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Abstract 

Background Disseminated tumor cells (DTCs) in the bone marrow are observed in about 40% at primary diagnosis 
of breast cancer and predict poor survival. While anti‑resorptive therapy with bisphosphonates was shown to eradi‑
cate minimal residue disease in the bone marrow, the effect of denosumab on DTCs, particularly in the neoadjuvant 
setting, is largely unknown. The recent GeparX clinical trial reported that denosumab, applied as an add‑on treatment 
to nab‑paclitaxel based neoadjuvant chemotherapy (NACT), did not improve the patient’s pathologic complete 
response (pCR) rate. Herein, we analyzed the predictive value of DTCs for the response to NACT and interrogated 
whether neoadjuvant denosumab treatment may eradicate DTCs in the bone marrow.

Methods A total of 167 patients from the GeparX trial were analyzed for DTCs at baseline by immunocytochem‑
istry using the pan‑cytokeratin antibody A45‑B/B3. Initially DTC‑positive patients were re‑analyzed for DTCs after 
NACT ± denosumab.

Results At baseline, DTCs were observed in 43/167 patients (25.7%) in the total cohort, however their presence 
did not predict response to nab‑paclitaxel based NACT (pCR rates: 37.1% in DTC‑negative vs. 32.6% DTC‑positive; 
p = 0.713). Regarding breast cancer subtypes, the presence of DTCs at baseline was numerically associated with 
response to NACT in TNBC patients (pCR rates: 40.0% in DTC‑positive vs. 66.7% in DTC‑negative patients; p = 0.16). 
Overall, denosumab treatment did not significantly increase the given DTC‑eradication rate of NACT (NACT: 69.6% 
DTC‑eradication vs. NACT + denosumab: 77.8% DTC‑eradication; p = 0.726). In TNBC patients with pCR, a numerical 
but statistically non‑significant increase of DTC‑eradication after NACT + denosumab was observed (NACT: 75% DTC‑
eradication vs. NACT + denosumab: 100% DTC‑eradication; p = 1.00).

Conclusion This is the first study worldwide, demonstrating that neoadjuvant add‑on denosumab over a short‑term 
period of 24 months does not increase the DTC‑eradication rate in breast cancer patients treated with NACT.
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Introduction
Despite recent advances in early detection and systemic 
treatment, about 20–30% of patients with early breast 
cancer experience distant metastatic relapse. Recurrent 
disease can occur even years after primary treatment 
and constitutes the predominant cause of breast cancer 
specific death [1–4]. This is probably due to minimal resi-
due disease, shaped by occult micrometastases, which 
have been seeded by early hematogenic dissemination 
[3, 5, 6]. Already at primary diagnosis of breast can-
cer, about 30–40% of patients have disseminated tumor 
cells (DTCs) in the bone marrow (BM) [7, 8]. It has been 
widely accepted that the presence of DTCs at primary 
diagnosis as well as their persistence after neoadjuvant 
chemotherapy (NACT) are both predictors of poor sur-
vival [7, 9–11].

Anti-resorptive agents, such as bisphosphonates, 
counteract osteoclast mediated bone-resorption and are 
widely used to treat patients, which suffer from bone 
metastasis induced skeletal adverse events or cancer 
treatment-induced bone loss and osteoporosis [12–15]. It 
is known that adjuvant bisphosphonates reduce the rate 
of breast cancer recurrence and improve prognosis in 
postmenopausal breast cancer patients [16, 17]. Moreo-
ver, oral ibandronate treatment of apparently disease-free 
patients was shown to completely eradicate persisting 
DTCs after 6–12 months [18], suggesting a direct effect 
of bisphosphates on micrometastasis in the bone marrow.

The human monoclonal IgG2 antibody denosumab 
represents a further class of anti-resorptive agents and 
targets receptor activator of nuclear factor-kappaB ligand 
(RANKL), [19]. Inactivation of RANKL by denosumab 
prevents RANKL signalling, which in turn reduces oste-
oclastic bone-resorption [20]. Comparable to bisphos-
phonates, denosumab is a well-established therapeutic 
option in breast cancer patients for the treatment of skel-
etal adverse events in metastatic bone disease, treatment-
induced bone loss and osteoporosis [21, 22]. Moreover, 
RANK signaling was shown to contribute to the initiation 
and progression of breast cancer [23, 24]. Accordingly, 
RANKL and its receptor  are highly expressed in breast 
cancer patients and predict poor prognosis [24–27].

Although there is a great body of pre-clinical evidence 
that RANK signaling promotes proliferation and (bone) 
metastatic progression of breast cancer [23, 28, 29], it 
still controversially discussed, whether targeted inhibi-
tion of RANK signalling by denosumab treatment will 
confer clinical benefit in patients with early breast can-
cer. While the ABCSG-18 trial showed that the addition 
of denosumab to adjuvant systemic treatment results in 
an improved disease-free survival [30], the D-CARE trial 
did not resolve any improvement of disease-related out-
comes for high-risk early breast cancer patients, treated 

with denosumab [31]. Moreover, the phase IIb prospec-
tive randomized GeparX trial reported that denosumab, 
added to anthracycline/taxane-based NACT, did not 
improve pCR rates [32].

Serum RANKL levels were shown to be higher in 
DTC-positive compared to DTC-negative breast cancer 
patients and were reported to predict clinically mani-
fest bone metastasis [33], suggesting a potential role of 
RANK-signaling in micrometastasis. However, whether 
denosumab eradicates DTCs, as it has been reported for 
bisphosphonates [18], is completely unknown. Using the 
framework of the recent GeparX study [32], we herein 
analyzed the clinical relevance of DTCs for predicting 
response to NACT and interrogated whether neoadju-
vant denosumab treatment may eradicate DTCs in the 
bone marrow.

Patients and methods
Characterization of study patients and inclusion criteria
The translational GeparX linked substudy was conducted 
at the Department of Gynecology and Obstetrics, Uni-
versity Hospital Carl Gustav Carus, TU Dresden, Ger-
many. In total, 177 patients [32] were recruited from 
the GeparX trial and in 167/177 of these patients, bone 
marrow aspirates could be obtained (Fig.  1). The study 
was performed in accordance with good clinical practice 
guidelines, national laws and the Declaration of Helsinki. 
Informed written consent for DTC-analysis was obtained 
from all patients and the study was approved by the 
Local Research Ethics Committee (ethical vote number 
2016315 and EK237082012).

Collection and processing of bone marrow samples
Bone marrow samples were aspirated at baseline (before 
the beginning of neoadjuvant chemotherapy). In case 
of DTC-positivity, patients were subjected to a follow-
up bone marrow aspiration during surgery. Isolation of 
the mononuclear cell (MNC) fraction from bone mar-
row was performed according to the recommendations 
for standardized tumor cell detection published by the 
German Consensus Group of Senology [34, 35]. Briefly, 
bone marrow was bilaterally aspirated from the anterior 
iliac crests (between 5–10 ml per site) under local anes-
thesia  (or during surgery), heparinized (5000 U/ml) and 
processed within 24  h. MNCs were isolated from hep-
arinized bone marrow (5000  U/ml) by Ficoll-Hypaque 
density gradient centrifugation (density 1.077  g/mol; 
Pharmacia, Freiburg, Germany) at 400× g for 30  min. 
Interphase cells were washed (400× g for 15 min) and re-
suspended in phosphate buffered saline (PBS). A total of 
1.5 ×  106 MNCs per area of 240  mm2 were directly spun 
onto glass slides (400× g for 5 min) coated with poly-L-
lysine (Sigma, Deisenhofen, Germany) using a Hettich 
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cytocentrifuge (Tuttlingen, Germany). In total, 9 ×  106 
MNCs per patient were analyzed. The slides were air-
dried overnight at room temperature.

Immunocytochemistry
Immunocytochemical detection of cytokeratin (CK)-pos-
itive DTCs was performed, according to the recommen-
dations for standardized tumor cell detection published 
by the German Consensus Group of Senology [34, 35]. 
Staining was performed using the murine monoclo-
nal antibody A45-B/B3 (Micromet, Germany), directed 
against a common epitope of CK polypeptides includ-
ing the CK heterodimers 8/18 and 8/19. The protocol 
has already been described in detail elsewhere [34, 35]. 
Briefly, the method includes (a) permeabilization of the 
cells with a detergent (5 min), (b) fixation with a formal-
dehyde-based solution (10 min), (c) binding of a A45-B/
B3-alkaline phosphatase conjugate to cytoskeletal CKs 
(45  min) and (d) formation of an insoluble red reaction 
product at the site of binding of the CK-specific antibody 
conjugate (15  min) using the DAKO-APAAP detection 
kit (DakoCytomation, Denmark). All experimental steps 
were performed, according to the manufacturer’s instruc-
tions. Subsequently, the cells were mounted with Kaiser’s 
glycerol/gelatin (Merck, Darmstadt, Germany) in Tris–
EDTA buffer (Sigma, Deisenhofen, Germany). A Fab-
fragment-alkaline phosphatase conjugate (Micromet, 

Munich, Germany) served as negative control and did 
not show relevant background staining in human bone 
marrow samples. Furthermore, a positive control using 
the A45-B/B3-alkaline phosphatase conjugate and CK-
expressing MCF-7 breast cancer cells (ATCC, Rockville, 
MD) was stained in parallel to each batch of patient sam-
ples under identical experimental conditions.

Automated detection and classification 
of cytokeratin‑positive DTCs
Microscopic evaluation of the CK-stained bone marrow 
samples for DTC-detection was carried out using the 
ARIOL system (Applied Imaging) according to the Inter-
national Society for Haematotherapy and Graft Engineer-
ing (ISHAGE) evaluation criteria and the DTC consensus 
[34, 35]. This automated scanning microscope and imag-
ing system consist of a slide loader, camera, computer 
and software. The software was specifically trained for 
the automated detection of CK-positive cells, based on 
particular colour, intensity, size, pattern, and shape. Each 
detected cell was reviewed and classified according to 
ISHAGE criteria by an experienced examinator. A patient 
was categorically considered DTC-positive, if at least one 
CK-positive cell was detectable in at least one of the two 
two-sided bone marrow aspirates.

Fig. 1 Conceptual workflow of the translational DTC substudy. The flow chart gives an overview on the inclusion of patients into the DTC substudy 
of the GeparX trial and the availability of DTC‑results at baseline and after NACT. BM: bone marrow
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Statistical methods
Data analysis was performed using  SAS® (Statistical 
Analysis Software; version 9.4 under SAS Enterprise 
Guide 7.1 on Microsoft Windows 7 Enterprise). DTC 
presence at baseline, DTC-eradication after NACT and 
pCR rates (stratified by baseline DTCs or by DTC-erad-
ication) were presented as descriptive bar charts. Group-
wise comparisons were performed using the Fisher’s 
Exact Test.

Results
The presence of DTCs at baseline and their eradication 
after NACT ± denosumab
A total of 167 patients from the GeparX clinical trial 
were available for DTC-analysis (Fig.  1). Patient char-
acteristics are shown in Supplementary Table  1. 
At baseline, the overall DTC-positivity was 25.7% 
(43/167 patients) with a median of 1 DTC per patient 
(range 1–9 DTCs  per patient, Fig.  2A). The distribu-
tion of baseline parameters with regard to DTC-pos-
itivity is shown in Supplementary Table  2. Notably, 

DTC-positivity at baseline did not significantly differ in 
NACT vs. NACT + denosumab treated patients (26.7% 
vs. 24.7%; p = 0.860; Fig. 2B).

To monitor the rate of DTC-eradiation in response to 
NACT ± denosumab, we subsequently performed bone 
marrow re-puncture and DTC follow-up analysis in 
patients with a DTC-positive status at baseline. A total 
of 41/43 DTC-positive patients were available for this 
purpose. A patient was considered “DTC-eradicated”, 
if DTCs were initially present at baseline, followed by 
a negative DTC-status after NACT ± denosumab. We 
observed a high rate of DTC-eradication among baseline 
DTC-positive breast cancer patients after NACT ± deno-
sumab (73.2%), which was consistent across the different 
subtypes of breast cancer (73.3% in HR + /HER2-; 70.0% 
in HER2 + ; 75.0% in TNBC; p = 0.961; Fig. 2C).

To sum up, we report a  high rate of DTC-eradication 
(> 70%) in the total study population after NACT ± den-
osumab among baseline DTC-positive breast cancer 
patients.

Fig. 2 DTC‑positivity at baseline and DTC‑eradication after NACT ± denosumab. A Representative images of CK‑positive DTCs in the bone 
marrow, stained by immunocytochemistry with the antibody A45‑B/B3. B The bar chart shows the percentage of patients, being positive for DTCs 
in the bone marrow among the total cohort of the substudy and in the different study arm, i.e. in patients with NACT only and in patients with 
NACT + denosumab. C Bar charts showing the percentage of DTC‑eradication in the bone marrow among the total cohort of the substudy and 
the different subtypes of breast cancer. P values according to the Fisher’s Exact Test are indicated. HR: hormone receptor; HER2: human epidermal 
growth receptor 2; TNBC: triple‑negative breast cancer
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Predictive value of DTCs for response to nab‑paclitaxel 
based NACT 
A total of 60/167 (35.9%) patients had a pCR. Of those, 
HR+/HER2− patients had the lowest pCR rate (15.3%), 
followed by HER2+ patients (43.3%). The highest pCR 
rate was observed in TNBC patients (55.4%).

To investigate the predictive value of DTCs for 
response to NACT, we compared baseline DTC-status 
with the patient’s pCR rate after NACT ± denosumab. 
Overall, the pCR rate in DTC-positive patients was 32.6% 
versus 37.1% in DTC-negative patients (p = 0.713; Fig. 3). 
Thus, no statistically significant association between 
pCR rate and baseline DTC-positivity was reported. 
The same result was evident for HR+/HER2− and 
HER2+ subtypes, in which also no significant differ-
ences between the pCR rates in DTC-positive vs. DTC-
negative patients were observed (HR+/HER2−: 18.8% 
vs. 14.3%, p = 0.699; HER2+: 40% vs. 45%, p = 1.000). 
Interestingly, TNBC patients with DTC-positivity at 
baseline had a numerically lower pCR rate than patients 
without evidence of DTCs (41.2% vs. 60.4%; 19.2% differ-
ence in pCR; p = 0.256, Fig. 3). Due to the limited number 
of patients, a further stratification regarding the NACT 
vs. NACT + denosumab arm was not reasonable at this 
point.

We further analyzed, whether a pCR to NACT ± deno-
sumab may parallel DTC-eradication in the bone marrow. 
Across all subtypes, there was no statistical significance 
between pCR rate and DTC-eradication. Thus, the pCR 
rate in DTC-persistent patients was 27.3% versus 36.7% 
in DTC-eradicated patients (p = 0.719; Fig. 4). The same 
trend was observed for HR+/HER2− and HER2+ sub-
types, in which no significant differences between the 

pCR rates in DTC-persistent vs. DTC-eradicated patients 
were observed (25.0% vs. 18.2% in HR+ /HER2− , 
p = 1.000; 33.3% vs. 42.9% in HER2+ , p = 1.000). Again, 
in patients with TNBC, there was a numerical trend 
towards a possible association between DTC-persistence 
and decreased pCR rate (25.0% vs. 50.0%; 25% difference 
in pCR; p = 0.585, Fig. 4). Due to the limited number of 
patients, a further stratification regarding the NACT ver-
sus NACT + denosumab arm was not reasonable at this 
point.

We conclude that the presence of DTCs at baseline 
does not predict overall response to NACT ± deno-
sumab. Moreover, there was no association between pCR 
and DTC-eradication. However, subtype analysis showed 
some numerical trends for a possible association between 
DTCs and pCR in TNBC.

The effect of denosumab on DTCs
We inquired, whether neoadjuvant add-on denosumab 
treatment, framed by the GeparX study [32], may eradi-
cate DTCs in the bone marrow. Therefore, we analyzed, 
whether denosumab may increase the given DTC-
eradication rate by NACT. DTC-eradication in the 
NACT + denosumab arm (77.8%) was numerically higher 
compared to the NACT arm without denosumab (69.6%). 
However, this difference did not reach statistical signifi-
cance (p = 0.726; Fig. 5). In TNBC patients with a pCR, 
0/3 patients (0%) were DTC-positive after NACT + deno-
sumab (p = 0.429), whereas 1/4 patients (25%) were DTC-
positive after NACT alone (p = 1.00).

Taken together, denosumab did not increase the over-
all DTC-eradication rate by NACT. However, subtype 

Fig. 3 Predictive value of baseline DTCs. Bar chart showing pCR rate 
after NACT ± denosumab among the total cohort and the different 
subtypes of breast cancer with regard to DTC‑status at baseline. 
P values according to the Fisher’s Exact Test are indicated. HR: 
hormone receptor; HER2: human epidermal growth receptor 2; TNBC: 
triple‑negative breast cancer

Fig. 4 Association between pCR rate and DTC‑eradication. Bar 
chart showing pCR rate after NACT ± denosumab among the total 
cohort and the different subtypes of breast cancer with regard to 
DTC‑eradication. P values according to the Fisher’s Exact Test are 
indicated. HR: hormone receptor; HER2: human epidermal growth 
receptor 2; TNBC: triple‑negative breast cancer
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analysis shows a numerical trend towards a possible 
effect of denosumab on DTCs in TNBC.

Discussion
This is the first study worldwide, analyzing the effect of 
neoadjuvant denosumab on breast cancer DTCs. Overall 
DTC-positivity in our study cohort (25.7%) was compa-
rable to that reported in a comprehensive meta-analysis 
of 4703 patients with stage I-III breast cancer (30.6%) 
[7], excluding any bias in our study towards methodol-
ogy and patient selection. Moreover, DTC-positivity at 
baseline was well balanced between the denosumab and 
non-denosumab treated study arm, indicating that there 
is no additional selection bias between the different study 
arms, which may have confounded our results.

The fact that (1) anti-resorptive therapy with bisphos-
phonates is already known to eradicate DTCs in the BM 
[18] and that (2) circulating levels of serum RANKL are 
elevated in DTC-positive breast cancer patients [33], 
provided a strong rationale for us to hypothesize that 
anti-resorptive denosumab likewise promotes the eradi-
cation of DTCs in the BM. Therefore, we re-analyzed 
patients with baseline DTC-positivity for the presence 
of DTCs after NACT ± denosumab, in order to distin-
guish between DTC-eradication vs. DTC-persistence. 
We observed a substantial DTC-eradication rate after 
NACT ± denosumab (73%). So far, only little is known 
about the effectiveness of NACT in eradicating DTCs 
in the BM, since previous reports primarily focused on 
the prognostic significance of DTCs after NACT [9–11]. 
In a previous study on breast cancer, DTC-positivity in 
the overall study population (adjuvant and neoadjuvant 
treatment) was 29%. Interestingly, in those patients with 
neoadjuvant treatment, DTC-positivity after NACT 
was still  25%, suggesting that overall DTC-positivity 
was not substantially decreased by NACT [36]. In the 
adjuvant setting, inconclusive results with regard to 

DTC-eradication after treatment have been reported 
[37–41]. Those opposing results could likely be due to use 
to confounding  biases, with regard to therapy  regimes, 
patient selection or different DTC-detection methods. 
Moreover, our study is not directly comparable to others, 
since we conceptually assessed the DTC-eradication rate 
by follow-up analysis of a pre-selected cohort of 100% 
DTC-baseline positive patients, so that “negative to posi-
tive switchers”, which also influence the overall DTC-fre-
quency after NACT, could not be considered.

We report for the overall cohort that (1) DTC-positiv-
ity at baseline is non-predictive for response to NACT 
and that (2) DTC-eradication does not parallel the pCR 
rate. These finding are supported by a previous study to 
show that there is no overall association between pCR 
and DTC-status after NACT [10]. It could be hypoth-
esized that DTCs undergo an independent metastatic 
progression in parallel to the primary tumor [42], so 
that their chemosensitivity could be different to that of 
the primary tumor mass. This may explain that DTCs in 
our study neither predicted response to NACT nor their 
eradication reflected a pCR. Nevertheless, we observed 
a numerical trend towards a predictive value of DTCs in 
TNBC. This could be of high clinical interest and requires 
further investigation, since the pCR rate is higher and 
the association between pCR and outcome is more pro-
nounced in TNBC compared to the HR+/HER2− sub-
type [43].

The underlying GeparX trial showed that the addi-
tion of denosumab to NACT did not increase pCR 
[32]. In line with these findings, we could not observe 
an overall effect of denosumab on DTCs in the GeparX 
study cohort. However, this result refers to short-term 
denosumab treatment (24  months, 6 applications), as it 
was framed by the GeparX trial design [32]. Long-term 
follow-up data of the GeparX study will be awaited in 
the next years, in order to analyze the long-term effect 
of denosumab on DTCs and on the patient’s survival. 
Nonetheless, we observed again  in TNBC patients, that 
there was a numerical trend towards an increase of DTC-
eradication by denosumab. This trend is in line with 
the previous observation, that TNBC, in comparison to 
the other intrinsic subtypes, is generally more likely to 
show DTC-eradication after NACT [36]. We hypoth-
esize that DTCs of TNBC could possibly be more sensi-
tive to anti-resorptive therapy with denosumab, since 
RANK is overexpressed in this breast cancer  subtype 
[44]. Moreover, RANKL, which is expressed in response 
to progesterone in progesterone receptor (PR)-positive 
luminal epithelial cells, has a paracrine proliferative effect 
on neighboring PR-negative basal cells [24], suggest-
ing a potential dependency of basal-like cancer, which is 
enriched in TNBC [45], to RANK signaling. Due to the 

Fig. 5 Effect of denosumab on DTC‑eradication. Bar chart showing 
DTC‑eradication rates in patients with NACT vs. patients with 
NACT + denosumab. P values according to the Fisher’s Exact Test are 
indicated
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limited number of TNBC patients,  our statistical analy-
sis was of limited information value, however, our results 
encourage further investigation of the denosumab effect 
on DTCs in TNBC patients. Considering the prognostic 
impact and the potentially (dormant) stem-like state of 
persisting DTCs after NACT [9–11, 46], further studies 
should address, whether denosumab could possibly be 
used as a cell cycle-independent drug for DTC-eradica-
tion in TNBC.

Conclusion
This is the first study worldwide, demonstrating that neo-
adjuvant add-on denosumab over a short-term period of 
24 months does not increase the DTC-eradication rate in 
breast cancer patients treated with NACT. Nevertheless, 
our results suggest a trend towards a potential predictive 
effect of DTCs and an increased DTC-eradication by den-
osumab in TNBC, which warrants further investigation.
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