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Abstract 

Background Familial breast cancer is in most cases unexplained due to the lack of identifiable pathogenic variants 
in the BRCA1 and BRCA2 genes. The somatic mutational landscape and in particular the extent of BRCA‑like tumour 
features (BRCAness) in these familial breast cancers where germline BRCA1 or BRCA2 mutations have not been identi‑
fied is to a large extent unknown.

Methods We performed whole‑genome sequencing on matched tumour and normal samples from high‑risk non‑
BRCA1/BRCA2 breast cancer families to understand the germline and somatic mutational landscape and mutational 
signatures. We measured BRCAness using HRDetect. As a comparator, we also analysed samples from BRCA1 and 
BRCA2 germline mutation carriers.

Results We noted for non‑BRCA1/BRCA2 tumours, only a small proportion displayed high HRDetect scores and were 
characterized by concomitant promoter hypermethylation or in one case a RAD51D splice variant previously reported 
as having unknown significance to potentially explain their BRCAness. Another small proportion showed no features 
of BRCAness but had mutationally active tumours. The remaining tumours lacked features of BRCAness and were 
mutationally quiescent.

Conclusions A limited fraction of high‑risk familial non‑BRCA1/BRCA2 breast cancer patients is expected to benefit 
from treatment strategies against homologue repair deficient cancer cells.
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Background
Approximately 5–10% of all breast cancer cases are famil-
ial [1–3]; however, less than 17–28% are attributed to 
inherited mutations in the BRCA1 and BRCA2 suscepti-
bility genes [4–6]. This challenges clinical genetic coun-
selling of families with a strong history of breast cancer 
without identified germline mutations in BRCA1 and 
BRCA2 (hereafter referred to as non-BRCA1/BRCA2 
high-risk families). Recent studies using whole-genome 
sequencing (WGS) have resulted in a comprehensive 
landscape of somatic mutations revealing the mutational 
processes that have left specific mutational signatures 
in the tumours. These signatures may be predictive of 
treatment response. HRDetect is a robust prediction 
model incorporating mutational signatures, HRD-index, 
and deletion of microhomology [7]. HRDetect has been 
shown to be predictive among non-BRCA1/BRCA2 
patients for response to platinum-based chemother-
apy [8]. A recent clinical trial demonstrated that breast 
cancer patients with germline mutations in BRCA1 
or BRCA2 benefit from Poly(adenosine diphosphate–
ribose) polymerase (PARP) inhibitor treatment [9]. Non-
BRCA1/BRCA2 patients with a high HRDetect score may 
potentially also benefit from this treatment.

Although the somatic mutational landscape, molecular 
signatures, and HRDetect are well-established in unse-
lected breast cancer, studies of these features among 
non-BRCA1/BRCA2 high-risk familial breast cancers are 
limited [10]. In this study, we therefore applied WGS to a 
new cohort of these patients and analysed molecular sub-
types based on HRDetect, mutational load, and molecu-
lar signatures.

Methods
We performed WGS of flash frozen primary breast sam-
ples and matched normal blood samples from 23 breast 
cancer patients from high-risk breast and ovarian cancer 
families screened negative for mutations in BRCA1 and 
BRCA2 together with seven patients carrying a patho-
genic BRCA1 or BRCA2 variant (Additional file 1: Figure 
S1c, Additional files 5, 6: Table S1–S2).

We identified somatic substitutions, insertions and 
deletions (indels), and rearrangements in our cohort as 
previously described [11]. Then we fitted the catalogues 
of somatic mutations to the previously identified sub-
stitution and rearrangement signatures in breast cancer 
using a mathematical model [12]. Unsupervised hier-
archical clustering was applied to stratify the tumours 
based on the somatic mutational signatures. Moreover, 
we applied the HRDetect model to identify BRCA1/
BRCA2-deficient tumours (BRCAness) driving tumouri-
genesis by defective homologous recombination [7]. 
We also analysed germline variants for potential causal 

variants in other known cancer predisposing genes and a 
polygenic risk score (PRS) based on 313 SNPs [13].

A detailed description of the included patients and all 
performed analyses is provided in the Additional method 
section.

Results
The somatic mutational landscape of high-risk familial 
non-BRCA1/BRCA2 tumours revealed distinct levels of 
genomic instability among the tumours (Fig. 1e-h, Addi-
tional file 2, 3: Figure S2-–S3, Additional file 7: Table S3). 
For identification of BRCA1/BRCA2-deficiency, we 
applied HRDetect to our cohort. This resulted in a very 
strong separation of tumours with all BRCA1 and BRCA2 
positive tumours having a HRDetect score of > 0.99 
(Fig.  1d). For further characterization of molecular fea-
tures, we identified mutational signatures (Fig.  1c and 
Additional file  4: Figure S4). Clustering based on these 
signatures supported that BRCA1/BRCA2-mutated 
tumours are clearly separated from non-BRCA1/BRCA2 
tumours (Fig.  1a and c). The separation from the non-
BRCA1/BRCA2 tumours is mainly driven by homo-
logue repair deficiency (HRD), i.e. the HRD-associated 
substitution signature (SBS) 3, where a higher level is 
detected in the BRCA1/BRCA2-mutated tumours. When 
observing the expression patterns, SBS 3 is somewhat co-
expressed with SBS 8, a signature still considered to have 
unknown aetiology. One study has suggested SBS 8 is 
characterised by replication errors [14]. However, this is 
not clear since the BRCA1/BRCA2 genes are mainly asso-
ciated with double-stranded DNA repair.

Three non-BRCA1/BRCA2 tumours also had a 
HRDetect score of > 0.99 and were classified as hav-
ing BRCA1/BRCA2-deficient tumours. These tumours 
clustered together with the BRCA1/BRCA2 tumours 
(cluster D in Fig.  1, Additional file  8: Table  S4). All 
three tumours had BRCA1-like characteristics, i.e. were 
triple negative (negative estrogen/progesterone recep-
tor (ER/PR) and HER2 receptor status normal), basal-
like subtype and had BRCA1 loss of heterozygosity 
(LOH). Promoter hypermethylation of BRCA1 likely 
explains BRCA -deficiency in two of these tumours 
(tumour 10 and 37). In addition, tumour 10 harboured 
a likely pathogenic germline RAD51D splice variant, 
c.738 + 1G > A, expected to contribute to BRCAness in 
this tumour since inactivation of this gene is known to 
result in HRD [15]. The last tumour (tumour 11) with a 
high HRDetect score contained both a somatic BRCA1 
missense variant and a germline RAD51D variant of 
unknown significance. The BRCA1 missense vari-
ant c.3668 T > A, p.(Leu1223His) is located in exon 11 
that, although containing more than half of the coding 
region of BRCA1, does not contain reported pathogenic 
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Fig. 1 Unsupervised hierarchical clustering based on proportions of mutational signatures in each tumour. a Unsupervised hierarchical clustering 
on substitution and rearrangement signatures revealing four main clusters. b Clinical and mutational annotation for each sample. c Heatmap of 
the normalised contribution of substitution and rearrangement signatures identified in the cohort. d BRCAness predictions: HRDetect prediction 
score (scores above 0.7 considered BRCAness) and RNA classifier predictions. e Somatic substitution and indel driver mutations are present in more 
than three samples. f Tumour mutational burden of somatic mutations per Mb in the coding region. g Number of substitutions fitted to mutational 
signatures for each tumour. h Number of rearrangements fitted to mutational signatures for each tumour
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germline missense mutations. Furthermore, a second 
hit, i.e. LOH, was not observed. The RAD51D variant 
c.202G > A, p.(Gly68Ser) in contrast displayed LOH in 
this tumour (Additional file  9: Table  S5). This variant 
has previously been reported to inactivate an ESE ele-
ment and cause complete loss of full-length transcript. 
However, since 32% of the transcripts had an in-frame 
deletion of 12 amino acids the variant was classified as 
having unknown significance [16]. Our results strongly 
indicate the variant to be deleterious for the protein 
and therefore likely pathogenic. This variant was also 
identified in another tumour (tumour 46, Fig. 1). LOH 
was not detected; however, bi-allelic inactivation of 
BRCA2 is likely to explain HRD in this tumour.

The clustering also revealed a group of tumours with 
high mutational burden and high level of the APOBEC 
associated SBS 13 but with a low HRDetect score (clus-
ter C in Fig.  1). These tumours more frequently har-
boured BRCA1/BRCA2 LOH, TP53 mutations, and had 
negative ER/PR and positive HER2 status. Finally, the 
clustering revealed two clusters of non-BRCA1/BRCA2 
tumours with distinct molecular profiles not related to 
known molecular subtypes (clusters A and B in Fig.  1). 
These tumours all had a very low mutational burden, low 
HRDetect scores (0.03 or less) and a higher frequency 
of somatic PIK3CA mutations and a lower frequency of 
TP53 mutations compared to tumours with a high muta-
tional burden (Fig. 1, Additional file 2: Figure S2, Addi-
tional file 8, 9: Table S4-S5). Tumours in cluster A were 
mainly described by SBS 1 and 5, lack of rearrangement 
signature (RS) 2, were mainly luminal (Lum) A or B, and 
commonly had CDH1 mutations. Tumours in cluster B 
were primarily defined by SBS 1 and 5, RS 2, and were 
mainly LumA. Cluster B clustered close to cluster C con-
taining tumours with high mutational burden, as these 
tumours also had high proportions of RS 2 (Fig. 1).

We integrated the results from our previously pub-
lished RNA classifier to classify basal-like tumours as 
either BRCA1-like or non-BRCA1-like, and LumB-sub-
type tumours as either BRCA2-like or non-BRCA2-like. 
[17, 18]. The RNA classifier performed slightly differently 
from HRDetect; one BRCA1 positive tumour was not 
classified as BRCA1-Like. The tumour (tumour 11) with a 
somatic BRCA1 missense VUS and RAD51D c.202G > A 
variant were not classified as BRCA1-Like supporting 
that this tumour is driven by RAD51D and not BRCA1 
(Fig.  1d). In contrast, the tumour with bi-allelic BRCA2 
inactivation and RAD51D c.202G > A (tumour 46) was 
classified as BRCA2-like supporting the inactivation of 
BRCA2 as the driver of this cancer. Among non-BRCA1/
BRCA2 tumours, the RNA classifier identified 5/23 (22%) 
tumours with BRCAness compared to HRDetect predict-
ing 3/23 (13%) tumours as having BRCAness.

Germline variants could only explain a few cases of 
familial aggregation. We identified rare germline vari-
ants in the FANCD2, RAD51D, TP53, SLX4, MSH6 and 
CHEK2 genes of which RAD51D, TP53 and CHEK2 are 
likely to contribute to familial aggregation (Fig. 2, Addi-
tional file  10: Table  S6). Furthermore, we applied the 
PRS [13] incorporated in BOADICEA [19] to obtain the 
estimated lifetime risk and the combined risk with fam-
ily history. The patient carrying the pathogenic CHEK2 
mutation had a high PRS score resulting in an estimated 
lifetime risk of 57%, where PRS contributed with 22% 
(patient 39, Fig.  2). This was further supported by the 
bilateral breast cancer of the patient and family history 
of multiple breast cancer cases. The remaining patients 
showed little or negative effect contributed by the PRS 
(Fig.  2, Additional file  1: Figure S1, Additional file  5: 
Table S1).

Discussion
The finding of a low fraction of high-risk non-BRCA1/
BRCA2 familial breast cancers with high HRDetect 
scores is noteworthy, as one might expect non-BRCA1/
BRCA2 high-risk familial breast tumours to have a 
higher frequency of high HRDetect scores similar to 
tumours from families with mutations in these high-pen-
etrant genes. Especially, considering that our families are 
selected based on a combination of multiple breast can-
cer cases, early onset of breast cancer, and ovarian cancer 
in the families, criteria that makes them very similar to 
the families with BRCA1/BRCA2 mutations. The major-
ity of the tumours are ER-positive, a molecular subtype 
mostly associated with HR-proficiency. However, this 
might not be the case for hereditary cases, with BRCA2-
related cancer as a prominent example where tumours 
most often are ER-positive but BRCA1/BRCA2-deficient 
[11, 20]. Large panel sequencing studies of HRD related 
genes have identified a low fraction of familial cases 
explained by non-BRCA1/BRCA2 germline variants in 
HRD-genes [21, 22], and in a study by Matis et  al. [23], 
it was concluded that the likelihood of associating more 
HRD-genes with familial breast cancer is low. Our results 
support these findings and thereby indicate that other 
mechanisms such as mutations in non-coding regions 
leading to HRD are not likely to play a major role. The 
results of low HRDetect scores in our high-risk non-
BRCA1/BRCA2 familial breast tumours are also sup-
ported by an independent method, our RNA-classifier, 
although a few tumours with low HRDetect scores were 
BRCA1- or BRCA2-like with this profile. Further studies 
are required to investigate if BRCAness at the RNA level 
exists due to other mechanisms than mutational patterns. 
Molecular signature analysis has previously been shown 
to be useful in the characterisation of variants [24], and 
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the identification of high HRDetect and LOH in the 
tumour carrying the spliciogenic variant c.202G > A and 
LOH at the RAD51D locus illustrate this.

In studies conducted on several complex diseases, 
including breast cancer, a low PRS score has been found 
to be associated with the finding of rare, pathogenic vari-
ants [25, 26]. This is supported in our study where most 
of the variants classified as pathogenic are also found 
to have a low contribution of PRS to the lifetime risk of 
developing breast cancer.

To the best of our knowledge, only one other study by 
Nones et al. [10] has applied WGS to characterise famil-
ial breast cancer. Their study included 30 familial non-
BRCA1/BRCA2 breast tumours. The study identified 4 
(13%) non-BRCA1/BRCA2 tumours with high BRCA1/
BRCA2 HRDetect scores that could not be explained by 
promotor methylation or somatic mutations. This is a 
slightly higher fraction than in our material where only 
one such tumour (4%) was identified and even that har-
boured a somatic VUS in BRCA1 and a germline splice 
variant in and LOH in RAD51D. Nones et al. also iden-
tified a cluster of silent tumours with RS  2 like we did 
(cluster B in Fig.  1). However, they  also found a large 
cluster of 13/30 (43%) tumours with high contribution 
of RS  4 affecting known driver genes. We only identi-
fied 3/23 (13%) tumours having high proportions of RS 4. 
The differences between the two studies might to some 
extent be explained by the approaches used to identify 

mutational signatures. Nones et  al. extracted novel sig-
natures and correlated these to the known COSMIC sig-
natures, whereas we opted to fit the catalogue of somatic 
mutations directly to the known breast cancer signatures 
as this is more suitable for small sample sizes [12, 27, 28]. 
Their study population of non-BRCA1/BRCA2 tumours 
had a similar sample size to our study. However, both 
studies are statistically underpowered to draw signifi-
cant conclusions. Nevertheless, their findings of limited 
BRCAness among cases with suspicion of hereditary 
breast cancer are very similar to ours. The combined 
results from the two studies strongly indicate a low fre-
quency of BRCAness among non-BRCA1/BRCA2 famil-
ial breast cancer patients with no identified variants in 
other HRD genes.

Conclusions
Our data show distinct molecular subtypes among high-
risk non-BRCA1/BRCA2 tumours based on somatic 
mutational signatures including (1) tumours with high 
HRDetect score explained by methylation in BRCA1 or 
mutations in other HRD-genes, (2) tumours with high 
mutational burden and low HRDetect score, (3) muta-
tionally quiescent tumours with low HRDetect score, no 
RS 2 signature but often CDH1 mutations, and (4) muta-
tionally quiet tumours with low HRDetect score but high 
RS 2 signature and no CDH1 mutations.
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Further larger studies are demanded to validate these 
findings. The identified substructure among the muta-
tionally quiescent non-BRCA1/BRCA2 tumours may 
point to common aetiological mechanisms within the 
subgroups. Critically, whatever these unknown factors 
are, they clearly drive the increased risk of carcinogen-
esis through other pathophysiological mechanisms than 
mutagenesis. The results also indicate a strong potential 
for the classification of variants based on mutational sig-
natures using HRDetect. The finding of low BRCAness 
measured by HRDetect among non-BRCA1/BRCA2 
familial cancer indicates a low false positive rate for the 
classification of VUS in this clinically relevant patient 
group. Our results may also be relevant for future treat-
ment decisions. A potential benefit of platinum-based 
chemotherapy has been reported for non-BRCA1/
BRCA2 patients with a high HRDetect score compared 
to those with a low HRDetect score [8]. Furthermore, 
breast cancer patients with BRCA1/BRCA2-deficiency 
have recently been shown to benefit from PARP inhibi-
tor treatment [9] which is well-known in ovarian cancer, 
where BRCA1/BRCA2 mutational status is routinely used 
for directing this treatment [29, 30].

Materials and methods
Patient material
In this study, 23 non-BRCA1/BRCA2 patients from fami-
lies with a strong history of breast cancer, previously 
included in a study predicting BRCAness by RNA profil-
ing [17], were selected where matched tumour and blood 
samples were available. Inclusion criteria to enter the 
study were (1) a pedigree indicating monogenic inherit-
ance of breast cancer predisposition, (2) the presence 
of ovarian cancer in pedigrees with breast cancer cases, 
or (3) a very young age at diagnosis of breast cancer 
(< 30 years). Furthermore, four BRCA1 and three BRCA2 
patients carrying a pathogenic BRCA1/BRCA2 variant 
with unknown family history were selected as controls for 
BRCAness classification. All tumour tissues were freshly 
frozen primary breast tumours collected between 1982 
and 2008 in Odense and had been stored in the tumour 
biobanks of the Department of Pathology, Odense Uni-
versity Hospital and Danish Breast Cancer Cooperative 
Group (DBCG). Data for Immunohistochemistry (IHC) 
of estrogen receptor (ER), progesterone receptor (PR) 
and human epidermal growth factor receptor 2 (HER2) 
status was received from DBCG. The ER, PR and HER2 
hormone receptor statuses not identified by the patho-
logical review were estimated from gene expression lev-
els of ESR1, PGR and ERBB2. The PAM50 subtypes were 
also classified for all samples from the gene expression 
(Additional file 5: Table S1).

Family risk from BOADICEA breast cancer estimation model
The Breast and Ovarian Analysis of Disease Incidence 
and Carrier Estimation Algorithm (BOADICEA) was 
used to validate the increased risk of breast cancer in the 
patients based on their family history [19]. Five patients 
did not show an increased risk of breast cancer accord-
ing to BOADICEA but were still included due to either 
early-onset breast cancer, bilateral breast cancer, multiple 
breast or ovarian cancers in the family, or a combination 
of those (Additional file  1: Figure S1, Additional file  5: 
Table S1).

Whole‑genome sequencing (WGS)
Sample preparation was performed using Illumina 
TruSeq Nano protocol with 550  bp insert length to 
strengthen the detection of structural variants. Samples 
were sequenced on Illumina Novaseq 6000 with paired-
end 2 × 150  bp. The average sequencing coverage was 
50.2X for tumour samples and 38.5X for normal samples 
(Additional file 6: Table S2).

Gene expression
Gene expression analysis was performed using a custom-
ized version of Agilent SurePrint G3 Human GE 8 × 60 K 
Microarray and raw data were pre-processed as previ-
ously described [18]. Microarray data have been depos-
ited to the Gene Expression Omnibus (GSE49481).

Alignment of WGS data
The paired-end reads resulting from the sequencing were 
aligned to the human reference genome (GRCh37) using 
BWA-MEM v0.7.17. The specific version used can be 
found in the cgpmap-3.0.4 docker image (https:// docks 
tore. org/ conta iners/ quay. io/ wtsic gp/ docks tore- cgpmap: 
3.0.4).

Processing of WGS data
The whole-genome sequencing data was processed using 
the same bioinformatic pipeline as in Nik-Zainal et  al. 
[11].

CaVEMan (Cancer Variants Through Expectation 
Maximization: http:// cance rit. github. io/ CaVEM an/) was 
used for calling somatic and germline single nucleotide 
variants (SNVs). A lightly modified version of Pindel 2.0 
(http:// cance rit. github. io/ cgpPi ndel/) was used for calling 
somatic and germline insertions and deletions (indels).

BRASS (BReakpoint AnalySiS: https:// github. com/ 
cance rit/ BRASS) was used to detect rearrangements and 
other structural variants.

For annotation of the resulting variant calls we used the 
VAGrENT (Variation Annotation GENeraTor: https:// 
github. com/ cance rit/ VAGrE NT) annotation tool.

https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpmap:3.0.4
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpmap:3.0.4
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpmap:3.0.4
http://cancerit.github.io/CaVEMan/
http://cancerit.github.io/cgpPindel/
https://github.com/cancerit/BRASS
https://github.com/cancerit/BRASS
https://github.com/cancerit/VAGrENT
https://github.com/cancerit/VAGrENT
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The Battenberg algorithm (https:// github. com/ cance 
rit/ cgpBa ttenb erg) was used for the detection of copy 
number variation in matched tumour-normal samples.

The specific versions of the tools used are found in the 
cgpwgs-2.1.0 docker image (https:// docks tore. org/ conta 
iners/ quay. io/ wtsic gp/ docks tore- cgpwgs: 2.1.0).

TitanCNA [31] was further used to validate LOH of the 
RAD51D c.202G > A variant in tumour 11.

Filtering variants
Germline variants
Germline variants were filtered using a candidate gene 
list of 170 pathogenic and likely pathogenic germline 
variants associated with hereditary cancer [32]. Then 
filters were applied keeping only frameshift, splice-site, 
and nonsynonymous variants with strong bioinformatic 
prediction and with frequency < 0.01 according to gno-
mAD and ExAC [33]. The variants were evaluated using 
the variant databases ClinVar and HGMD, and six mis-
sense variant predictors were implemented in VarSeq. 
Loss-of-function (protein truncating) and splice vari-
ants, variants with strong bioinformatic prediction, and 
variants in genes associated with breast cancer risk with 
an odds ratio above two [34] were selected for further 
investigation.

Somatic variants
Somatic variants were filtered using the default settings 
of the tools in the bioinformatic pipeline. Somatic driver 
mutations were identified by filtering the list of somatic 
variants for the driver genes previously identified in 560 
breast cancers using identical criteria for reporting a 
driver event as in [11]. Copy number variants were fur-
thermore filtered to also include the copy number status 
of the genes in which germline variants were identified, 
such that the analysis of LOH was possible.

Polygenic risk score
We applied the polygenic risk score with 313 SNPs 
 (PRS313) developed for breast cancer risk prediction [13] 
incorporated in the latest version of BOADICEA [19] to 
predict the risk of getting breast cancer for each individ-
ual in our cohort under the assumption that they did not 
already develop breast cancer.

Mutational signatures
We applied a mathematical model [12] implemented in 
the Signature Tools Lib R package [35] (https:// github. 
com/ Nik- Zainal- Group/ signa ture. tools. lib) to fit substi-
tution and rearrangement signatures imprinted in the 
breast cancer genomes, i.e. first a catalogue of substitu-
tions and rearrangements was created for each sample 
and then fitted using bootstrap for robustness to the 

twelve substitution and six rearrangement signatures 
previously identified [11].

Stratification of tumours using unsupervised hierarchical 
clustering
Unsupervised hierarchical clustering with Euclidean dis-
tance and Ward’s linkage criterion (ward.D2 in the statis-
tical programming language R) was used to stratify the 
breast cancer tumours. We incorporated both substitu-
tion and rearrangement signatures in the clustering. To 
make the signatures comparable, we needed to normalise 
the signatures to correct for the fact that cancer genomes 
often carry more substitution than rearrangement signa-
tures thereby giving higher weight to the rearrangement 
signatures in the clustering. Proportions of signatures 
were normalised by dividing all substitution and rear-
rangement signatures by the highest proportion identi-
fied in their respective mutation categories.

BRCAness: HRDetect and our RNA classifier
The HRDetect model for detection of BRCA1/BRCA2-
deficient tumours [7] was applied to the patient cohort. 
The HRDetect model incorporates information from 
substitution and rearrangement signatures, HRD score 
and deletion of microhomology and computes the proba-
bility of each tumour being BRCA1/BRCA2-deficient. We 
used the HRDetect model implemented in the Signature 
Tools Lib R package [35].

We included the BRCAness classification from our in-
house developed RNA classifier published in an earlier 
study [18]. The RNA classifier has been developed to 
classify basal and LumB-subtype tumours, i.e. basal-like 
tumours can be classified as either BRCA1-like or non-
BRCA1-like, and LumB-subtype tumours can be classi-
fied as either BRCA2-like or non-BRCA1/BRCA2-like. 
Other subtypes are not yet supported. Molecule subtypes 
were identified using PAM50 as previously described 
[17].

Detection of promotor methylation
Detection of promotor methylation of the breast cancer 
predisposition genes BRCA1 and BRCA2 in the patients 
was done in an earlier study using MLPA [17].

Tumour mutational burden
Tumour mutational burden (TMB) is generally defined 
as the number of somatic mutations per megabase (Mb) 
within the sequenced region of the tumour sample 
[36–39]. In this study, the sequenced area is the entire 
genome. However, in many comparable studies, only 
exome data is available and TMB analysis on exome data 
is generally considered the gold standard [36]. Thus, for 
comparability between studies, we calculated TMB as 

https://github.com/cancerit/cgpBattenberg
https://github.com/cancerit/cgpBattenberg
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpwgs:2.1.0
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpwgs:2.1.0
https://github.com/Nik-Zainal-Group/signature.tools.lib
https://github.com/Nik-Zainal-Group/signature.tools.lib


Page 8 of 10Andersen et al. Breast Cancer Research           (2023) 25:69 

the number of somatic substitutions and indels per Mb 
in the coding region of the targeted territory of the Twist 
Human Comprehensive Exome Panel of size 36.8  Mb 
(https:// www. twist biosc ience. com/ resou rces/ data- files/ 
twist- human- compr ehens ive- exome- panel- bed- files). 
We used the tool tmb-wgs (https:// github. com/ navee 
disha que/ wgs- tmb) for TMB calculation which uses the 
approach described in Chalmers et al. [38].

Whole‑genome profiles and heatmap figures
Breast cancer whole-genome profiles were created using 
the Signature Tools Lib R package [35] and are presented 
in Additional file 3: Figure S3. Heatmaps and stacked fig-
ures (Figs. 1, 2 and Additional file 1: Figure S1) were cre-
ated using the ComplexHeatmap R package [40].

Additional information about variant interpretation
We identified very few rare germline variants in known 
breast cancer candidate genes. In one family, a well-
known pathogenic mutation in CHEK2 [41–43] was 
found as well as a high PRS score resulting in a predicted 
lifetime risk of 57%. In another family, a missense TP53 
germline variant, previously shown to be deleterious in a 
functional assay [44], accompanied by a somatic second 
hit in TP53 is very likely to explain the extremely early 
onset breast cancer at the age of 29  years. The clini-
cal effect of mutations identified in the candidate genes 
FANCD2, RAD51D, SLX4, and MSH6 is less clear.

These variants included loss of function variants in 
CHEK2, FANCD2, RAD51D, and SLX4. In addition to the 
deleterious variant in CHEK2, we identified in another 
patient an in-frame CHEK2 deletion of unknown sig-
nificance, c.246_260delCCA AGA ACC TGA GGA previ-
ously shown to have intermediate functional impact [42]. 
In another family, two affected members both carried a 
MSH6 missense variant of unknown significance (VUS) 
c.1813A > G, p.Thr605Ala, predicted probably damaging 
by PolyPhen 2. No MMR signatures were identified indi-
cating that the variant might not be pathogenic.

FANCD2 and SLX4 are well-established Fanconi Ane-
mia genes similar to several other breast cancer genes. 
Nevertheless, mutations in these genes are expected to 
have low penetrance for breast cancer [34, 45–49]. In 
combination with other genetic risk factors e.g. a high 
PRS this might explain the strong familial phenotype. 
However, the contribution from PRS estimated from 
BOADICEA was minor. Nevertheless, the included fami-
lies had pedigrees indicative of a strong pattern of inher-
itance, and therefore other yet unknown genetic risk 
factors are likely to play a role in these families.

Our study also indicates that tumours with patho-
genic mutations in TP53 and CHEK2, which are asso-
ciated with DNA-damage signalling and detection of 

double-stranded breaks, did not classify as BRCA1/
BRCA2-deficient tumours according to both prediction 
models tested. This confirms findings from earlier studies 
[7, 50].

The only tumour (tumour 11) with a high HRDetect 
score and no clear BRCA1/BRCA2 inactivating mecha-
nism (germline variant or methylation) had a somatic 
VUS in BRCA1 and a germline missense variant in 
RAD51D. The somatic BRCA1 variant is located in exon 
11 that although containing more than half of the cod-
ing region of BRCA1, does not contain reported patho-
genic germline missense mutations. Low allele frequency 
and a high copy-number level in the BRCA1 region indi-
cated that functional wildtype alleles exist. The variant 
is therefore unlikely to be causal for the high HRDetect 
score. The RAD51D variant c.202G > A, p.(Gly68Ser) has 
a high variant allele frequency and is located in a region 
with copy-number imbalance most likely in agreement 
with loss of the wildtype allele. According to Batten-
berg analysis the ploidy in the RAD51D region was 4 of 
which one was wildtype. However, we found this result 
uncertain and therefore performed CNV analysis with an 
independent tool TitanCNA which found clear loss of the 
wildtype allele (Additional file  9: Table  S5). This variant 
has previously been reported to inactivate an ESE ele-
ment and cause complete loss of full-length transcript 
[16]. In this study, minigene assay showed 26.7% of tran-
script with exon 3 skipping and 41.1% missing exon 3–5, 
both predicted to result in a frameshift. However, 32.2% 
of the transcripts had an in-frame deletion of 12 amino 
acids. Since it is unknown if the resulting protein is func-
tional, the variant was classified as having unknown sig-
nificance [16]. Our results strongly indicate the variant to 
be deleterious for the protein and therefore likely patho-
genic. Our finding of low BRCAness measured by HRDe-
tect among non-BRCA1/BRCA2 familial cancer indicates 
a low false positive rate for classification of VUS in this 
clinically relevant patient group.
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