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Abstract 

Background:  KRISTINE is an open-label, phase III study of trastuzumab emtansine + pertuzumab (T-DM1 + P) versus 
docetaxel + carboplatin + trastuzumab + pertuzumab (TCH + P) in patients with HER2-positive, stage II–III breast 
cancer. We investigated the association of biomarkers with clinical outcomes in KRISTINE.

Methods:  Patients were randomized to receive neoadjuvant T-DM1 + P or TCH + P and assessed for pathologic 
complete response (pCR; ypT0/is, ypN0). HER2 status (per central assessment), hormone receptor status, PIK3CA muta‑
tion status, HER2/HER3 mRNA levels, tumor-infiltrating lymphocyte levels, PD-L1 status, and NanoString data were 
analyzed. pCR rates by treatment arm were compared across biomarker subgroups. Analyses were descriptive.

Results:  Biomarker analyses included data from all 444 patients (T-DM1 + P, n = 223; TCH + P, n = 221) enrolled in 
KRISTINE. Biomarker distribution was balanced across treatment arms. All subgroups with higher HER2 amplifica‑
tion/expression and immune marker levels showed numerically higher pCR rates in both arms. Mutated versus 
non-mutated PIK3CA tumors were associated with numerically lower pCR rates in the T-DM1 + P arm but not in the 
TCH + P arm. In a multivariate analysis, Prediction Analysis of Microarray with the 50-gene classifier (PAM50) HER2-
enriched subtype, HER2 gene ratio ≥ 4, and PD-L1-positive status positively influenced the pCR rate. Biomarkers 
associated with lower pCR rates (e.g., low HER2 levels, positive hormone receptor status, mutated PIK3CA) were more 
likely to co-occur. Dynamic on-treatment biomarker changes were observed. Differences in the treatment effects 
for T-DM1 + P versus TCH + P were similar to those observed in the intent-to-treat population for the majority of the 
biomarker subgroups.

Prior presentation: These data have previously been presented in part at the 
San Antonio Breast Cancer Symposium, December 6–10, 2016, and at the San 
Antonio Breast Cancer Symposium, December 5–9, 2017.
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Conclusions:  Although our biomarker analysis did not identify a subgroup of patients that benefited from neo‑
adjuvant T-DM1 + P versus TCH + P, the data revealed that patients with higher HER2 amplification/expression and 
immune marker levels had improved response irrespective of treatment arm. These analyses confirm the role of HER2 
tumor biology and the immune microenvironment in influencing pCR in the neoadjuvant setting and reaffirm the 
molecular diversity of HER2-positive breast cancer.

Trial Registration: ClinicalTrials.gov NCT02131064. Registered 06 May 2014.
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Background
The antibody–drug conjugate (ADC) trastuzumab 
emtansine (T-DM1) is composed of the anti-human epi-
dermal growth factor receptor 2 (HER2) antibody tras-
tuzumab linked to the cytotoxic agent DM1 through a 
stable, uncleavable linker [1]. T-DM1 selectively deliv-
ers DM1 to HER2-positive tumor cells and retains the 
mechanisms of action of trastuzumab [2]. Based on 
results from a randomized phase III study (EMILIA) [3], 
T-DM1 was approved by the US Food and Drug Admin-
istration (FDA) in 2013 for the treatment of patients with 
HER2-positive metastatic breast cancer (mBC) who pre-
viously received trastuzumab and a taxane. T-DM1 is 
also FDA-approved as an adjuvant treatment in patients 
with HER2-positive early breast cancer (eBC) with resid-
ual invasive disease after neoadjuvant taxane and tras-
tuzumab-based treatment, based on findings from the 
KATHERINE study [4, 5].

Pertuzumab is an anti-HER2 antibody that differs from 
trastuzumab by blocking HER2 dimerization with other 
HER family members, thereby inhibiting ligand-dependent 
HER2 signaling [6]. In combination with trastuzumab and 
docetaxel, pertuzumab is FDA-approved for the first-line 
treatment of HER2-positive mBC [7] and in the neoadjuvant 
setting for patients with HER2-positive, locally advanced, 
inflammatory, or eBC based on demonstration of improve-
ments in pathologic complete response (pCR) and invasive 
disease-free survival (iDFS) rates versus trastuzumab and 
chemotherapy [5, 8]. In the phase III MARIANNE study, 
first-line treatment with T-DM1 alone or in combination 
with pertuzumab (T-DM1 + P) was associated with non-
inferior efficacy but better tolerability than trastuzumab plus 
taxane in patients with HER2-positive mBC [9]. T-DM1 + P 
was also assessed in patients with HER2-positive stage II/
III breast cancer in KRISTINE, a phase III study that com-
pared neoadjuvant T-DM1 + P with docetaxel, carboplatin, 
and trastuzumab plus pertuzumab (TCH + P) [10, 11]. As 
reported previously, the pCR rate was higher in the TCH + P 
arm versus T-DM1 + P (55.7% vs. 44.4%; absolute differ-
ence − 11.3 percentage points, 95% confidence interval [CI] 
– 20.5 to – 2.0; P = 0.016) [10]. Event-free survival (EFS) at 
3 years numerically favored TCH + P, with a higher number 
of locoregional progression events before surgery in patients 

treated with T-DM1 + P; iDFS after surgery was similar 
between arms [11].

Biomarker analyses could potentially elucidate patient 
subgroups with better prognosis or with a higher likeli-
hood of clinical benefit from treatment with specific 
HER2-targeted regimens (e.g., T-DM1 + P vs. TCH + P) 
in the adjuvant/neoadjuvant setting [12]. Exploratory 
biomarker analyses from previous studies of HER2- 
targeted therapy have shown associations between the 
levels of HER2 amplification and/or expression and 
outcomes in both mBC [13–15] and eBC [16, 17]. Con-
sistent with these data, the HER2-enriched (HER2-E) 
intrinsic breast cancer subtype has been associated with 
better responses [18–21] and favorable long-term out-
comes in patients treated with neoadjuvant HER2-tar-
geted therapy [18, 21, 22]. In addition, increased HER2 
heterogeneity has been associated with reduced benefit 
from T-DM1 [15]. Preclinical and clinical evidence sug-
gests that mutated (vs. non-mutated) phosphatidylino-
sitol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
(PIK3CA) confers resistance to HER2-targeted therapies 
[17, 23]. Markers indicating an activated immune micro-
environment, such as higher tumor-infiltrating lympho-
cytes (TILs) [24–26] or higher expression of immune 
gene signatures, are associated with higher pCR rates 
[19, 27] and better long-term outcomes in HER2-positive 
BC [23, 28]. Other biomarkers have also been hypoth-
esized to influence outcomes, such as the anti-apoptotic 
marker bcl-2 [29] and expression of the MDR1/ABCB1 
drug efflux pump, for which upregulation has been asso-
ciated with resistance to T-DM1 and other therapeutics 
in breast cancer [30–32]. Here, we report the results 
obtained from exploratory analyses designed to examine 
a variety of biomarkers and their association with clinical 
outcomes in patients who participated in the KRISTINE 
study.

Methods
Study design and patients
The KRISTINE study design and results from pri-
mary and secondary analyses have been reported else-
where [10, 11]. Briefly, KRISTINE (ClinicalTrials.
gov #NCT02131064) was a randomized, multicenter, 
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open-label, phase III study of treatment-naïve patients 
with HER2-positive, operable, stage II/III breast cancer. 
All tumors scored as HER2-positive according to local 
testing were confirmed by central testing. Patients were 
randomized (1:1) to receive six cycles (administered 
every 3  weeks) of neoadjuvant T-DM1 + P (T-DM1: 
3.6  mg/kg; P: 840  mg loading dose, then 420  mg main-
tenance doses) or TCH + P (docetaxel: 75 mg/m2; carbo-
platin: area under the concentration–time curve 6  mg/
mL × min; trastuzumab: 8  mg/kg loading dose, then 
6 mg/kg maintenance doses; P: 840 mg loading dose, then 
420 mg maintenance doses). All drugs were administered 
intravenously. HER2-targeted therapy continued within 
9  weeks after surgery for a maximum of 18 total cycles 
in the neoadjuvant/adjuvant settings. At the discretion of 
the treating physician, patients treated with neoadjuvant 
T-DM1 + P could initiate adjuvant chemotherapy.

The primary efficacy endpoint was locally determined 
pCR (ypT0/is, ypN0), assessed using samples taken at 
surgery following the completion of neoadjuvant therapy 
[10]. Secondary endpoints included EFS (defined as the 
time from randomization to disease progression, disease 
recurrence, or death from any cause), iDFS, and overall 
survival. Exploratory biomarker analyses (both prede-
fined and post hoc) were conducted to evaluate potential 
associations between tissue biomarkers and pCR in each 
treatment arm. The association of selected biomarkers of 
interest with EFS was also assessed, but using data pooled 
from both treatment arms due to the low event rate. The 
iDFS event rate was too low to enable any assessment of 
association with tissue biomarkers.

The KRISTINE study protocol, which included a 
description of preplanned exploratory biomarker analy-
ses, received ethics approval from the institutional review 
board or ethics committee at each study site, and all 
patients provided written informed consent. The study 
was conducted in accordance with the International Con-
ference on Harmonization Good Clinical Practice guide-
lines and the Declaration of Helsinki.

Biomarker assessments
Biomarker analyses were conducted on formalin-fixed 
paraffin-embedded tumor tissue collected at baseline 
for all markers (Additional file 1: Table S1) and at cycle 
2 and surgery for selected markers. HER2 status used 
for study eligibility was centrally assessed at baseline at 
Targos Molecular Pathology GmbH (Kassel, Germany). 
HER2 positivity was defined as immunohistochemistry 
3 + (IHC3+) (using PATHWAY anti-HER2/neu [4B5] 
assay, Ventana Medical Systems, Roche Diagnostics) 
and/or HER2/CEP17 gene ratio ≥ 2 by in situ hybridiza-
tion (using ISH; INFORM HER2 Dual ISH assay, Ven-
tana Medical Systems, Roche Diagnostics). As part of the 

central HER2 assessment, the percentage and intensity of 
HER2 staining was assessed manually by central labora-
tory pathologists and categorized as focal (< 30% of cells 
positive for HER2), heterogeneous (30–79%), or homo-
geneous (≥ 80%) in the subgroup of patients with HER2 
IHC2+ or IHC3+ staining, as previously described [15] 
(Additional file 1: Fig. S1). HER2 H-score was calculated 
as ((%IHC3+) × 3) + ((%IHC2+) × 2) + (%IHC1+) [15, 
33]. HER2 and HER3 messenger RNA (mRNA) expres-
sion were measured at baseline using quantitative reverse 
transcriptase polymerase chain reaction (qRT-PCR) 
using the cobas® z 480 analyzer (Roche Diagnostics). 
PIK3CA mutation status was determined at baseline 
using the cobas® PIK3CA Mutation Test on the cobas® z 
480 analyzer (both Roche Diagnostics).

Expression of additional predefined single genes and 
signatures of interest were analyzed using a custom 800-
gene codeset on the nCounter® platform (NanoString 
Technologies) from samples collected at baseline, cycle 
2, and surgery. Genes of interest included HER2, pro-
grammed death ligand 1 (PD-L1), CD8, predefined 
immune signatures including 3-gene (PD-L1/IFNG/
CXCL9), 5-gene (PD-L1/granzyme B/CD8/IFNG/
CXCL9), T effector (Teff) signature (CD8/granzyme A/ 
granzyme B/perforin/IFNG), chemokine signaling 
(ThCytokines signature, i.e., CXCL9/CXCL10/CXCL11), 
and checkpoint inhibitor signatures (PD-L1/PD-L2/
IDO), as well as other markers of interest (complete 
listing available in Additional file  1: Table  S2) based on 
knowledge of the immune signatures and TILs associated 
with pCR in HER2-positive eBC [17, 19].

The Prediction Analysis of Microarray with the 50-gene 
classifier (PAM50) subtype prediction [34] was carried 
out using the random-forest-based classifier [35] and 
examined HER2-E, luminal A, luminal B, and basal-like 
as the major intrinsic breast cancer subtypes.

Expression of PD-L1 by IHC was assessed post hoc 
(Ventana SP142 assay, Roche Diagnostics) from samples 
collected at baseline, cycle 2, and surgery. PD-L1-positive 
disease was defined as tumor-infiltrating immune cell 
(IC) expression ≥ 1% of the tumor area (IC score 1, 2, or 
3), while PD-L1-negative disease was defined as PD-L1 
expression on IC < 1% of the tumor area (IC score 0) [36]. 
Stromal TILs were assessed post hoc using hematoxylin 
and eosin images from tumor samples according to the 
International Immuno-oncology Biomarker Working 
Group on Breast Cancer guidelines [25] from samples 
collected at baseline, cycle 2, and surgery. A predefined 
cutoff was used to define high- (> 10%) and low- (≤ 10%) 
infiltrated tumors.

Local hormone receptor status was assessed as a strati-
fication factor, and centrally assessed hormone receptor 
status was used for the biomarker analyses. Hormone 
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receptor-positive disease was defined as estrogen and/or 
progesterone receptor staining of ≥ 1% (Dako Omnis IHC 
assay, Agilent Technologies).

FcγR IIa (rs1801274), FcγR IIIa (s396991), ABCB1 pol-
ymorphisms (RS1045642), and ABCG2 polymorphisms 
(RS2231142) were analyzed based on whole blood sam-
ples collected at baseline or during the study. Polymor-
phisms were assessed using genotyping assays from 
ThermoFisher and TaqMan probe chemistry.

All biomarkers were analyzed for their correlation 
with pCR. In addition, specific biomarkers (HER2 IHC 
subgroups, PIK3CA mutation status, and PD-L1 status) 
were measured from baseline samples and evaluated 
for their correlation with EFS in a pooled analysis of 
both treatment arms. These biomarkers were selected 
for EFS analyses based on their potential as targets of 
possible combination therapies and the robustness of 
the assays.

Statistical methods
pCR rates by treatment arm were assessed across bio-
marker subgroups for HER2 IHC (IHC1+, IHC2+, or 
IHC3+), HER2/CEP17 gene ratio (≥ 2 to < 4 or ≥ 4), HER2  
and HER3 mRNA expression (≤ median or > median), 
HER2 staining pattern (focal, heterogeneous, or homo-
geneous), PIK3CA mutation status (mutated or non-
mutated), intrinsic breast cancer subtype (HER2-E, 
luminal A, luminal B, or basal-like), PD-L1 expression 
(IC 0 or IC 1, 2, or 3), stromal TILs (≤ 10% or > 10%), 
single genes of interest, and immune genes/signatures 
(≤ median or > median).

A multivariate analysis was carried out to identify bio-
markers most prognostic for pCR, regardless of treat-
ment. Univariate analysis based on a logistic model was 
conducted for all biomarkers assessed. Biomarkers show-
ing at least a moderate potential association with pCR 
(< 0.15 significance level) were included in a multivariate 
logistic model in which backwards selection was applied. 
The final analysis model included randomized treatment 
plus the set of biomarker covariates selected based on the 
previous step.

An unstratified Cox proportional hazards model was 
used to estimate hazard ratios (HRs) between biomarker 
subgroups (preplanned: HER2 IHC subgroups [3+ ver-
sus 2+], PD-L1 IHC [IC 1/2/3 versus IC 0], and PIK3CA 
[mutated versus non-mutated]; post hoc: PAM50 subtype 
[HER2-E versus non-HER2-E]) and corresponding 95% 
CIs for the EFS endpoint. The Kaplan–Meier approach 
was used to estimate 3-year EFS rates and corresponding 
95% CIs.

Changes in PAM50 subtype, PD-L1 IHC status, per-
centage of stromal TILs, and HER2 mRNA levels 

(NanoString) from baseline to cycle 2 and surgery were 
assessed by treatment arm.

As these were exploratory analyses, all gene expression 
levels, HRs, odds ratios, and 95% CIs should be consid-
ered descriptive and are included for illustrative purposes 
only. The clinical cutoff dates for the biomarker analyses 
were the same as those used for the primary and second-
ary endpoints: December 3, 2015, for the pCR analysis 
and May 29, 2018, for the final EFS analysis.

Results
Patients
Data from all 444 patients (T-DM1 + P, n = 223; TCH + P, 
n = 221) enrolled in KRISTINE were included in the 
biomarker analyses (Additional file  1: Fig. S2). Baseline 
characteristics for this population have been reported 
[10]. HER2-related biomarkers (HER2 by IHC, includ-
ing HER2-variable IHC staining; HER2 by ISH, including 
gene ratio; and HER2 and HER3 mRNA by qRT-PCR), 
PIK3CA mutation status, PAM50 subtype, and PD-L1 
IHC status at baseline were generally balanced across 
the two treatment arms, although the prevalence of the 
HER2-E subtype was slightly higher in the TCH + P arm 
(Table  1). For patients with a central hormonal recep-
tor status assessment available (n = 424), concordance 
between local and central assessment was achieved in 
368 patients (86.8%; 235/424 [55.4%] for hormone recep-
tor-positive disease and 133/424 [31.4%] for hormone 
receptor-negative disease). Post-surgical chemother-
apy was administered to 50/204 (24.5%) patients in the 
T-DM1 + P arm (41/124 [33.1%] patients with residual 
disease and 9/80 [11.3%] patients with pCR) and was not 
administered to any patients in the TCH + P arm.

pCR rates by HER2 biomarker subgroups and PIK3CA status
As previously described, pCR was achieved in 123/221 
(55.7%) patients in the TCH-P arm and 99/223 (44.4%) 
patients in the T-DM1 + P arm (absolute differ-
ence −11.3 percentage points, 95% CI−20.5 to −2.0; 
P = 0.016) [10]. Consistent with these data, numerically 
higher pCR rates were observed for TCH + P versus 
T-DM1 + P in the majority of the biomarker subgroups in 
this analysis, including all HER2 pathway biomarker sub-
groups (Fig. 1). All biomarker subgroups associated with 
higher HER2 amplification or expression (HER2 IHC3+, 
HER2/CEP17 gene ratio ≥ 4, HER2 mRNA expres-
sion > median, and homogeneous HER2 IHC expression) 
showed numerically higher pCR rates compared with 
subgroups with lower HER2 levels, irrespective of treat-
ment arm (Fig.  1A–C). In each of these subgroups, the 
absolute difference in pCR rates between treatment arms 
was generally consistent, ranging from − 8.9 to − 11.7 



Page 5 of 14de Haas et al. Breast Cancer Research            (2023) 25:2 	

percentage points. Furthermore, high (> median) versus 
low (≤ median) HER3 mRNA expression showed numer-
ically lower pCR rates in both treatment arms.

In addition, mutated (vs. non-mutated) PIK3CA tumors 
achieved numerically lower pCR rates in the T-DM1 + P 

arm (although this difference was smaller in the TCH + P 
arm; Fig. 1D). In the PIK3CA-mutated subgroup, a higher 
proportion of patients treated with T-DM1 + P exhibited 
low HER2 staining (IHC2+) compared with the TCH + P 
arm (16.4% [10/61] vs. 7.5% [4/53], respectively, although 
the sample sizes were small [data not shown]).

pCR rates by intrinsic tumor subtypes
PAM50 results were available for 77.4% (171/221) of 
patients in the TCH + P arm and 82.1% (183/223) in the 
T-DM1 + P arm (Table 1). The most commonly occurring 
baseline intrinsic subtype was HER2-E (54.8% [194/354]). 
Luminal A, luminal B, and basal-like subtypes occurred 
in 16.9% (60/354), 20.9% (74/354), and 7.3% (26/354) 
of patients, respectively (Additional file  1: Fig. S3A). In 
patients with known PAM50 subtype, 56.5% (200/354) 
and 40.4% (143/354) had centrally tested hormone recep-
tor-positive and hormone receptor-negative tumors, 
respectively; hormone receptor status was unknown for 
3.1% (11/354) of patients. The HER2-E subtype was more 
prevalent in the hormone receptor-negative group versus 
the hormone receptor-positive group (86.0% [123/143] 
vs. 32.0% [64/200]). Luminal tumors were more com-
mon in patients with hormone receptor-positive (65.5%) 
versus hormone receptor-negative (0.7%) disease. 
Most basal-like tumors were identified in the hormone  
receptor-negative group (Additional file 1: Fig. S3B).

Consistent with the results from the intent-to-treat 
(ITT) population [10], pCR rates were numerically higher 
in the TCH + P arm versus T-DM1 + P in all subtypes 
except for luminal A (Fig.  2). In both treatment arms, 
patients with the HER2-E subtype had the highest pCR 
rates compared with the other three subtypes, individu-
ally or combined. The higher pCR rates in the HER2-E 
subtype were observed irrespective of hormone receptor 
status (Fig. 2).

pCR rates by immune biomarkers
PD-L1 positivity, as assessed on immune cells (IC 1, 2, or 
3), was detected in 43.7% (173/396) of patient samples. 
Most tumors were IC 1 (26%), followed by IC 2 (14%) 
and IC 3 (4%). pCR rates were numerically higher in the 
TCH + P versus T-DM1 + P arm, regardless of PD-L1 
status (Fig. 3). Additionally, pCR rates were numerically 
higher in the PD-L1-positive versus PD-L1-negative sub-
group in both treatment arms (Fig. 3).

Hormone receptor-negative tumors had a higher 
prevalence of PD-L1-positive status than hormone 
receptor-positive tumors (51.7% [78/151] vs. 38.3% 
[90/235]; Additional file 1: Fig. S4). In patients with hor-
mone receptor-positive disease, pCR rates were numeri-
cally higher in the PD-L1-positive subgroup only in 
the TCH + P treatment arm. In the T-DM1 treatment 

Table 1  Prevalence of key biomarkers at baseline

BC breast cancer, HER2 human epidermal growth factor receptor 2, HER2-E HER2-
enriched, IHC immunohistochemistry, ISH in situ hybridization, mRNA messenger 
RNA, PAM50 Prediction Analysis of Microarray with the 50-gene classifier, 
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, 
PD-L1 programmed death ligand 1, qRT-PCR quantitative reverse transcriptase 
polymerase chain reaction, TCH + P docetaxel, carboplatin, and trastuzumab 
plus pertuzumab, T-DM1 + P trastuzumab emtansine plus pertuzumab
a Two IHC2+ cases were protocol violations as HER2-positive status could not be 
confirmed centrally
b Included two patients with HER2-negative BC
c Derived from qRT-PCR assays

Biomarker TCH + P
N = 221

T-DM1 + P
N = 223

HER2, n (%) 221 (100.0) 223 (100.0)

 ISH+/IHC3+ 184 (83.3) 185 (83.0)

 ISH+/IHC2+ 25 (11.3) 26 (11.7)

 ISH+/IHC0 or 1+ 2 (0.9) 0 (0)

 ISH−/IHC3+ 1 (0.5) 2 (0.9)

 ISH−/IHC2+ 0 (0) 1 (0.4)a

 ISH unknown/IHC3+ 9 (4.1) 8 (3.6)

 ISH unknown/IHC2+ 0 (0) 1 (0.4)a

HER2/CEP17 gene ratio, n (%) 211 (95.5) 210 (94.2)

 ≥ 2 to < 4 45 (21.3) 52 (24.8)

 ≥ 4 166 (78.7) 158 (75.2)

HER2 staining fraction, n (%) 221 (100.0) 223 (100.0)

 Focal (< 30%) 15 (6.8)b 16 (7.2)

 Heterogeneous (30–79%) 27 (12.2) 27 (12.1)

 Homogeneous (≥ 80%) 179 (81.0) 180 (80.7)

HER2 mRNA expressionc 213 (96.4) 217 (97.3)

 Median (range) 36.3 (1.7–1606.8) 35.3 (2.0–548.8)

 ≤ median, n (%) 106 (49.8) 109 (50.2)

 > median, n (%) 107 (50.2) 108 (49.8)

HER3 mRNA expressionc 212 (95.9) 218 (97.8)

 Median (range) 0.3 (0–2.0) 0.3 (0–2.4)

 ≤ median, n (%) 101 (47.6) 116 (53.2)

 > median, n (%) 111 (52.4) 102 (46.8)

PIK3CA mutation status, n (%) 213 (96.4) 212 (95.1)

 Mutated 53 (24.9) 61 (28.8)

 Non-mutated 160 (75.1) 151 (71.2)

PAM50 subtype, n (%) 171 (77.4) 183 (82.1)

 HER2-E 104 (60.8) 90 (49.2)

 Luminal A 25 (14.6) 35 (19.1)

 Luminal B 32 (18.7) 42 (23.0)

 Basal-like 10 (5.8) 16 (8.7)

PD-L1, n (%) 200 (90.5) 196 (87.9)

 IC 0 117 (58.5) 106 (54.1)

 IC 1, 2, 3 83 (41.5) 90 (45.9)
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arm, pCR rates were numerically lower in the PD-L1- 
positive subgroup of hormone receptor-positive  
disease. In patients with hormone receptor-negative dis-
ease treated with TCH + P, pCR rates were 73.7% for both 
PD-L1-positive and PD-L1-negative disease. However,  
pCR rates in the T-DM1 + P arm were numerically 
higher for PD-L1-positive than PD-L1-negative disease. 
A forest plot for PD-L1 status per hormone receptor  
subgroup was generated (Additional file 1: Fig. S4).

Stromal TILs ≤ 10% and > 10% were detected in 59.5% 
(262/440) and 40.5% (178/440) of patient samples, 
respectively. pCR rates were numerically higher in the 
TCH + P versus T-DM1 + P arm across stromal TIL sub-
groups and higher in patients with stromal TILs > 10% 
versus ≤ 10% in both treatment arms (Fig. 3).

Results from the RNA sequencing analysis of immune 
markers were similar to those observed in the ITT pop-
ulation for all immune marker subgroups (Additional 
file 1: Fig. S5). The treatment benefit was also consistent 
with that observed in the ITT population.

An analysis of EFS showed long-term trends gener-
ally consistent with those obtained from the analysis of 
pCR, including numerically better EFS in patients with 
HER2 IHC3+ (vs. HER2 IHC2+), PD-L1-positive (vs. 
PD-L1-negative) disease, and HER2-E subtype (vs. non-
HER2-E) (Additional file 1: Appendix and Table S3).

Univariate analysis of biomarker association with pCR
A univariate analysis of all biomarkers, including genes 
and signatures of interest from the NanoString panel, 
was conducted to evaluate their prognostic value for 
pCR (Additional file 1: Table S2). Of these biomarkers, 24 
were selected for further multivariate analyses based on 
a P value < 0.15 (Fig. 4). Selected biomarkers with a posi-
tive association with pCR included homogeneous HER2 
IHC3+ intensity; HER2 mRNA expression > median by 
both qRT-PCR and Nanostring; HER2 H-score ≥ median; 
HER2 gene ratio ≥ 4; PAM50 HER2-E subtype;  
PD-L1-positive IHC status; stromal TILs > 10%; tumor 
mass TILs > 10%; and immune gene signatures, epidermal 
growth factor receptor (EGFR), MDR1/ABCB1, and MET 
gene expression > median. Biomarkers with a negative 
association with pCR included PIK3CA mutation; hor-
mone receptor-positive status; HER3 mRNA > median by 

both qRT-PCR and Nanostring; HER4; BCL-2; and mul-
tidrug resistance-associated protein 1 (MRP1) > median. 
Fcy polymorphisms did not impact pCR.

Multivariate analysis of biomarker association with pCR
After applying backwards selection, three biomarker covar-
iates from the univariate analysis (PAM50 HER2-E subtype, 
HER2 gene ratio ≥ 4, and PD-L1-positive IHC status) were 
positively associated with pCR (Table 2) and were included 
in a final logistic model, along with the randomized treat-
ment arms. A total of 314 patients (71% of the ITT popula-
tion) with no missing covariates were included in the final 
model.

Change from baseline in biomarkers of interest
Changes in biomarkers at baseline, cycle 2, and surgery 
were assessed. These findings are exploratory, as the num-
ber of samples available post-baseline was limited and 
patients who did not achieve pCR were more likely to have 
biomarker results at cycle 2 (71.5% of tissue availability for 
non-pCR subgroup vs. 28.5% for pCR subgroup). PAM50 
intrinsic tumor subtype, PD-L1-positive IHC status, per-
centage of stromal TILs, and HER2 gene expression levels 
(Nanostring) were analyzed by the treatment arm at differ-
ent time points. HER2-E tumors were the most prevalent 
PAM50 subtype in both treatment arms at baseline (Addi-
tional file 1: Fig. S6A). In the TCH + P arm, the proportion 
of HER2-E tumors significantly decreased over time, which 
resulted in luminal A tumors being the most common at 
cycle 2 and surgery. In the T-DM1 + P arm, the propor-
tion of HER2-E tumors also decreased, although to a lesser 
extent than in the TCH + P arm. At cycle 2 and surgery, 
the luminal A and B tumor types were the most common, 
accounting for slightly more than 50% of patients. In both 
treatment arms, the proportion of patients with HER2 gene 
expression > median decreased from baseline to surgery 
(Additional file 1: Fig. S6B).

PD-L1-positive IHC status was observed in similar 
percentages of patients at baseline (41.5%) and cycle 2 
(37.3%) in the TCH + P arm, decreasing to 21.4% at sur-
gery. In the T-DM1 + P arm, in contrast, PD-L1 positiv-
ity increased from 45.9% at baseline to 53.8% at cycle 2 
and 72.5% at surgery (Additional file  1: Fig. S6C). How-
ever, dynamic changes in on-treatment PD-L1 status were 
observed for both the TCH + P (Additional file  1: Fig. 

(See figure on next page.)
Fig. 1  pCR ratesa in HER2 biomarker subgroups. A HER2 IHC staining percentage; B HER2/CEP17 gene ratio and HER2 mRNA level; C the pattern 
of HER2 stainingb; and D PIK3CA status. aAll unevaluable patients or patients with missing response data were considered to be nonresponders 
(TCH + P, n = 7 [3.2%]; T-DM1 + P, n = 18 [8.1%]). bCategorization based on sum of IHC2+ and IHC3+ staining percentages. cIncludes two patients 
with HER2-negative BC. BC breast cancer, CI confidence interval, HER2 human epidermal growth factor receptor 2, IHC immunohistochemistry, 
mRNA messenger RNA, NE not evaluable, pCR pathologic complete response, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha, TCH + P docetaxel, carboplatin, and trastuzumab plus pertuzumab, T-DM1 + P trastuzumab emtansine plus pertuzumab
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HER2 staining fraction
Biomarker:

All patients
HER2 IHC 2+/3+b,c

   Focal (<30%)
   Heterogeneous (30%–79%)
   Homogeneous (≥80%)

N
Total

TCH+P (N = 221)

444

31
54
359

n

221

15
27
179

123 (55.7)

5 (33.3)
8 (29.6)

110 (61.5)

T-DM1+P (N = 223)

n

223

16
27
180

99 (44.4)

0
6 (22.2)
93 (51.7)

Response rate
Difference

−11.3

−33.3
−7.4
−9.8

−60 −40 −20 0 20 40

95% CI

−20.5 to −2.0

−57.2 to −9.5
−30.7 to 15.9
−20.0 to 0.4

D

PIK3CA status
Biomarker:

All patients
PIK3CA mutation
   Mutated
   Non-mutated

N
Total

TCH+P (N = 221)

444

114
311

n

221

53
160

123 (55.7)

29 (54.7)
90 (56.3)

T-DM1+P (N = 223)

n

223

61
151

99 (44.4)

19 (31.1)
77 (51.0)

Response rate
Difference

−11.3

−23.6
−5.3

−100 0 50

95% CI

−20.5 to −2.0

−41.3 to −5.8
−16.3 to 5.8

−50

responders (%)
No. of

responders (%)
No. of

responders (%)
No. of

responders (%)
No. of

responders (%)
No. of

responders (%)
No. of

responders (%)
No. of

responders (%)
No. of

A

Biomarker: IHC

All patients
HER2 status by IHC
   IHC3+
   IHC2+
   IHC1+

N
Total

better
TCH+P

better
T-DM1+P

better
TCH+P

better
T-DM1+P

better
TCH+P

better
T-DM1+P

better
TCH+P

better
T-DM1+P

TCH+P (N = 221)

444

389
53
2

n

221

194
25
2

123 (55.7)

118 (60.8)
5 (20.0)

0

T-DM1+P (N = 223)

n

223

195
28
0

99 (44.4)

97 (49.7)
2 (7.1)

0

Response rate
Difference

−11.3

−11.1
−12.9

NE

−60 −40 −20 0
Difference in pCR rate (95% CI)

Difference in pCR rate (95% CI)

Difference in pCR rate (95% CI)

Difference in pCR rate (95% CI)

20 40

95% CI

−20.5 to −2.0

−20.9 to −1.3
−31.2 to 5.5

NE to NE

B

−40

Gene copy ratio and mRNA
Biomarkers: 

All patients
HER2/CEP17 gene ratio
   ≥2 to <4
   ≥4
HER2 mRNA expression
   ≤Median
   >Median
HER3 mRNA expression
   ≤Median
   >Median

N
Total

TCH+P (N = 221)

444

97
324

215
215

217
213

n

221

45
166

106
107

101
111

123 (55.7)

15 (33.3)
103 (62.0)

52 (49.1)
68 (63.6)

70 (69.3)
49 (44.1)

T-DM1+P (N = 223)

n

223

52
158

109
108

116
102

99 (44.4)

10 (19.2)
84 (53.2)

41 (37.6)
56 (51.9)

60 (51.7)
38 (37.3)

Response rate
Difference

−11.3

−14.1
−8.9

−11.4
−11.7

−17.6
−6.9

−30 −20 −10 0

95% CI

−20.5 to −2.0

−31.6 to 3.4
−19.6 to 1.8

−24.6 to 1.7
−24.8 to 1.4

−30.4 to −4.8
−20.1 to 6.3

Fig. 1  (See legend on previous page.)
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S6D) and T-DM1 + P (Additional file  1: Fig. S6E) arms 
from baseline to cycle 2. The proportion of patients with 
stromal TILs > 10% increased from baseline to cycle 2, but 
decreased between cycle 2 and surgery in both treatment 

arms (Additional file 1: Fig. S6F). This decrease was more 
evident in the TCH + P arm (42.2% at baseline, increas-
ing to 56.5% at cycle 2 and decreasing to 23.1% at surgery). 
For immune markers and signatures, there was no trend 

All patients
PAM50
   Luminal A
   Luminal B
   Basal-like
   HER2-enriched
PAM50 (HER2-enriched vs other subtypes)
   HER2-enriched
   Othersa

HER2-enriched and hormone receptor status
   HER2-enriched and hormone receptor negative
   HER2-enriched and hormone receptor positive

N
Total

better
TCH+P

better
T-DM1+P

444

60
74
26
194

194
160

123
64

n

221

25
32
10
104

104
67

64
37

123 (55.7)

4 (16.0)
11 (34.4)
7 (70.0)
75 (72.1)

75 (72.1)
22 (32.8)

48 (75.0)
24 (64.9)

T-DM1+P (N = 223)

n

223

35
42
16
90

90
93

59
27

responders (%)
No. of

responders (%)
No. of

99 (44.4)

10 (28.6)
12 (28.6)
3 (18.8)
56 (62.2)

56 (62.2)
25 (26.9)

37 (62.7)
15 (55.6)

Response rate
Difference

−11.3

12.6
−5.8
−51.3
−9.9

−9.9
−6.0

−12.3
−9.3

−75 −50 −25 250

95% CI

−20.5 to −2.0

−8.2 to 33.3
−27.2 to 15.6

−85.5 to −17.0
−23.1 to 3.3

−23.1 to 3.3
−20.4 to 8.5

−28.6 to 4.0
−33.6 to 14.9

TCH+P (N = 221)

Difference in pCR rate (95% CI)

Fig. 2  pCR by PAM50 breast cancer subtype and hormone receptor status. aOther subtypes combined included the luminal A, luminal B, and 
basal-like subtypes. CI confidence interval, HER2 human epidermal growth factor receptor 2, PAM50 Prediction Analysis of Microarray with the 
50-gene classifier, pCR pathologic complete response, TCH + P docetaxel, carboplatin, and trastuzumab plus pertuzumab, T-DM1 + P trastuzumab 
emtansine plus pertuzumab

All patients
PD-L1 (IC 0 vs IC 1/2/3)
   IC 0
   IC 1/2/3
Stroma TILs (%)
   0–10
   11–100

N
Total

444

223
173

262
178

n

221

117
83

126
92

123 (55.7)

57 (48.7)
55 (66.3)

61 (48.4)
61 (66.3)

T-DM1+P (N = 223)

n

223

106
90

136
86

99 (44.4)

44 (41.5)
46 (51.1)

58 (42.6)
41 (47.7)

Response rate
Difference

−11.3

−7.2
−15.2

−5.8
−18.6

−75 −50 −25 250

95% CI

−20.5 to −2.0

−20.3 to 5.8
−29.7 to −0.7

−17.8 to 6.3
−32.9 to −4.3

TCH+P (N = 221)

better
TCH+P

better
T-DM1+P

responders (%)
No. of

responders (%)
No. of

Difference in pCR rate (95% CI)

Fig. 3  pCR rates by PD-L1 status and stromal TIL level. CI confidence interval, IC immune cell, pCR pathologic complete response, PD-L1 
programmed death ligand 1, TCH + P docetaxel, carboplatin, and trastuzumab plus pertuzumab, T-DM1 + P trastuzumab emtansine plus 
pertuzumab, TIL tumor-infiltrating lymphocyte

Fig. 4  Biomarkers with P < 0.15 from a univariate analysis for association with pCR. 3-gene: PD-L1/IFNG/CXCL9 > median versus ≤ median. 5-gene: 
PD-L1/granzymeB/CD8/IFNG/CXCL9 > median versus ≤ median. Teff: CD8/granzymeA/granzymeB/perforin/IFNG > median versus ≤ median. 
ThCytokine: CXCL9/CXCL10/CXCL11 > median versus ≤ median. Derived from Nanostring. Derived from qRT-PCR assays. BCL-2 B cell lymphoma 
2, CD cluster of differentiation, CI confidence interval, CXCL C-X-C motif chemokine ligand, EGFR epidermal growth factor receptor, ER estrogen 
receptor, HER human epidermal growth factor receptor, IC immune cell, IFNG interferon gamma, IHC immunohistochemistry, MDR1 multidrug 
resistance mutation 1, MET MET protooncogene, receptor tyrosine kinase, mRNA messenger RNA, MRP1 multidrug resistance–associated protein 
1, PAM50 Prediction Analysis of Microarray with the 50-gene classifier, pCR pathologic complete response, PD-L1 programmed death ligand 1, 
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, PR progesterone receptor, qRT-PCR quantitative reverse transcriptase 
polymerase chain reaction, Teff T effector, ThCytokine chemokine signaling, TIL tumor-infiltrating lymphocyte

(See figure on next page.)
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87 (40.8)
130 (59.9)
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Fig. 4  (See legend on previous page.)
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toward difference between treatment arms, and the change 
from baseline was modest with a trend toward increased 
expression at neoadjuvant cycle 2 for most immune signa-
tures (Additional file 1: Fig. S7).

Co‑occurrence of biomarkers
HER2-related biomarkers (HER2-E subtype, high 
gene ratio, homogeneous staining, high H-score, and 
IHC3+ status) were all highly correlated with each other, 
as shown in the balloon plot in Additional file 1: Fig. S8. 
Immune-related biomarkers (PD-L1-positive status, 
high PD-L1/CD8/Teff gene/Teff signature expression 
levels, and high TILs) were also shown to co-occur. No 
clear and consistent association between high levels of 
HER2- and immune-related markers was observed, apart 
from some weak single associations (e.g., HER2-E with 
high stromal TILs; in contrast with high HER2 mRNA 
with low PD-L1, low Teff mRNA, and low stromal TILs). 
High HER3 mRNA showed a negative association with 
high levels of both HER2- and immune-related markers, 
except a positive association between high HER3 mRNA 
and high HER2 mRNA.

Other markers showing a negative association with 
high HER2-related biomarkers were hormone receptor-
positive status (all with the exception of HER2 H-score), 
PIK3CA mutation (with high HER2 H-score and high 
HER2 mRNA), and high bcl-2 expression (with HER2-E 
subtype, homogeneous HER2, and HER2 IHC3+).

Interestingly, a positive hormone receptor status was 
more likely to be associated with low immune marker 
expression and to co-occur with high bcl-2 and high 
HER3 RNA expression. Mutated PIK3CA was shown to 
correlate with low HER3 mRNA levels and high PD-L1 
gene expression, but with no other immune markers.

Discussion
Consistent with the analysis of pCR in the ITT popula-
tion from KRISTINE [10], pCR rates in this explora-
tory biomarker analysis were numerically lower in the 
T-DM1 + P versus TCH + P treatment arm for the 
majority of the assessed biomarkers. The only exception 
was the luminal A subgroup, which appeared to favor 
T-DM1 + P; however, the interpretation of these data 
is limited by the small sample sizes in this subgroup. 
Therefore, no subgroup of patients that clearly bene-
fited from neoadjuvant T-DM1 + P versus TCH + P was 
identified. As expected, higher HER2 levels (based on 
mRNA and protein expression, gene amplification, and 
HER2-E intrinsic subtype) were associated with numeri-
cally higher pCR rates versus those observed with lower 
HER2 levels, irrespective of treatment arm. Addition-
ally, immune activation factors, including PD-L1 posi-
tivity, higher immune gene expression, and higher TILs, 
were associated with higher pCR rates; this was espe-
cially notable in the TCH + P arm. These data are con-
sistent with previous reports from neoadjuvant breast 
cancer studies of HER2-targeted therapy [16, 24, 25, 27, 
37, 38] and recently reported validation results from the 
HER2DX assay, which integrates HER2 subtype informa-
tion, immune information, and ERBB2 levels into a single 
score [39].

The multivariate analysis indicated that PAM50 HER2-
E subtype, HER2 gene ratio ≥ 4, and PD-L1-positive IHC 
status positively influenced the pCR rate, while hormone 
receptor-negative status was not shown to be a covariate 
influencing the pCR rate. However, patients with hor-
mone receptor-negative disease were more likely to be 
PD-L1-positive than patients with hormone receptor-
positive disease. Similar to previous studies [8, 40, 41], 
hormone receptor-negative status was associated with a 

Table 2  Multivariate analysis of treatment effect and selected biomarkers associated with pCR

Analysis conducted in patients with no missing covariates

The final logistic model included 314 patients

CI confidence interval, HER2 human epidermal growth factor receptor 2, HER2-E human epidermal growth factor receptor 2-enriched, IC immune cell, IHC 
immunohistochemistry, PAM50 Prediction Analysis of Microarray with the 50-gene classifier, pCR pathologic complete response, PD-L1 programmed death ligand 1, 
TCH + P docetaxel, carboplatin, and trastuzumab plus pertuzumab, T-DM1 + P trastuzumab emtansine plus pertuzumab
a Degrees of freedom represent the number of categories used versus the reference

Effect Degrees of freedoma Odds ratio (95% CI)

Treatment effect
TCH + P (reference; n = 160) versus T-DM1 + P (n = 154)

1 0.68 (0.41–1.12)

PAM50 intrinsic subtypes
Other subtypes (reference; n = 137) versus HER2-E (n = 177)

1 4.02 (2.41–6.70)

HER2 gene ratio
2–4 (reference; n = 71) versus ≥ 4 (n = 243)

1 4.08 (2.12–7.84)

PD-L1 IHC staining subgroups
IC 0 (reference; n = 172) versus IC 1, 2, 3 (n = 142)

1 2.48 (1.48–4.14)



Page 11 of 14de Haas et al. Breast Cancer Research            (2023) 25:2 	

higher pCR rate, but did not remain a significant factor 
after correcting for other factors. The reason for the dif-
ference in pCR rate between treatment arms in the PD-
L1-negative versus PD-L1-positive subgroups within the 
HR subgroups is unclear. It should be noted that as these 
are small subsets within a subgroup analysis, no firm 
conclusions can be drawn.

Previous studies assessing the impact of PIK3CA 
mutation status on HER2-targeted treatments for eBC 
appear to have been influenced by the study setting and/
or treatments received. In the neoadjuvant eBC setting, 
PIK3CA mutations have generally been associated with 
worse outcomes, including lower pCR rates, in patients 
treated with HER2-targeted therapies [17, 42]. How-
ever, the impact of PIK3CA mutations on long-term 
outcomes in the adjuvant setting is less clear [43–45]. 
In our analysis of data from KRISTINE, PIK3CA muta-
tions were associated with a lower pCR rate in a uni-
variate analysis, although this effect was mainly present 
in the T-DM1 + P arm. These results differ from pre-
vious studies in second-line mBC that did not show an 
association between PIK3CA mutation and efficacy in 
T-DM1-treated patients with HER2-positive breast can-
cer, suggesting that T-DM1 treatment may overcome the 
prognostic value of PIK3CA mutations [13]. The differ-
ences between the current study and previous analyses 
may also be due to imbalances in other influencing fac-
tors—such as HER2 IHC or hormone receptor status—
within these subgroups across treatment arms, as well 
as to differences in treatment lines and disease setting. 
Notably, the multivariate analysis did not confer a clear 
prognostic value for pCR rates for PIK3CA mutations.

In addition, we observed that hormone receptor-positive 
disease was negatively associated with almost all HER2-
related biomarkers with high levels of HER2 expression, 
and PIK3CA mutation showed a negative association 
with high HER2 H-score and mRNA. This may have con-
tributed to the fact that PIK3CA and hormone receptor 
status were not included in the final multivariate model. 
Other explanations include the relatively small sample size 
and differences in the impact of the biomarker on pCR 
between the two treatment arms. The balloon plot further 
shows the independent presence of high HER2 and high 
immune markers in the tumors and may therefore explain 
the role of the HER2-E subtype, HER2 gene ratio, and 
PD-L1 as independent factors associated with pCR.

We observed alterations in “on-treatment” biomarkers 
from baseline to the time of surgery. The proportion of 
luminal A tumor subtypes, previously identified as predic-
tive of resistance to anti-HER2 therapy [46], increased in 
both “on-treatment” and “post-treatment” tumor samples. 
The increased proportion of the luminal A subtype and 
subsequent decreased proportion of the HER2-E subtype 

over time was predominantly observed in the TCH + P 
group; this suggests that there is a shift in tumor cells 
with characteristics that may be less sensitive to combi-
nation treatment with systemic chemotherapy and HER2-
targeted therapy or that the increase in the prevalence 
of luminal A subtype is simply due to a more prominent 
reduction in the number of HER2-positive tumor cells 
within more heterogeneous tumors. The rapid shift to a 
higher proportion of luminal disease subtypes with dual 
HER2 blockade observed in this study was also reported 
in the CALGB and PAMELA trials, highlighting the fluid-
ity of molecular subtyping under treatment pressure [46, 
47]. While a general conversion of subtypes was seen in 
36% of patients who progressed from primary to meta-
static disease in the AURORA study [48], the change from 
HER2-E into luminal subtypes was rarely observed, sug-
gesting that the HER2-E subtype may be more stable. Of 
note, the AURORA data were generated across breast 
cancer types, not only HER2-positive disease. Another 
explanation for the differences in subtype fluidity over 
time and disease settings may be the role of adjuvant 
endocrine treatment, which is absent in the neoadju-
vant setting. An additional finding in KRISTINE was that 
in the TCH + P arm, the proportion of PD-L1-positive 
tumors was similar from baseline to cycle 2, but decreased 
from baseline to surgery. In contrast, PD-L1-positiv-
ity increased between baseline and cycle 2, as well as 
between cycle 2 and surgery, in the T-DM1 + P arm. Thus, 
while an overall increase in PD-L1-positivity was mainly 
seen in the T-DM1 + P arm, dynamic changes in PD-L1 
status during treatment were observed in both treatment 
arms. The changes in PD-L1 expression likely represent 
increased immune activation resulting from therapy, but 
more data are needed on potential differences in immune 
stimulation relating to the type of chemotherapy used 
(DM1 versus docetaxel/carboplatin), the route of admin-
istration (systemic versus targeted delivery via an ADC), 
and the role of preexisting immunity [49]. Overall, these 
data suggest that immune stimulation can be induced by 
both traditional chemotherapy and an ADC (i.e., T-DM1), 
perhaps as a result of antigen spreading induced by anti-
gens released from dying tumor cells.

These changes in “on-treatment” biomarkers align with 
findings in the neoadjuvant setting, including studies of 
chemotherapy combined with HER2-targeted therapies 
[46, 47]. In the TRIO-US B07 phase II trial, immune sig-
nature levels decreased at the time of surgery in patients 
with HER2-positive breast cancer treated with neoadjuvant 
trastuzumab and/or lapatinib plus chemotherapy [37]. In a 
study of anti-HER2-based neoadjuvant treatment in HER2-
positive breast cancer, stromal TILs consistently decreased 
at surgery in patients who achieved pCR, whereas most 
residual tumors remained inflamed at surgery [50].
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Our biomarker analysis has several limitations. The sam-
ple sizes for some subgroups were small, particularly for the 
breast cancer subtype, biomarker co-occurrence, subsets of 
subgroups, and post-baseline time points. The small num-
ber of EFS events and the receipt of other therapies (e.g., 
chemotherapy, hormonal therapy) following neoadjuvant 
treatment in some patients limit the potential impact of a 
biomarker analysis for this clinical outcome. A numeri-
cally higher rate of the HER2-E subtype in the TCH + P 
arm may have impacted overall results due to the associa-
tion between HER2 subtype and increased pCR rate. Only 
three biomarkers of interest (HER2, PD-L1 IHC status, and 
PIK3CA mutation) were pre-specified to be included in this 
analysis and were investigated following the pooling of data 
from both treatment arms. Therefore, no firm conclusions 
should be drawn. Of note, 15 EFS events were reported 
during the neoadjuvant period in the T-DM1 + P arm, and 
these were associated with low and heterogeneous HER2 
expression [11]. Additionally, interpretation is limited by 
the enrichment of patients without pCR in biomarker data 
derived from serial samples. Again, firm conclusions can-
not be made regarding data reported for changes from 
baseline in PAM50 intrinsic subtypes, PD-L1 expression, 
TILs, and HER2 mRNA, as these may be biased by the fact 
that patients with residual disease were more likely to have 
tumor tissue available at cycle 2 as well as at surgery.

Conclusion
Our analysis of biomarkers in the KRISTINE study con-
firms the role of HER2 and the immune microenviron-
ment in achieving pCR after dual HER2-targeted therapy, 
with the PAM50 HER2-E subtype, HER2 gene ratio ≥ 4, 
and PD-L1-positive IHC status being positively associated 
with pCR. HER2 IHC3+ and PD-L1-positive status were 
associated with numerically better EFS compared with 
HER2 IHC2+ and PD-L1-negative status. The observed 
associations between PD-L1 and clinical outcomes may 
be related more to their independent prognostic poten-
tial than to a relationship with response to HER2-tar-
geted therapeutics, as similar associations have been 
observed in studies of patients with triple-negative breast 
cancer [51, 52]. Additionally, high levels of HER2 and 
immune-related markers may impact tumors indepen-
dently, as suggested by the multivariate analysis and the 
lack of co-occurrence. Dynamic changes were observed  
on-treatment for paired biopsy analyses of select bio-
markers. The overlap of biomarkers unfavorable to pCR, 
such as positive hormone receptor status, PIK3CA muta-
tion, low HER2 levels, and non HER2-E subtypes, reaf-
firms the complex molecular diversity of HER2-positive 
breast tumors and should be considered when designing 
clinical trials of HER2-targeted treatments for early-stage 
HER2-positive breast cancer.
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