel.

In the Results section we illustrate, with an exam-
ple, specifically for functions (5) and (6), how choice of 

(3)hi(t) = h0(t) exp(γ
Twi + f (mi(t), bi,α)),

(4)f (mi(t), bi,α) = α mi(t)

(5)f (mi(t), bi,α) = α1mi(t)+ α2m
′

i(t)

(6)f (mi(t), bi,α) = α
t

t0

mi(s) ds
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function impacts the relationship between the marker 
trajectory and (instantaneous) risk.

Specific model formulations
For the longitudinal submodel, we included an effect of 
MHT use (never used/former use/current use), BMI 
(continuous variable), and MP status (pre/post) as 
variables at baseline. We transformed MD by taking 
its square root, to have a normal distribution, prior to 
including it in the longitudinal submodel. To account 
for a nonlinear trend, we applied a natural cubic spline 
within the mixed-effects models (in both the fixed and 
random effects). We allowed the trend over time to differ 
according to MHT treatment and MP status. This, in an 
approximate manner, accounts for individual variation in 
the ages at which women enter menopause. We fitted the 
model:

where Bn(t, �k) : k = 1, 2, 3 denotes the B-spline basis 
matrix for a natural cubic spline with knots �k : interior 
knots at ages 50 and 55 years were chosen, while bound-
ary knots at ages 43 and 65 years constrained the trends 
to be linear beyond these ages. We note that the multi-
variate distribution of the random effects naturally han-
dles that baseline MD will be strongly associated with the 
level of MD reduction across time.

For the time-to-event (cancer diagnosis) process, a 
relative risk model with a penalized-spline-approximated 
baseline risk function was used in all cases. We included 
BMI, MHT, and family history (FH) of BC (No/yes/
missing) as covariates. We used a time scale based on 
age since 40, as 40 is the lower limit of the screening age 
interval. The majority of women entered the study over 
the age of 40, which means that they had delayed entry 
times. The resulting left truncation was accounted for in 
our analysis. The hazard is modelled as:

Software
We used the JMbayes package in R for our analysis. A 
study [36] reviewing seven available JM packages in R 

(7)

yi(tij) = (β0 + bi0)+ (β1 + bi1)Bn(t, �1)+ (β2 + bi2)Bn(t, �2)+ (β3 + bi3)Bn(t, �3)

+ β4Bn(t, �1)MHT1i + β5Bn(t, �2)MHT1i + β6Bn(t, �3)MHT1i

+ β7Bn(t, �1)MHT2i + β8Bn(t, �2)MHT2i + β9Bn(t, �3)MHT2i

+ β10Bn(t, �1)MP1i + β11Bn(t, �2)MP1i + β12Bn(t, �3)MP1i

+ δ1BMIi + δ2MHT1i + δ3MHT2i + δ4MP1i + ǫij , ǫij ∼ N (0, σ 2)

(8)
hi(t) = h0(t) exp(γ1BMIi + γ2MHT1i

+ γ3MHT2i + γ4FH1i + γ5FH2i

+ f (mi(t), bi,α))

concluded that, JMbayes [26] is the most comprehensive 
and expandable one. JMbayes allows for flexibility in 
the modeling of parametric and nonparametric baseline 
hazards, spline-based nonlinear longitudinal trajectories, 
and different association structure parameterizations. It 
also handles left truncation.

Model comparisons and Bayes p values
Because we use Bayesian inference software, in order to 
compare the different JMs in terms of goodness-of-fit, we 
rely on the Deviance Information Criterion (DIC), which 
is a hierarchical modeling generalization of the Akaike 
information criterion [37]. Smaller values indicate better 
model adjustments to the data. Reported point estimates 
of parameters are posterior means, and p-values are 
Bayes p-values, based on tail probabilities for containing 
the value zero [26].

Results
Key characteristics of individuals included in our analyses 
are described in Table 1. The average length of follow-up 
was 5.44 years. The time interval between mammogra-
phy rounds in this cohort was 18–24 months. The major-
ity of women (76.3%) had completed 3 or more rounds 
of mammography. The maximum number of rounds 
of mammography was six. 518 women were diagnosed 
with BC during follow-up. Those women were older, 
more likely to be postmenopausal, to be using MHT, 
and to have a first-degree relative that has been diag-
nosed with BC, than women without a BC diagnosis by 
end of follow-up. Women who developed breast cancer 
were older at baseline and had fewer screens compared 
to the women who did not develop breast cancer during 
follow-up. This is a bi-product of the strong relationship 
between age and breast cancer risk. The women entering 
at younger ages have lower chance of being diagnosed 
during follow-up (and consequently have more screens) 
than those entering at older ages.

Figure  1 represents (the square root of ) MD meas-
urements (joined by lines) for 1000 randomly selected 
individuals. We smoothed the data points (for all 
KARMA women) using a natural cubic spline and added 
this (with  95% confidence band in blue) to the figure. 
Although this function represents an average, it has a 
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pattern which is thought to be typical of an individual’s 
MD trajectory. MD is inversely and nonlinearly associ-
ated with age, with the largest declines observed between 
the ages of 45 and 60 years (during the menopausal tran-
sition) [9, 10, 13]. The large measurement error that con-
tributes to the fluctuations in measured MD across time, 
within individuals, provides motivation for using a JM 
approach, i.e. to improve statistical efficiency.

Point estimates, with 95% credibility intervals, for 
all joint models—for parameters in the event and the 
longitudinal processes are shown in Tables  2 and  3, 
respectively. We refer to models using the time-to-event 
sub-models in Eqs. (4)–(6), as models (1)–(3), respec-
tively. All models showed strong evidence of an asso-
ciation between MD trajectory and BC risk ( Pα < 0.001 
for current value of MD in model (1), Pα1 < 0.001 and 
Pα2 = 0.005 for current value and slope of MD respec-
tively in model (2), and Pα < 0.001 for the cumulative 
value of MD in model (3)). According to the DIC crite-
rion, the best model fit was obtained using the current 

value and slope of MD association structure (model (2), 
DIC = 1,074,546), followed by the cumulative associa-
tion structure (model (3), DIC = 1,075,533), and then the 
current value of MD alone (model (1), DIC = 1,075,645). 
Model (1) suggested that a 1-unit increase in the value 
of the square root of MD corresponds to a exp(0.130) = 
1.139-fold increase in the risk of BC diagnosis (2.5–97.5% 
credibility interval (CI): 1.084–1.190). Using model 
(2), we estimated that a 1-unit increase in the value of 
the slope is associated with a exp(−  1.160) = 0.313-
fold decrease in the risk of BC diagnosis (2.5–97.5% CI 
0.135–0.716)). This is counter-intuitive as it implies that 
reducing density increases risk. An explanation of this 
observation is given in the Discussion. Model (3) suggests 
that a unit increase in the area under the profile of the 
square root of MD corresponds to a exp(0.008) = 1.008-
fold increase in risk (2.5–97.5% CI 1.005–1.011); Table 2.

Table 3 shows that the estimated coefficients for the 
longitudinal process were similar in all JMs. In accord-
ance with previous literature [38, 39], MD was nega-
tively associated with BMI and MP, and was positively 
associated with MHT. Statistical significance of the 
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Fig. 1 MD trajectory with age. Smoothed average (square root) 
MD values (all women), with age (the line is encapsulated within a 
95% confidence band marked in blue), and individual trajectories of 
(square root) MD for a sample of 1000 women (black)

Table 1 Key characteristics at baseline of individuals included in 
the study

Means (with standard deviations) are given for continuous variables and 
proportions (with percentages) are given for categorical variables

 Characteristic BC diagnosis by end of 
follow‑up

All

Yes No

Number 518 39,569 40,087

   Invasive 443 (85.5%) – –

   In-situ 75 (14.5%) – –

   Screen detected 374 (72.2%) – –

   Symptomatic 144 (27.8%) – –

No. of screens

   2 rounds 317 (61.2%) 9210 (23.3%) 9527 (23.7%)

   3 rounds 176 (34.0%) 24,832 (62.7%) 25,008 (62.4%)

   4 rounds 25 (4.8%) 5418 (13.7%) 5443 (13.6%)

   5 or 6 rounds – 109 (0.3%) 109 (0.3%)

MHT use

   Never 387 (74.7%) 32,513 (82.2%) 32,900 (82.1%)

   Past 96 (18.5%) 5608 (14.2%) 5704 (14.2%)

   Current 35 (6.7%) 1448 (3.6%) 1483 (3.7%)

Age at baseline 57 (9.4) 53.5 (9.3) 53.5 (9.3)

BMI 25.5 (4.1) 25.1 (4.1) 25.2 (4.2)

sqrt(MD) 5 (2.3) 4.8 (2.3) 4.8 (2.3)

MP status

   Pre 191 (36.9%) 19,285 (47.7%) 19,476 (48.6%)

   Post 327 (63.1%) 20,284 (51.3%) 20,611 (51.4%)

FH

   Yes 112 (21.6%) 5249 (13.3%) 5361 (13.4%)

   No 392 (75.7%) 33,290 (84.1%) 33,682 (84.0 %)

   Missing 14 (2.7%) 1030 (2.6%) 1044 (2.6%)
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spline interaction terms suggest that the models cap-
tured (to some degree) the influence of the timing of 
the menopause and MHT on the MD trajectory. For all 
models, the risk of being diagnosed with BC, was posi-
tively associated with current use of MHT and having a 
family history of BC.

For each individual we obtained predicted (square 
root) MD values across their follow-up period based 
on the fitted joint model (3). We smoothed these values 
using splines—separately for individuals with/without 
a BC diagnosis during follow-up; see Fig.  2. At young 
ages, on average, the women with a BC diagnosis appear 
to have slightly higher levels of density, and their density 
declines later on, than is the case for women without a 
BC diagnosis. For the other JMs, the corresponding plots 
were almost identical (data not shown). We also note 
that when we smooth the observed MD values separately 
for women with and without a BC diagnosis during 
follow-up, we see exactly the same pattern (data not 
shown).

To illustrate the significance of the estimates of the 
parameters of the time-to-event model, we estimated 
hazard functions for two hypothetical individuals with 

trajectories of (square root) of MD; Fig.  3. These were 
chosen to resemble the smoothed function in Fig. 2. Both 
individuals were assumed to have BMI values of 23 and 
to not have been using HRT. We note that for model (2) 
because of the negative coefficient for MD slope, the cor-
responding plots of the hazard functions crossed each 
other (see Discussion for an explanation).

Discussion
Using data from a large prospective mammography 
screening cohort, we fitted three JMs with different associ-
ation structures to investigate the association between MD 
and BC risk. The goodness-of-fit of both models that used 
(additional) characteristics of the MD trajectory, improved 
in comparison to using only the current value of MD.

Using only one measurement of MD, it has been con-
sistently shown that women with a high MD have a sub-
stantially higher risk of BC than women with low MD; 
in [1], for example, women with 75% or greater MD 
were estimated to have an approximately 5-fold higher 
risk of BC compared to women with less than 10% 
dense tissue. In [28] which used a (Bayesian) JM with 
the current value of MD considered as a categorical 

Table 2 Parameter estimates and 95% credibility intervals for the event process under the joint modeling analysis with different 
association structures

BMI: body mass index; MHT: menopausal hormone treatment  (MHT1=former use,  MHT2=current use); FH: family history  (FH1=yes,  FH2=missing); *: represents 
multiplicative change in risk per 1-unit increase in the parameter value

Coefficient 2.5% 97.5% Exp(Coeff.)* P

Model (1)

   BMI ( γ1) 0.034 0.009 0.055 1.034 0.003

   MHT1 ( γ2) − 0.078 − 0.306 0.156 0.925 0.507

   MHT2 ( γ3) 0.400 0.016 0.728 1.492 0.039

   FH1 ( γ4) 0.518 0.280 0.717 1.678 0.000

   FH2 ( γ5) 0.060 − 0.476 0.571 1.062 0.790

   Current value ( α) 0.130 0.081 0.174 1.139 0.000

Model (2)

   BMI ( γ1) 0.034 0.008 0.057 1.035 0.007

   MHT1 ( γ2) − 0.087 − 0.322 0.153 0.917 0.509

   MHT2 ( γ3) 0.400 0.020 0.730 1.492 0.037

   FH1 ( γ4) 0.514 0.305 0.718 1.672 0.000

   FH2 ( γ5) 0.058 − 0.487 0.538 1.060 0.777

   Current value ( α1) 0.120 0.071 0.168 1.127 0.000

   Current slope ( α2) − 1.160 − 2.003 − 0.334 0.313 0.005

Model (3)

   BMI ( γ1) 0.039 0.019 0.060 1.040 0.000

   MHT1 ( γ2) − 0.067 − 0.296 0.170 0.964 0.612

   MHT2 ( γ3) 0.404 0.019 0.725 1.498 0.036

   FH1 ( γ4) 0.511 0.301 0.720 1.667 0.000

   FH2 ( γ5) 0.064 − 0.506 0.572 1.066 0.788

   Cumulative value (α) 0.008 0.005 0.011 1.008 0.000
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variable using BIRADs, the mean of the posterior dis-
tribution of the hazard ratio was around four for cat-
egory d (extremely dense) versus category a (fatty). Our 
results using model (1) yielded a similar effect size to 
these studies; women with current value of MD > 80 
cm2 have > 4 fold higher risk of BC diagnosis than 
women with less than 25 cm2 . Studies based on analys-
ing longitudinal data on MD, have focused on specific 
hypotheses—namely, current change of MD having a 
direct effect on current BC diagnosis [21, 22]. These 
studies have provided conflicting conclusions and have 
treated density change as a categorical variable (with-
out accounting for measurement error).

The cumulative association structure-based model 
(model (3)) can be motivated by Boyd et  al. [17] who 
argue that cumulative exposure to MD may reflect 
cumulative exposure to hormones that stimulate cell 

division in the breast and hence may be an important 
determinant of BC incidence. Our analysis is the first to 
examine this hypothesis by modelling individual level 
information, i.e. longitudinal data.

The observation obtained from model (2), that a high 
(instantaneous) decrease in MD is associated with an 
increased rate/risk of BC (diagnosis) is contrary to a 
hypothesis put forward in the literature, that women who 
do not experience a density decrease over time have a 
higher risk of BC than women who experience a decrease 
in MD [21–23]. The most likely explanation of the nega-
tive coefficient for density change in model (2) is that an 
instantaneous decrease in density can aid tumor detec-
tion, i.e. increase screening sensitivity. Some studies have 
specifically demonstrated how the age-related decrease in 
mammographic density is related to the increase of sensi-
tivity of mammography with age [40, 41]. An alternative 

Table 3 Parameter estimates and 95% credibility intervals for longitudinal submodels under the joint modeling analysis (2)

Longitudinal outcome is square root of MD. D[i, j] denote the ij-element of the covariance matrix for the random effects

BMI body mass index, MHT menopausal hormone treatment, MP menopausal status

Model(1) Model (2) Model (3)

Value 2.5% 97.5% P Value 2.5% 97.5% P Value 2.5% 97.5% P

Intercept ( β0) 10.321 10.215 10.423 0.000 10.316 10.211 10.419 0.000 10.318 10.216 10.421 0.000

Spline1 ( β1) − 2.163 − 2.220 − 2.101 0.000 − 2.160 − 2.218 − 2.106 0.000 − 2.161 − 2.218 − 2.105 0.000

Spline2 ( β2) − 2.685 − 2.748 − 2.616 0.000 − 2.682 − 2.748 − 2.618 0.000 − 2.685 − 2.750 − 2.617 0.000

Spline3 ( β3) − 2.424 − 2.473 − 2.373 0.000 − 2.422 − 2.470 − 2.374 0.000 − 2.423 − 2.471 − 2.373 0.000

MHT1 × Spline1 ( β4) 0.302 0.183 0.419 0.000 0.301 0.189 0.412 0.000 0.293 0.181 0.410 0.000

MHT1 × Spline2 ( β5) 0.088 − 0.050 0.224 0.193 0.085 − 0.050 0.216 0.211 0.076 − 0.057 0.210 0.266

MHT1 × Spline3 ( β6) 0.229 0.124 0.332 0.000 0.231 0.129 0.330 0.000 0.223 0.121 0.328 0.000

MHT2 × Spline1 ( β7) 0.643 0.449 0.829 0.000 0.642 0.449 0.842 0.000 0.654 0.451 0.855 0.000

MHT2 × Spline2 ( β8) 0.253 0.024 0.479 0.033 0.252 0.023 0.483 0.029 0.265 0.027 0.492 0.025

MHT2 × Spline3 ( β9) 0.514 0.339 0.683 0.000 0.514 0.340 0.693 0.000 0.526 0.350 0.705 0.000

MP1 × Spline1 ( β10) 0.916 0.836 1.002 0.000 0.918 0.837 0.995 0.000 0.916 0.839 0.993 0.000

MP1 × Spline2 ( β11) 0.854 0.759 0.956 0.000 0.853 0.760 0.947 0.000 0.853 0.758 0.948 0.000

MP1 × Spline3 ( β12) 0.980 0.907 1.054 0.000 0.981 0.912 1.051 0.000 0.979 0.910 1.047 0.000

BMI ( δ1) − 0.179 − 0.183 − 0.175 0.000 − 0.179 − 0.183 − 0.175 0.000 − 0.179 − 0.183 − 0.175 0.000

MHT1 ( δ2) − 0.035 − 0.116 0.042 0.395 − 0.036 − 0.117 0.047 0.388 − 0.029 − 0.117 0.053 0.505

MHT2 ( δ3) 0.174 0.038 0.318 0.012 0.177 0.040 0.310 0.013 0.167 0.029 0.306 0.013

MP1 ( δ4) − 0.508 − 0.560 − 0.457 0.000 − 0.510 − 0.561 − 0.457 0.000 − 0.509 − 0.558 − 0.457 0.000

σ 0.547 0.539 0.554 0.000 0.546 0.539 0.554 0.000 0.547 0.539 0.554 0.000

D[1, 1] 3.873 3.474 4.249 0.000 3.896 3.500 4.281 0.000 3.874 3.475 4.258 0.000

D[2, 1] − 3.435 − 3.788 − 3.096 0.000 − 3.432 − 3.782 − 3.093 0.000 − 3.374 − 3.725 − 3.018 0.000

D[3, 1] − 4.088 − 4.628 − 3.551 0.000 − 4.109 − 4.653 − 3.558 0.000 − 4.073 − 4.627 − 3.501 0.000

D[4, 1] − 3.652 − 4.003 − 3.297 0.000 − 3.627 − 3.974 − 3.266 0.000 − 3.613 − 3.945 − 3.257 0.000

D[2, 2] 9.195 8.219 10.142 0.000 9.210 8.245 10.149 0.000 9.139 8.078 10.193 0.000

D[3, 2] 8.287 7.642 8.952 0.000 8.260 7.630 8.910 0.000 8.158 7.512 8.816 0.000

D[4, 2] 7.120 6.373 7.859 0.000 7.141 6.379 7.871 0.000 7.093 6.308 7.884 0.000

D[3, 3] 12.147 10.781 13.515 0.000 12.147 10.749 13.486 0.000 12.109 10.646 13.510 0.000

D[4, 3] 6.486 6.027 6.964 0.000 6.436 5.953 6.920 0.000 6.421 5.938 6.906 0.000

D[4, 4] 7.077 6.321 7.822 0.000 7.085 6.326 7.845 0.000 7.054 6.295 7.783 0.000
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explanation could be related to the fact that breast tis-
sue undergoes a massive remodeling during menopausal 
transition, known as lobular involution [42]. It has been 
shown that women with later ages at menopause have 
on average shorter menopausal transition periods than 
women with early ages at menopause. This might indi-
cate a higher rate of change in women with late age at 
menopause, which might reflect a higher risk of BC [43]; 
see Fig. 2. We believe that the first explanation, that MD 
reduction increases sensitivity, is most likely, since we 
model diagnosis rather than the (unobservable) onset of 
cancer.

Because screening is not specifically incorporated in 
the modelling process, the effect of density change is, 
inappropriately, applied across all time points and can 
account e.g. for the unexpected crossing of hazard curves 

as observed in model (2) in Fig. 3 (in practice risk of diag-
nosis increases at the specific times that women attend 
screening and may particularly increase at these time 
points if density has decreased). For this reason, we sug-
gest that the cumulative association structure JM is more 
robust (will give parameter estimates that more closely 
resemble biology) than the current MD value, current 
MD slope structure.

Clearly there is a lag between tumor onset and detec-
tion (even more problematic is that the duration of this 
lag varies dramatically across individuals). A pragmatic 
approach to account for this could be to model lagged 
effects of MD characteristics on diagnosis. JMs allow for 
lagged effects parameterizations [26]. In the current study 
we did not fit such models since almost 50% of the cases 
did not have images more than 2.5 years before diagnosis.

Because of the nature of the study design cases had 
fewer screening rounds than controls (follow-up stops 
at diagnosis). In theory, however, a bias could be intro-
duced if, in the general population, the disease process is 
associated with the visit/screening process. There are JM 
approaches for additionally modeling the visiting process 
[44], but it has been shown [45] that even when the dis-
ease process is associated with the visiting process, fitting 
random effects models ignoring the visiting process pro-
duces estimates with little bias.

We should note that the benefits of JM are strictly 
linked to the correct specification of the longitudinal 
marker trajectory and the baseline hazard function, indi-
cating the need for a careful consideration of assump-
tions to avoid biased estimates [46]. Although there are 
limitations to JMs for studying the MD–BC association, 
JMs do provide a better framework than approaches pre-
viously used in the literature - in particular because they 
account for measurement error. Using longitudinal tra-
jectories of MD that account for measurement error can 
be less influenced by mammography acquisition param-
eters, such as compressed breast thickness.

A limitation of the current study is that we lacked lon-
gitudinal information on established BC risk factors. All 
information on covariates was collected at baseline, or at 
date of the first mammogram. A recent study advocated 
the need for longitudinal studies assessing the impact of 
breast fat and body weight history on MD features and 
BC risk over a long follow-up among both pre-meno-
pausal and postmenopausal women [47]. Multivariate 
joint modeling can offer a useful tool to determine the 
interrelationships between BC risk factors and MD, and 
their relationship with risk of BC. In addition, integrating 
information about MD in younger women using different 
imaging techniques, such as MRI [17], would be highly 
valuable to increase our understanding of breast density 
through a woman’s lifetime.
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Fig. 2 Smoothed average (square root) predicted MD values. 
Smoothed average (square root) predicted MD values (from model 
(3)), by age, for women diagnosed with BC at the end of follow-up 
(with 95% confidence band marked by shading in blue), and for 
women that remained free from BC diagnosis until the end of 
follow-up (in black—the confidence band is not represented since it 
is very narrow, comparable to that based on observed MD values for 
all women, represented in Fig. 1)
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In our study we used JMs that assume that param-
eters measuring the strength of the association between 
MD and BC diagnosis are time-constant. However, it 
might be more natural and more, biologically, relevant to 

assume that the effects of characteristics of the MD tra-
jectory changes over time. Further work is needed based 
on JMs with time-varying association structures [48].
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Fig. 3 Predicted hazard functions for the two hypothetical individuals. Trajectories of (square root) MD of two hypothetical individuals in the 
upper panel. Predicted hazard functions for the two individuals, based on fitted models (2) and (3), are displayed in the middle and lower panel, 
respectively
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Conclusion
Our study is the first to have used JMs to investigate 
the association between the longitudinal history of MD 
and BC risk whilst considering different association 
structures. We statistically investigated the hypothesis 
that the cumulative exposure to MD is associated with 
BC risk, which has been proposed earlier with biologi-
cal arguments. A JM suggested that a decrease in MD 
may be associated with an increased (instantaneous) 
BC risk. It is possible that this is because of increased 
sensitivity rather than being related to biology. For this 
reason, the cumulative exposure association struc-
ture may represent a more useful model to study BC 
diagnosis.
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