
Dorgan et al. Breast Cancer Research           (2022) 24:91  
https://doi.org/10.1186/s13058-022-01588-y

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Childhood adiposity, serum metabolites 
and breast density in young women
Joanne F. Dorgan1*, Heather J. Baer2,3, Kimberly A. Bertrand4, Erin S. LeBlanc5, Seungyoun Jung6,7, 
Laurence S. Magder1,10, Linda G. Snetselaar8, Victor J. Stevens5, Yuji Zhang10 and Linda Van Horn9 

Abstract 

Background:  Childhood adiposity is inversely associated with young adult percent dense breast volume (%DBV) 
and absolute dense breast volume (ADBV), which could contribute to its protective effect for breast cancer later in life. 
The objective of this study was to identify metabolites in childhood serum that may mediate the inverse association 
between childhood adiposity and young adult breast density.

Methods:  Longitudinal data from 182 female participants in the Dietary Intervention Study in Children (DISC) and 
the DISC 2006 (DISC06) Follow-Up Study were analyzed. Childhood adiposity was assessed by anthropometry at the 
DISC visit with serum available that occurred closest to menarche and expressed as a body mass index (BMI) z-score. 
Serum metabolites were measured by untargeted metabolomics using ultra-high-performance liquid chromatogra-
phy–tandem mass spectrometry. %DBV and ADBV were measured by magnetic resonance imaging at the DISC06 visit 
when participants were 25–29 years old. Robust mixed effects linear regression was used to identify serum metabo-
lites associated with childhood BMI z-scores and breast density, and the R package mediation was used to quantify 
mediation.

Results:  Of the 115 metabolites associated with BMI z-scores (FDR < 0.20), 4 were significantly associated with %DBV 
and 6 with ADBV before, though not after, adjustment for multiple comparisons. Mediation analysis identified 2 
unnamed metabolites, X-16576 and X-24588, as potential mediators of the inverse association between childhood 
adiposity and dense breast volume. X-16576 mediated 14% (95% confidence interval (CI) = 0.002, 0.46; P = 0.04) of 
the association of childhood adiposity with %DBV and 11% (95% CI = 0.01, 0.26; P = 0.02) of its association with ADBV. 
X-24588 also mediated 7% (95% CI = 0.001, 0.18; P = 0.05) of the association of childhood adiposity with ADBV. None 
of the other metabolites examined contributed to mediation of the childhood adiposity–%DBV association, though 
there was some support for contributions of lysine, valine and 7-methylguanine to mediation of the inverse associa-
tion of childhood adiposity with ADBV.

Conclusions:  Additional large longitudinal studies are needed to identify metabolites and other biomarkers that 
mediate the inverse association of childhood adiposity with breast density and possibly breast cancer risk.
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Introduction
Maturation of the breasts occurs during adolescence, and 
the developing breast may be particularly susceptible to 
exposures related to later cancer risk. Childhood adi-
posity is associated with decreased breast cancer risk in 
adulthood [1–6], as well as decreased percent breast den-
sity [7–15]. Breast density is one of the strongest breast 
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cancer risk factors. Risk increases monotonically with 
increasing density, and women with extremely dense 
breasts are at a fourfold excess risk of breast cancer com-
pared to those with mostly fatty breasts [16, 17]. Approx-
imately 4.7 million US women aged 40–74  years are 
estimated to have extremely dense breasts [18]. Results 
from cohort studies suggest that decreased breast density 
may mediate, in part, the protective effect of childhood 
adiposity on breast cancer risk [6, 13].

In our earlier analysis from the Dietary Intervention 
Study in Children (DISC) and the DISC 2006 (DISC06) 
Follow-Up Study, adiposity in childhood was signifi-
cantly inversely associated with dense breast volume 
measured by magnetic resonance imaging (MRI); women 
who were heavier as children and adolescents had lower 
percent dense breast volume (%DBV) and less absolute 
dense breast volume (ADBV) in young adulthood inde-
pendent of adult adiposity and several additional covari-
ates [19]. Associations were strongest at the 3-year and 
5-year DISC follow-up visits when participants were 
11–15  years old, or around the age of menarche, which 
averaged 12.9 years in this cohort.

Overweight and obesity have a multitude of physiologic 
effects that could influence breast morphogenesis dur-
ing childhood and subsequent breast density. To better 
understand early life determinants of adult breast density, 
we conducted an exploratory study that used untargeted 
metabolomics profiling in serum collected in childhood 
during DISC to identify potential mediators of the asso-
ciation of childhood adiposity with young adult breast 
density phenotypes measured during the DISC06 Follow-
Up Study.

Materials and methods
Design
DISC was a multicenter randomized controlled clinical 
trial sponsored by the National Heart, Lung, and Blood 
Institute (NHLBI) to test the safety and efficacy of a 
dietary intervention to reduce serum low-density lipo-
protein cholesterol (LDL-C) in children with elevated 
LDL-C. The trial’s design and results have been described 
previously [20–23]. Briefly, between 1988 and 1990, 301 
healthy, prepubertal 8–10-year-old girls (and 362 boys) 
with elevated LDL-C were recruited into DISC at 6 clini-
cal centers1 and randomized by the data coordinating 
center2 to a behavioral dietary intervention or usual care 

control group. Planned intervention continued until 1997 
when the mean age of participants was 16.7 years. Assent 
was obtained from DISC participants and informed con-
sent was obtained from parents/guardians prior to ran-
domization. In 2006–2008 when participants were 25 to 
29 years old, the DISC06 Follow-Up Study was conducted 
to evaluate the longer-term effects of the diet interven-
tion on biomarkers associated with breast cancer in DISC 
female participants [24]. Informed consent was obtained 
from participants again prior to the DISC06 follow-up 
visit.

Participants
DISC participants originally were recruited through 
schools, health maintenance organizations and pediatric 
practices. A total of 301 8–10-year-old girls with elevated 
serum LDL-C who met several additional eligibility crite-
ria were enrolled [20].

All female DISC participants were invited to participate 
in the DISC06 Follow-Up Study and 260 (86.4%) attended 
visits. Those who were pregnant or breast feeding at or 
within 12  weeks before visits (n = 30), who had breast 
augmentation or reduction surgery (n = 13), or whose 
breast MRI was missing or not technically acceptable 
(n = 35) were excluded leaving a total of 182 participants 
with breast density measurements.

DISC participants provided blood samples on multiple 
occasions during childhood. Because of limited volume 
of serum remaining, we measured metabolites in a sin-
gle sample that had adequate volume (> 0.1 ml) and was 
collected at the DISC visit that occurred closest in time 
before or after menarche.

Data collection
Data and serum were collected previously in DISC or 
the DISC06 Follow-Up Study. DISC data were collected 
at baseline, before randomization and annually there-
after. Height and weight were measured, and a brief 
physical examination including Tanner staging of sexual 
maturation was performed. Data on demographics, med-
ical history, medication use, physical activity and onset of 
menses were collected. At baseline, Year-1, Year-3, Year-5 
and last visits, a venous blood sample was collected. Girls 
who were postmenarcheal completed menstrual cycle 
calendars to estimate the day of the menstrual cycle 
when blood was collected. At these visits, three non-con-
secutive 24-h dietary recalls were collected over 2 weeks 
and averaged to estimate nutrient intake [25].

For the DISC06 Follow-Up Study, participants attended 
a single visit between 2006 and 2008. Visits occurred 
within 14  days of onset of next menses whenever pos-
sible. Participant data, including demographics, medical 
and reproductive history, hormonal contraceptive and 
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medication use, and physical activity, were collected on 
the same day, while 24-h dietary recalls were collected 
over two weeks.

In both studies, centralized data collection training was 
conducted prior to data collection. Data were collected 
by staff masked to treatment group assignment.

Anthropometry
Height and weight were measured annually in DISC and 
again in DISC06 using the same procedures. Height was 
measured using a stadiometer, and weight was measured 
on an electronic or beam balance scale. Measurements 
were taken twice. A third measurement was taken if the 
first two measurements were not within allowable toler-
ances (0.5  cm for height and 0.2  kg for weight) and the 
two closest values were averaged. BMI was calculated 
as wt(kg)/ht(m2) and for DISC visits during childhood 
expressed as a z-score relative to Centers for Disease 
Control and Prevention (CDC) 2000 Growth Charts [26] 
to account for changes with age. The BMI z-score at the 
DISC visit when blood used for metabolomics assays was 
collected was used in all analyses.

Blood collection and processing
Blood was collected at DISC and DISC06 follow-up vis-
its in the morning after an overnight fast by venipuncture 
using standard procedures. Blood was allowed to clot for 
45 min at room temperature and centrifuged at 1500×g 
for 20 min before separating serum, which was aliquoted 
into glass vials in DISC and cryovials in DISC06 and 
stored continuously at − 80 °C.

Breast density assessment
Breast density was measured at the DISC06 follow-up 
visit using non-contrast MRI. Imaging was performed 
using a whole-body 1.5 Tesla or higher-field-strength 
MRI scanner and dedicated breast imaging radiofre-
quency coil. A standard protocol was followed consisting 
of a 3D T1-weighted fast gradient echo pulse sequence 
performed with and without fat suppression and in 
transaxial and coronal orientations. A 32–40 cm field of 
view was used for bilateral coverage.

MRI technologists at the clinical centers were indi-
vidually trained to recognize and correct failures due to 
incomplete fat suppression, motion artifacts and inad-
equate breast coverage. Acceptable image quality on 3 
volunteers was required for site certification. Participant 
scans that were inaccurate due to artifacts, motion or 
technique were excluded (n = 21).

All MRI image data were processed at the Univer-
sity of California San Francisco using customized soft-
ware to identify the chest wall–breast tissue boundary 
and skin surface, and to separate breast fibroglandular 

and fatty tissue using a segmentation method based on 
fuzzy C-means (FCM) clustering [27]. FCM segmenta-
tion was performed using fat-suppressed images; nonfat-
suppressed images were used when incorrect or failed 
segmentation occurred due to poor fat suppression. In 
problematic cases that could not be segmented with 
automated FCM methods, manual delineation was used.

Separately for each breast, total breast volume and 
ADBV were measured and absolute non-dense breast 
volume (ANDBV) was estimated by subtraction. %DBV 
was calculated as the ratio ADBV:total breast vol-
ume × 100. All breast density measures on the two 
breasts were highly correlated (r > 0.94). Results for the 
two breasts were averaged to provide single measures of 
%DBV, ADBV and ANDBV for each participant.

Metabolomics assays
Untargeted metabolomic profiling was performed by 
Metabolon (Durham, NC). DISC serum samples were 
randomly ordered with 10% blind quality control (QC) 
samples integrated throughout to monitor laboratory 
performance. A pooled matrix sample served as a tech-
nical replicate throughout analyses, extracted water 
samples served as process blanks, and a cocktail of QC 
standards that was spiked into every sample allowed 
instrument performance monitoring and aided chroma-
tographic alignment. Forty-two technical replicates from 
DISC06 samples that had previously been analyzed by 
Metabolon were re-assayed to facilitate comparison of 
metabolite levels in serum collected in childhood and 
young adulthood. A limited dataset with recalibrated lev-
els of named metabolites measured in 180 participants 
with both DISC and DISC06 samples was created to 
allow adjustment for adult metabolite levels when analyz-
ing associations of child levels with breast density.

Samples were prepared using the automated MicroLab 
StAR system (Hamilton Co.). Proteins were precipitated 
with methanol and the resulting extract was divided into 
5 fractions for analysis by four ultra-high-performance 
liquid chromatography–tandem mass spectrometry 
(UPLC-MS/MS) methods with one sample reserved for 
backup. Samples were placed briefly on a TurboVap 
(Zymark) to remove the organic solvent and were stored 
overnight under nitrogen before preparation for analysis.

All methods used a Waters ACQUITY ultra-high-
performance liquid chromatography and a Thermo 
Scientific Q-Exactive high-resolution/accurate mass 
spectrometer interfaced with a heated electrospray 
ionization (HESI-II) source and Orbitrap mass ana-
lyzer operated at 35,000 mass resolution. After drying, 
sample extracts were reconstituted in solvents compat-
ible with each of the four analytical methods. Details 
of the methods have been reported previously [28, 
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29]. Briefly, two aliquots were analyzed under acidic 
positive ion conditions using a C18 column. One was 
chromatographically optimized for more hydrophilic 
compounds, whereas the other chromatographically 
optimized for more hydrophobic compounds. The 
third aliquot was analyzed under basic negative ion 
optimized conditions following gradient elution on a 
dedicated C18 column. The fourth aliquot also was ana-
lyzed under negative ionization following gradient elu-
tion from a HILIC column. The MS analysis alternated 
between MS and data-dependent MSn scans using 
dynamic exclusion and a scan range of 70–1000 m/z.

Compounds were identified by comparison to library 
entries of purified standards or recurrent unknowns. 
Biochemical identifications were based on three crite-
ria: retention index, accurate mass match to the library 
and the MS/MS forward and reverse scores between the 
experimental data and authentic standards. At the time 
DISC samples were analyzed, more than 3300 commer-
cially available purified standard compounds had been 
acquired and characterized.

Proprietary visualization and interpretation software 
were used to confirm the consistency of peak identifica-
tion among samples. Peaks were quantified using area 
under the curve. A data normalization step corrected for 
day-to-day variation from instrument tuning differences.

Biochemicals are named according to the following 
guidelines. Biochemicals without any symbols appended 
to the end of their name were confirmed based on an 
authentic chemical standard. Biochemicals with a sin-
gle asterisk appended to the end of their name were not 
confirmed based on a standard, but Metabolon is confi-
dent in their identify. Biochemicals with a double asterisk 
appended to the end of their name do not have a stand-
ard available, but Metabolon is reasonably confident in 
their identity. Biochemicals with a number appended to 
the end of their name are structural isomers of another 
biochemical in Metabolon’s library.

Statistical analysis
A total of 880 biochemicals including 650 named bio-
chemicals of known identify and 230 unnamed biochem-
icals of unknown structural identity were semi-quantified 
as relative peak intensity by Metabolon. Metabolites 
with ≥ 30% of values less than the limit of detection 
or with coefficients of variation ≥ 25% calculated from 
masked quality control samples were dropped, leaving 
571 metabolites for analysis. For metabolites with < 30% 
of values below the limit of detection, undetected values 
were imputed at the lowest observed value. Metabolites 
were transformed to the natural log scale, and extreme 

values were winsorized using the median absolute devia-
tion [30].

Statistical models
The hypothesized associations among childhood BMI 
z-scores, childhood serum metabolites and young adult 
breast density phenotypes are shown in Fig. 1. Childhood 
BMI z-score could directly influence adult breast density 
and/or act indirectly via childhood serum metabolites. 
We, therefore, conducted a series of analyses to evalu-
ate associations of BMI z-scores with breast density and 
serum metabolites, and serum metabolites with breast 
density. Associations were evaluated using robust mixed 
effects multivariable linear regression implemented 
using the R package robustlmm [31]. P-values, which are 
not reported by robustlmm, were estimated by borrow-
ing degrees of freedom (df) from the same model fit with 
R package lmerTest [32]. All analyses were conducted 
with 2 levels of adjustment. Initial models adjusted for 
age at childhood BMI measurement (years, continu-
ous) and treatment group assignment as fixed effects 
and DISC clinic as a random effect. When breast den-
sity phenotypes were the dependent variables, BMI and 
BMI2 at time of breast density assessment (continuous) 
also were included as fixed effects. Fully adjusted models 
with serum metabolites as the dependent variables also 
included fixed effects for race (white/nonwhite), whereas 
fixed effects for race, college graduate (yes/no), duration 
hormone use (continuous), number live births (0/1+) 
and current smoker (yes/no) also were included when 
breast density phenotypes were the dependent variables. 
These covariates were identified by backward stepwise 
elimination. When serum metabolites were included in 
models either as dependent or independent variables, 
menstrual cycle phase at blood collection was adjusted 
for by including a factor with 4 levels—premenarche/
follicular phase/luteal phase/postmenarche unknown 
phase. Associations of BMI z-score with serum metabo-
lites and serum metabolites with breast density were 
adjusted for multiple comparisons using the Benjamini 
Hochberg false discovery rate (FDR).

Fig. 1  Hypothesized associations among BMI z-scores, serum 
metabolites and breast density. Childhood adiposity (BMI z-score) 
could affect adult breast density directly or serum metabolites could 
mediate this association
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BMI z‑score and breast density
The association of childhood BMI z-score with breast den-
sity was assessed separately for %DBV, ADBV and ANDBV. 
ADBV and ANDBV were natural log transformed prior to 
analysis. Breast density phenotype was modeled as a con-
tinuous dependent variable while childhood BMI z-score 
was included as a continuous fixed effect. Percent differ-
ence in ADBV and ANDBV for each unit increase in BMI 
z-score was estimated from the model coefficient for BMI 
z-score as (exp(β) − 1) × 100 [33].

BMI z‑score and serum metabolites
Associations of childhood BMI z-score with serum 
metabolites were evaluated similarly to ADBV and 
ANDBV except natural log transformed serum metabo-
lite levels were included as the dependent variable. Per-
cent difference in metabolite levels for each unit increase 
in BMI z-score were calculated by back transforming the 
model coefficient for BMI z-score as shown above for 
ADBV and ANDBV.

Serum metabolites and breast density phenotypes
Metabolites that were associated with BMI z-score at 
FDR < 0.20 were evaluated in association with %DBV and 
ADBV. For these analyses, breast density phenotype was 
modeled as a continuous dependent variable and natural 
log transformed serum metabolite levels and BMI z-scores 
were included as continuous fixed effects. The difference 
in %DBV for a 10% increase in serum metabolite was esti-
mated from the model coefficient for the metabolite as 
β ×  ln(1.10) [33]. Percent difference in ADBV for a 10% 
increase in serum metabolite was estimated from the model 
coefficient for the metabolite as (1.10β − 1) * 100 [33].

To explore the influence of dietary intake of nutrients 
on associations of nutrient metabolites with breast den-
sity phenotypes, average intakes from foods and supple-
ments from three 24-h dietary recalls collected at the 
DISC visit when blood was collected were included as 
fixed effects in fully adjusted models described above.

Spearman correlations were used to estimate associa-
tions between metabolite levels in serum from childhood 
(DISC) and adulthood (DISC06) using the limited dataset 
described under Metabolomics Assays. Models described 
earlier were refit including fixed effects for both child and 
adult metabolite levels to evaluate whether these corre-
lations explained associations between child metabolite 
levels and young adult breast density.

Mediation analysis
Mediation analysis was performed using the model-based 
approach as implemented in R package mediation [34]. 

Because childhood BMI z-scores were inversely associ-
ated with %DBV and ADBV, mediation analysis was per-
formed for metabolites associated in opposite directions 
with BMI z-score (FDR < 0.20) and these breast density 
phenotypes (P < 0.05). Two multivariable linear regres-
sion models were fit for each metabolite–breast den-
sity phenotype combination evaluated. The first model 
included the metabolite as the dependent variable and 
BMI z-score, age, treatment group assignment, race and 
menstrual cycle phase at blood collection as fixed effects. 
The second model included the breast density phenotype 
as the dependent variable and metabolite, BMI z-score, 
age, treatment group assignment and several additional 
potential confounders measured at the DISC06 visit 
described above as fixed effects. Mediation was evaluated 
by applying the function mediate to these two models 
with BMI z-score as the ‘treatment’ and the metabolite as 
the ‘mediator,’ using bootstrap variances estimated with 
5000 simulations.

All tests of statistical significance were two-sided. All 
analyses were conducted using SAS 9.4 and R 4.1 statisti-
cal software.

Results
Table  1 summarizes participant characteristics dur-
ing childhood (at the DISC visit when blood used for 
metabolomic assays was collected) and young adult-
hood (at the DISC06 follow-up visit). Ninety percent of 
participants were white, their mean age at blood collec-
tion was 11.63 ± 2.13 years, and their mean BMI z-score 
was 0.34 ± 0.93. Participants’ mean age at menarche was 
12.90 ± 1.26 years, and 26% were postmenarcheal at the 
visit. At the DISC06 follow-up visit, participants’ mean 
age was 27.17 ± 1.02  years and their mean BMI was 
25.39 ± 5.36 kg/m2. Over half (66%) were college gradu-
ates, 71% were nulliparous, 58% were currently using 
hormonal contraceptives, and 24% were current smokers. 
Mean breast density phenotypes were 27.64 ± 20.48% for 
%DBV, 104.18 ± 70.64 cm3 for ADBV and 413.25 ± 364.27 
cm3 for ANDBV.

BMI z‑score and breast density
Associations of BMI z-scores with breast density phe-
notypes are shown in Table  2. BMI z-score was signifi-
cantly inversely associated with %DBV and ADBV. In 
fully adjusted models, for each unit increase in BMI 
z-score, %DBV decreased by 3.43 (95% CI = −  6.04, 
− 0.82, P = 0.01) while ADBV decreased by 24.44% (95% 
CI = −  34.27%, −  13.14%, P = 0.0001). BMI z-score was 
not significantly associated with ANDBV, and this phe-
notype was not examined further.
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BMI z‑score and serum metabolites
Figure  2 illustrates associations of BMI z-scores with 
serum metabolites from fully adjusted models by metab-
olite superclass. Detailed results for all metabolites are 

shown in Additional file  1: Table  S1. One hundred and 
seven known and unknown metabolites representing 
diverse superclasses were associated with BMI z-scores 
at a FDR < 0.20 in fully adjusted models. Sphingomyelin 
(d18:2/14:0, d18:1/14:1)*, a lipid, was the most signifi-
cantly associated (FDR = 7.45e−08); for each one unit 
increase in BMI z-score, sphingomyelin increased by 
13.65% (95% CI = 9.49, 17.97).

Serum metabolites and breast density phenotypes
Associations of %DBV and ADBV with serum metabo-
lites that were associated with childhood BMI Z-score 
are shown in Tables 3 and 4, respectively. Associations of 
these metabolites with childhood BMI Z-score also are 
shown. Detailed results for all metabolites are shown in 
Additional file 2: Table S2 and Additional file 3: Table S3. 
Two unnamed metabolites, X-16576 and X-12104, were 
significantly positively associated with both %DBV and 
ADBV, while the amino acid lysine was significantly 
inversely associated with both these breast density phe-
notypes. For each 10% increase in serum lysine, %DBV 
decreased by 1.13 (95% CI = − 2.23, − 0.03) and ADBV 
decreased by 7.68% (95% CI = −  12.76%, −  2.31%). The 
nucleotide N1-methylinosine also was significantly posi-
tively associated with %DBV, while the unnamed metabo-
lite X-24588, the nucleotide 7-methylquanine and the 
amino acid valine were significantly inversely associated 
with ADBV.

Associations of lysine and valine with %DBV and ADBV 
were not materially changed after adjustment for dietary 
intake of the respective amino acid (data not shown). Lev-
els of lysine, valine, N1-methylinosine and 7-methylgua-
nine in serum from DISC and DISC06 were only weakly 
correlated, and adjustment for DISC06 levels also did not 
materially alter associations of DISC levels with breast 
density phenotypes (data not shown). Unnamed metabo-
lites were not measured in DISC06 samples.

Mediation analysis
Mediation analysis identified the unnamed metabolite 
X-16576 as a potential mediator of the childhood adipos-
ity–breast density association. This metabolite signifi-
cantly mediated 14% (95% CI = 0.002, 0.46; P = 0.04) of 
the association with %DBV and 11% (95% CI = 0.01, 0.26; 
P = 0.02) of the association with ADBV. The unnamed 
metabolite X-24588 also mediated 7% of the childhood 
adiposity–ADBV association (95% CI = 0.001, 0.18; 
P = 0.05). No other metabolites contributed significantly 
to mediation of the childhood adiposity–%DBV associa-
tion. Lysine, valine and the nucleotide 7-methylguanine 
each mediated 6–7% of the association of childhood adi-
posity with ADBV, though the effect was only borderline 
significant.

Table 1  Characteristics of participants (N = 182)

Child characteristics Mean (sd)

Age (year) 11.63 (2.13)

BMI Z-score 0.34 (0.93)

Age at menarche (year) 12.90 (1.26)

N (%)

Race

 White 164 (90%)

 Nonwhite 18 (10%)

Days until start of next menses at blood collection

 Premenarche 134 (74%)

 Postmenarche

  ≤ 14 days (luteal) 14 (8%)

  > 14 days (follicular) 19 (10%)

  Unknown 15 (8%)

Treatment group

 Intervention 87 (48%)

 Usual care 95 (52%)

Young adult characteristics Mean (sd)

Age (year) 27.17 (1.02)

BMI (kg/m2) 25.39 (5.36)

Duration hormone use (year) 5.27 (3.65)

N (%)

Education

 High school or equivalent 18 (10%)

 Some college 44 (24%)

 College graduate 95 (52%)

 Graduate school 25 (14%)

Hormonal contraceptive use

 Current 105 (58%)

 Former 66 (36%)

 Never 11 (6%)

Number live births

 0 129 (71%)

 1 30 (16%)

 2+ 23 (13%)

Smoking status

 Current 44 (24%)

 Former 38 (21%)

 Never 100 (55%)

Breast phenotypes Mean (sd)

Breast density (%) 27.64 (20.48)

Dense breast volume (cm3) 104.18 (70.64)

Non-dense breast volume (cm3) 413.25 (364.27)
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Discussion
This analysis confirmed the previously reported inverse 
association of childhood adiposity with adult breast den-
sity and identified two unnamed metabolites, X-16576 
and X-24588, as potential mediators of this association. 
X-16576 significantly mediated 14% of the inverse asso-
ciation of childhood adiposity with %DBV and 11% of its 
inverse association with ADBV. X-24588 also significantly 
mediated 7% of the inverse association of childhood adi-
posity with ADBV. None of the other metabolites exam-
ined contributed to mediation of the inverse childhood 
adiposity–%DBV association, though there was some 
support for contributions of lysine, valine and 7-methyl-
guanine to mediation of the inverse association of child-
hood adiposity with ADBV.

To our knowledge, this is the first study to examine 
associations of untargeted metabolite profiles in serum 
from childhood with adult breast density phenotypes. 
Because the goal of the analysis was to identify media-
tors of the inverse association between childhood adi-
posity with %DBV and ADBV, only metabolites that were 
associated with childhood BMI z-score were evaluated 
in association with breast density phenotypes. Nonethe-
less, we identified several named and unnamed metabo-
lites associated with %DBV and ADBV at P < 0.05, though 
none remained significant after adjusting for multiple 
comparisons. The amino acid lysine was inversely asso-
ciated with %DBV and ADBV, and valine was inversely 
associated with ADBV, as well. However, support for 
these amino acids mediating the inverse association 
between childhood adiposity and breast density was 
weak. Inverse associations of lysine and valine with breast 
density phenotypes suggest greater uptake from the cir-
culation into tissues where they can be incorporated into 
proteins, regulate cellular processes or be metabolized. 
Lysine’s highly reactive terminal ε-amino group contrib-
utes importantly to protein stability and makes it a target 
for numerous posttranslational modifications that alter 
DNA–protein interactions and transcriptional activity 

with consequences for cancer, including breast cancer 
[35]. Collagen is rich in glycated lysine [36] and is a major 
constituent of dense breast stroma [37]. Extracellular 
lysine and other essential amino acids including valine 
are higher in dense compared to non-dense breast tissue 
where they are available to promote growth and prolifer-
ation [38]. Conversely, valine is a branched chain amino 
acid (BCAA) involved in regulation of protein synthesis, 
glucose homeostasis and the phosphoinositide 3-kinase-
protein kinase B-mammalian target of rapamycin (PI3K-
AKT-mTOR) signaling pathway [39]. mTOR regulates 
cellular proliferation and growth [40], and the PI3K-
AKT-mTOR pathway is dysregulated in several cancers 
including breast cancer [41]. The PI3K-AKT signaling 
network also has been reported to integrate mechanical 

Table 2  Association of childhood BMI Z-score with young adult breast density phenotypes

a Estimates are from robust mixed effects multivariable linear regression models including breast density phenotype as the dependent variable; childhood BMI z-score 
(continuous), age at childhood BMI measurement (continuous), treatment group assignment, BMI and BMI2 at breast density measurement in young adulthood 
(continuous) as fixed effects; and DISC clinic as a random effect
b Estimates are from robust mixed effects multivariable linear regression models as described above under (1) plus fixed effects for race (white/nonwhite), college 
graduate (yes/no), duration hormone use (continuous), number live births (0/1+) and current smoker (yes/no)

Phenotype Minimally adjusted modela Fully adjusted modelb

Δ/unit BMI 95% CI P-value Δ/unit BMI 95% CI P-value

Breast density (%) − 3.60 − 6.30, − 0.90 9.70E−03 − 3.43 − 6.04, − 0.82 1.09E−02

Dense breast Volume (cm3) − 24.36% − 34.66%, − 12.43% 2.52E−04 − 24.44% − 34.27%, − 13.14% 1.18E−04

Non-dense breast volume (cm3) − 8.59% − 17.02%, 0.69% 7.05E−02 − 8.57% − 17.04%, 0.78% 7.30E−02

Fig. 2  Manhattan plot—Associations of childhood adiposity 
(BMI z-scores) with serum metabolites by metabolite superclass 
membership
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Table 3  Association of %DBV with serum metabolites associated with childhood BMI z-score (FDR < 0.20) and association of these 
metabolites with BMI Z-score

a Results shown for metabolites associated with %DBV at P < 0.10. Estimates are from robust mixed effects multivariable linear regression models including %DBV as 
the dependent variable; childhood fixed effects – ln(metabolite level) (continuous), BMI z-score (continuous), age at BMI measurement (continuous), treatment group 
assignment, race (white/nonwhite) and menstrual cycle phase at blood collection (premenarche/luteal/follicular/unknown); adult fixed effects—BMI and BMI2 at 
breast density (continuous), college graduate (yes/no), duration hormone use (continuous), number live births (0/1 +), current smoker (yes/no); and DISC clinic as a 
random effect
b Estimates are from robust mixed effects multivariable linear regression models including ln(metabolite level) (continuous) as the dependent variable; childhood 
fixed effects—BMI z-score (continuous), age at BMI measurement (continuous), treatment group assignment, race (white/nonwhite) and menstrual cycle phase at 
blood collection (premenarche/luteal/follicular/unknown); and DISC clinic as a random effect

Metabolite Superclass Difference in %DBV associated with 10% 
increase in serum metabolitea

Percent difference in serum metabolites 
associated with a unit increase in BMI 
z-scoreb

Δ 95% CI P-value Δ 95% CI P-value

X-16576 Unknown 0.39 0.08, 0.71 1.57E−02 − 13.65 − 21.53, − 4.99 3.01E−03

X-12104 Unknown 0.50 0.03, 0.97 3.88E−02 9.66 3.48, 16.22 2.15E−03

lysine Amino acid − 1.13 − 2.23, − 0.03 4.57E−02 3.05 0.50, 5.65 1.98E−02

N1-methylinosine Nucleotide 0.76 0.01, 1.51 4.83E−02 6.92 2.95, 11.05 6.67E−04

X-15492 Unknown − 0.31 − 0.64, 0.01 6.11E−02 29.01 17.12, 42.10 6.56E−07

X-17340 Unknown − 0.31 − 0.66, 0.03 7.96E−02 28.52 17.89, 40.11 5.17E−08

Androstenediol 
(3beta,17beta) monosulfate 
(2)

Lipid − 0.23 − 0.50, 0.04 9.51E−02 33.61 19.66, 49.19 6.96E−07

2-Aminoheptanoate Lipid 0.37 − 0.06, 0.81 9.60E−02 8.25 0.90, 16.14 2.85E−02

Table 4  Association of ADBV with serum metabolites associated with childhood BMI Z-score (FDR < 0.20) and association of these 
metabolites with BMI Z-score

a Results shown for metabolites associated with ADBV at P < 0.10. Estimates are from robust mixed effects multivariable linear regression models including ADBV as 
the dependent variable; childhood fixed effects – ln(metabolite level) (continuous), BMI z-score (continuous), age at BMI measurement (continuous), treatment group 
assignment, race (white/nonwhite) and menstrual cycle phase at blood collection (premenarche/luteal/follicular/unknown); adult fixed effects—BMI and BMI2 at 
breast density (continuous), college graduate (yes/no), duration hormone use (continuous), number live births (0/1 +), current smoker (yes/no); and DISC clinic as a 
random effect
b Estimates are from robust mixed effects multivariable linear regression models including ln(metabolite level) (continuous) as the dependent variable; childhood 
fixed effects—BMI z-score (continuous), age at BMI measurement (continuous), treatment group assignment, race (white/nonwhite) and menstrual cycle phase at 
blood collection (premenarche/luteal/follicular/unknown); and DISC clinic as a random effect

Metabolite Superclass Percent difference in ADBV associated with 
10% increase in serum metabolitea

Percent difference in serum metabolites 
associated with a unit increase in BMI 
z-scoreb

Δ 95% CI P-value Δ 95% CI P-value

X-16576 Unknown 2.91 1.25, 4.60 6.92E−04 − 13.65 − 21.53, − 4.99 3.01E−03

X-12104 Unknown 3.81 1.24, 6.45 4.06E−03 9.66 3.48, 16.22 2.15E−03

lysine Amino acid − 7.68 − 12.76, − 2.31 6.26E−03 3.05 0.50, 5.65 1.98E−02

X-24588 Unknown − 2.84 − 5.05, − 0.57 1.53E−02 8.18 0.73, 16.19 3.21E−02

7-Methylguanine Nucleotide − 5.13 − 9.63, − 0.39 3.57E−02 4.77 1.45, 8.20 5.16E−03

Valine Amino acid − 5.28 − 10.01, − 0.31 3.90E−02 4.13 1.65, 6.66 1.20E−03

Homoarginine Amino acid − 2.71 − 5.40, 0.06 5.64E−02 7.22 1.63, 13.12 1.16E−02

X-17340 Unknown − 1.70 − 3.51, 0.14 7.13E−02 28.52 17.89, 40.11 5.17E−08

5alpha-androstan-3alpha,17beta-diol 
monosulfate (1)

Lipid 0.99 − 0.08, 2.06 7.14E−02 37.90 17.09, 62.41 1.66E−04

N-acetylvaline Amino acid − 4.55 − 9.25, 0.39 7.21E−02 3.68 0.63, 6.83 1.87E−02

Glycochenodeoxycholate 3-sulfate Lipid − 1.01 − 2.10, 0.10 7.63E−02 − 14.80 − 24.58, − 3.75 1.09E−02

Kynurenine Amino acid − 2.72 − 5.76, 0.42 9.10E−02 6.20 1.74, 10.85 6.65E−03
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and biochemical signaling to control branching mor-
phogenesis of mammary epithelial cells [42]. Specifically, 
PI3K-AKT is a positive regulator of mammary epithelial 
cell branching [43].

Few epidemiologic studies have evaluated serum/
plasma amino acids with breast density or breast cancer 
risk. In the Mexican Teachers’ Cohort, lysine and valine 
in plasma from premenopausal women were not associ-
ated with percent mammographic density [44]. Regard-
less, disruption of BCAA biosynthesis and degradation 
was associated with breast cancer risk in the Korean 
Cancer Prevention Study-II [45], and higher plasma lev-
els of valine were associated with increased breast cancer 
risk in the SU.VI.MAX prospective cohort [46]. Neither 
lysine nor valine were associated with breast cancer risk 
in 4 additional prospective cohorts [47–50].

7-Methylguanine was inversely associated with ADBV 
in our analysis, though similar to the amino acids, support 
for mediation of the inverse association of childhood adi-
posity with breast density was weak. 7-methylguanine is a 
marker of DNA damage caused by endogenous and exog-
enous methylating agents [51]. It is elevated in the urine 
of smokers [52–54], though at the time of blood collec-
tion in childhood only 2 DISC participants included in the 
current analysis reported smoking cigarettes. In a study 
of steel workers, urinary 7-methylguanine also was posi-
tively associated with age and inversely associated with 
BMI and an index of diet quality [53]. 7-Methylguanine 
also is a marker of RNA turnover and metabolic rate [55]. 
In the Alpha-Tocopherol Beta-Carotene (ATBC) Cancer 
Prevention Study, 7-methylguanine was associated with 
all-cause and cardiovascular disease mortality [56]. We 
are not aware of any reports of associations of 7-methyl-
guanine with breast density or breast cancer risk.

Our study had several strengths. To ensure scientific 
rigor and data quality centralized data collection training 
was conducted prior to DISC and DISC06, and all ques-
tionnaire data, anthropometry and breast images were 
collected by trained personnel according to strict proto-
cols. Serum was collected after an overnight fast and con-
tinuously stored at − 80 °C. Metabolites were measured 
by Metabolon, a leader in the field, using UPLC-MS/
MS with inclusion of multiple quality control samples to 
monitor performance. Breast density was measured by 
MRI, which is not impaired by high parenchymal breast 
density, making it especially effective for younger women 
with dense breast tissue. MRI technologists at the clini-
cal sites were individually trained, and acceptable image 
quality on 3 volunteers was required for site certification. 
The median %DBV in DISC06 was 21.9% with a range of 
1.5–77.0%. Thus, even though young women, on aver-
age, have dense breasts, there was wide variation across 
women.

Our study also has some limitations. Most notably, 
our study was exploratory and the sample size of 182 
women limited power to detect even moderate associa-
tions. Several factors could potentially limit generaliz-
ability of results—16% of otherwise eligible participants 
had missing or technically unacceptable breast MRIs 
and could not be included in analyses, most partici-
pants were Caucasian and well educated and DISC eli-
gibility required elevated LDL-C at baseline. However, 
similar to others [57], we did not observe an association 
of LDL-C with breast density in DISC06. DISC was a 
clinical trial of a diet intervention aimed at blood cho-
lesterol lowering during preadolescence with no expec-
tations of influence on breast density. Regardless, we 
adjusted for treatment group assignment in all analy-
ses. As a precaution due to the sensitivity of the young 
breast to radiation, in DISC06 we measured breast den-
sity by MRI, while most studies quantify breast density 
from mammographic images. Because breast density 
measured by MRI and mammography are highly cor-
related with r ≥ 0.75 [27, 58], associations of metabo-
lites with breast density would not be expected to differ 
depending on the modality used to measure density. 
Though we adjusted for several covariates in analy-
sis, uncontrolled confounding cannot be ruled out. 
Many of the metabolites evaluated, including the two 
most strongly associated with %DBV and ADBV, were 
unnamed, which hampers interpretation of results.

Conclusion
Childhood adiposity is inversely associated with adult 
breast density. Identification of serum metabolites 
that mediate this association could lead to discovery 
of underlying metabolic pathways and improve under-
standing of breast development in relation to breast 
density, an established breast cancer risk factor. Sup-
port from the current analysis for mediation of the 
inverse association of childhood adiposity with %DBV 
and ADBV was strongest for the unnamed metabolites 
X-16576 and X-24588, while it was more limited for 
the amino acids lysine and valine and the nucleotide 
metabolite 7-methylguanine. Larger studies in more 
diverse populations are needed.
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